
Boolean Algebra

1 Boolean Algebra

A Boolean algebra is a set X equipped with two binary operations ∧,∨,

one unary operation ′, and two distinct elements 0, 1, satisfying the following

properties:

1) Commutative Laws

x ∧ y = y ∧ x, x ∨ y = y ∨ x.

2) Associative Laws

x ∧ (y ∧ z) = (x ∧ y) ∧ z,

x ∨ (y ∨ z) = (x ∨ y) ∨ z.

3) Distributive Laws

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z),

x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z).

4) Identity Laws

x ∧ 1 = x, x ∨ 0 = x.

5) Complementation Laws

x ∧ x′ = 0, x ∨ x′ = 1.

The operation ∨ is called join, ∧ is called meet, and the unary operation ′ is

called complementation.

Theorem 1.1 (Duality Principle). Let F be a formula on a Boolean algebra.

Let F ′ be a formula obtained from F by interchanging ∧ and ∨, 0 and 1,

and keeping other variables unchanged, then F is a valid identity if and

only if F ′ is a valid identity, i.e.,

F is valid ⇐⇒ F ′ is valid

1



Theorem 1.2. The following properties hold in every Boolean algebra:

a) Idempotent Laws

x ∧ x = x, x ∨ x = x.

b) More Identity Laws

x ∧ 0 = 0, x ∨ 1 = 1.

c) Absorbtion Laws

(x ∧ y) ∨ x = x, (x ∨ y) ∧ x = x.

Proof. a) On the one hand x ∧ x = (x ∧ x) ∨ 0 = (x ∧ x) ∨ (x ∧ x′). On the

other hand x = x ∧ 1 = x ∧ (x ∨ x′) = (x ∧ x) ∨ (x ∧ x′). Likewise,

x ∨ x = (x ∨ x) ∧ 1 = (x ∨ x) ∧ (x ∨ x′),

x = x ∨ 0 = x ∨ (x ∧ x′) = (x ∨ x) ∧ (x ∨ x′).

b)

x ∧ 0 = x ∧ (x ∧ x′) = (x ∧ x) ∧ x′ = x ∧ x′ = 0;

x ∨ 1 = x ∨ (x ∨ x′) = (x ∨ x) ∨ x′ = x ∨ x′ = 1.

c)

(x ∧ y) ∨ x = (x ∧ y) ∨ (x ∧ 1) = x ∧ (y ∨ 1) = x ∧ 1 = x;

(x ∨ y) ∧ x = (x ∨ y) ∧ (x ∨ 0) = x ∨ (y ∧ 0) = x ∨ 0 = x.

Lemma 1.3 (Complementation Lemma). If w ∨ z = 1 and w ∧ z = 0, then

z = w′.

Proof.

z = z ∨ 0 = z ∨ (w ∧ w′) = (z ∨ w) ∧ (z ∨ w′)

= (w ∨ z) ∧ (w′ ∨ z) = 1 ∧ (w′ ∨ z) = (w ∨ w′) ∧ (w′ ∨ z)

= (w′ ∨ w) ∧ (w′ ∨ z) = w′ ∨ (w ∧ z) = w′ ∨ 0 = w′.

2



Corollary 1.4. (z′)′ = z.

Proof. Let w = z′. Since w ∨ z = z′ ∨ z = 1 and w ∧ z = z′ ∧ z = 0, it follows

that z = w′, i.e., (z′)′ = z.

Theorem 1.5 (De Morgan Laws).

(x ∨ y)′ = x′ ∧ y′, (x ∧ y)′ = x′ ∨ y′.

Proof. From the Complementation Lemma, for the first identity we only need

to prove

(x ∨ y) ∨ (x′ ∧ y′) = 1, (x ∨ y) ∧ (x′ ∧ y′) = 0.

In fact,

(x ∨ y) ∨ (x′ ∧ y′) = [(x ∨ y) ∨ x′] ∧ [(x ∨ y) ∨ y′]

= (y ∨ 1) ∧ (x ∨ 1) = 1 ∧ 1 = 1;

(x ∨ y) ∧ (x′ ∧ y′) = [x ∧ (x′ ∧ y′)] ∨ [y ∧ (x′ ∧ y′)]

= (0 ∧ y′) ∨ (0 ∧ x′) = 0 ∨ 0 = 0.

For the second identity we need to prove

(x ∧ y) ∨ (x′ ∨ y′) = 1, (x ∧ y) ∧ (x′ ∨ y′) = 0.

In fact,

(x ∧ y) ∨ (x′ ∨ y′) = [x ∨ (x′ ∨ y′)] ∨ [y ∨ (x′ ∨ y′)]

= (1 ∨ y′) ∧ (1 ∨ x′) = 1 ∧ 1 = 1;

(x ∧ y) ∧ (x′ ∨ y′) = [(x ∧ y) ∧ x′] ∨ [(x ∧ y) ∧ y′]

= (y ∧ 0) ∨ (x ∧ 0) = 0 ∧ 0 = 0.

Example 1.1. The power set P(S) of a nonempty set S is a Boolean algebra

whose

• binary operation ∧ is the set intersection ∩,

3



• binary operation ∪ is the set union ∪,

• unary operation ′ is the set complement ¯,

• distinct element 0 is the empty set ∅, and

• distinct element 1 is the whole set S.

Example 1.2. The binary space B = {0, 1} is a Boolean algebra, where

x ∧ y = min{x, y}, x ∨ y = max{x, y}, x′ = 1− x.

Example 1.3. The n-dimensional binary space is the Cartesian product

B
n = {0, 1}n = B× · · · × B (n copies),

and is a Boolean algebra under the Boolean operations

(x1, . . . , xn) ∧ (y1, . . . , yn) = (x1 ∧ y1, . . . , xn ∧ yn),

(x1, . . . , xn) ∨ (y1, . . . , yn) = (x1 ∨ y1, . . . , xn ∨ yn),

(x1, . . . , xn)
′ = (x′1, . . . , x

′
n),

whose two distinct elements 0 and 1 are

0 = (0, . . . , 0), 1 = (1, . . . , 1).

Example 1.4. The set of sentences, generated by some simple sentences p, q, . . .

with logic connectives ∧,∨,¬, forms a Boolean algebra, where ¬ is the unary

operation ′, 0 is the contradiction, and 1 is the tautology.

Example 1.5. The set of all functions from a nonempty set S to B, denoted

B
S, forms a Boolean algebra, where for functions f, g : S → B,

(f ∧ g)(x) = f(x) ∧ g(x), (f ∨ g)(x) = f(x) ∨ g(x),

f ′(x) = 1− f(x),

and 0 is the constant function having the value zero everywhere, 1 is the constant

function having the value 1 everywhere.

4



Two Boolean algebrasB1, B2 are said to be isomorphic if there is a bijection

φ : B1 → B2 such that for x, y ∈ B1,

φ(x ∧ y) = φ(x) ∧ φ(y), φ(x ∨ y) = φ(x) ∨ φ(y),

φ(x′) = φ(x)′, φ(0) = 0, φ(1) = 1.

The map φ is known as an isomorphism.

Example 1.6. Given a nonempty set S, the Boolean algebras P(S) and B
S

are isomorphic by the isomorphism

φ : P(S) → B
S, A 7→ φ(A) = 1A,

where A ∈ P(S), 1A is the characteristic function of A, defined by

1A(x) =

{

1 if x ∈ A,

0 if x ∈ Ac = S rA.

Theorem 1.6 (Principle of Duality). Let f, g be two expressions in a Boolean

algebra B. If there is a formula

f(x1, . . . , xn,∧,∨, 0, 1) = g(x1, . . . , xn,∧,∨, 0, 1),

then we have the following corresponding formula

f(x1, . . . , xn,∨,∧, 1, 0) = g(x1, . . . , xn,∨,∧, 1, 0),

which is obtained from the given formula by interchanging ∧ and ∨, and

interchanging 0 and 1.

Proof. Let us write yi = x′i for i = 1, . . . , n. Note that f ′ = g′.

[f(x1, . . . , xn,∧,∨, 0, 1)]
′ = f(x′1, . . . , x

′
n,∨,∧, 1, 0)

= f(y1, . . . , yn,∨,∧, 1, 0),

[g(x1, . . . , xn,∧,∨, 0, 1)]
′ = g(x′1, . . . , x

′
n,∨,∧, 1, 0)

= g(y1, . . . , yn,∨,∧, 1, 0).

We have f(y1, . . . , yn,∨,∧, 1, 0) = g(y1, . . . , yn,∨,∧, 1, 0).

5



For instance, consider the following Boolean formulas

f(x1, x2, x3,∧,∨, 0, 1) = (x1 ∨ x′2) ∧ (x3 ∧ 1)′ ∧ (x1 ∨ 0),

g(x1, x2, x3,∧,∨, 0, 1) = (x′1 ∧ x2)
′ ∧ (x′3 ∨ 0) ∧ (x1 ∨ 0).

Note that f(x1, x2, x3,∧,∨, 0, 1) = g(x1, x2, x3,∧,∨, 0, 1). We see that

f(x1, x2, x3,∨,∧, 1, 0) = (x1 ∧ x′2) ∨ (x3 ∨ 0)′ ∨ (x1 ∧ 1)

= (x1 ∧ x′2) ∨ x′3 ∨ x1,

g(x1, x2, x3,∨,∧, 1, 0) = (x′1 ∨ x2)
′ ∨ (x′3 ∧ 1) ∨ (x1 ∧ 1)

= (x1 ∧ x′2) ∨ x′3 ∨ x1.

2 Boolean Functions and Boolean Expressions

It is convenient to denote the truth values T by 1 and F by 0, and write B =

{0, 1}. The product set Bn is called the n-dimensional Boolean algebra.

A Boolean function of n variables x1, . . . , xn ∈ B is a map f : Bn → B.

The variables x1, . . . , xn are called Boolean variables and can be viewed as

simple statements. The variables x1, . . . , xn and their negations ¬x1, . . ., ¬xn
are called literals. For convenience, we write ¬x1, . . . ,¬xn as x̄1, . . . , x̄n. A

Boolean expression is a sentence consisting of literals and connectives ∧ and

∨, where

a ∧ b = min{a, b}, a ∨ b = max{a, b}.

We usually write a ∧ b = ab and ā = a′.

A Boolean expression (formula) is a concrete form of a Boolean function.

Theorem 2.1. Every Boolean function can be expressed as a Boolean for-

mula.

Proof. We proceed by induction on n, the number of Boolean variables. For

n = 1, there are exactly four Boolean functions f : B → B of one variable x as

follows:
f(0) = 0, f(1) = 1 ⇔ f(x) = x;

f(0) = 1, f(1) = 0 ⇔ f(x) = x̄;

f(0) = 1, f(1) = 1 ⇔ f(x) = x ∨ x̄;

f(0) = 0, f(1) = 0 ⇔ f(x) = x ∧ x̄.

6



Assume it is true for Boolean functions of n−1 variables. Consider a Boolean

function f(x1, x2, . . . , xn) of n variables. Note that

g0 = f(0, x2, . . . , xn), g1 = f(1, x2, . . . , xn)

are Boolean functions of n− 1 variables x2, . . . , xn. By induction hypothesis, g0
and g1 can be expressed as Boolean formulas.

We now claim the identity

f(x1, x2, . . . , xn) = (x1 ∧ g1) ∨ (x̄1 ∧ g0). (1)

Recall that for any statement p,

0 ∧ p = 0, 1 ∧ p = p, 0 ∨ p = p, 1 ∨ p = 1.

For x1 = 0 and arbitrary x2, . . . , xn,

RHS = (0 ∧ g1) ∨ (1 ∧ g0)

= 0 ∨ g0 = g0
= f(0, x2, . . . , xn) = LHS.

Likewise, for x1 = 1 and arbitrary x2, . . . , xn,

RHS = (1 ∧ g1) ∨ (0 ∧ g0)

= g1 ∨ 0 = g1
= f(1, x2, . . . , xn) = LHS.

The identity (1) shows that f can be expressed as a Boolean expression.

We also see from the proof that

f(x1, . . . , xn) = (f(x1, . . . , xn−1, 1) ∧ xn) ∨ (f(x1, . . . , xn−1, 0) ∧ x̄n).

Example 2.1. Express the Boolean function

(x1, x2) f(x1, x2)

(0,0) 1

(0,1) 0

(1,0) 0

(1,1) 1

as a Boolean formula.

7



Write the function f(x1, x2) as

f(x1, x2) = (x1 ∧ f(1, x2)) ∨ (x̄1 ∧ f(0, x2)).

Since
f(1, 0) = 0, f(1, 1) = 1 ⇔ f(1, x2) = x2,

f(0, 0) = 1, f(0, 1) = 0 ⇔ f(0, x2) = x̄2,

we have

f(x1, x2) = (x1 ∧ x2) ∨ (x̄1 ∧ x̄2).

Example 2.2. Express the Boolean function

(x1, x2, x3) f(x1, x2, x3)

(0,0,0) 1

(0,0,1) 1

(0,1,0) 0

(0,1,1) 0

(1,0,0) 0

(1,0,1) 1

(1,1,0) 0

(1,1,1) 1

as a Boolean expression.

Solution. By Theorem 1,

f(x1, x2, x3) = (x1 ∧ f(1, x2, x3)) ∨ (x̄1 ∧ f(0, x2, x3)).

Since
f(1, x2, x3) = (x2 ∧ f(1, 1, x3)) ∨ (x̄2 ∧ f(1, 0, x3)),

f(1, 1, 0) = 0, f(1, 1, 1) = 1 ⇔ f(1, 1, x3) = x3,

f(1, 0, 0) = 0, f(1, 0, 1) = 1 ⇔ f(1, 0, x3) = x3,

then
f(1, x2, x3) = (x2 ∧ x3) ∨ (x̄2 ∧ x3)

= (x2 ∨ x̄2) ∧ x3
= 1 ∧ x3 = x3.

8



Similarly,

f(0, x2, x3) = (x2 ∧ f(0, 1, x3)) ∨ (x̄2 ∧ f(0, 0, x3)),

f(0, 1, 0) = 0, f(0, 1, 1) = 0 ⇔ f(0, 1, x3) = x3 ∧ x̄3,

f(0, 0, 0) = 1, f(0, 0, 1) = 1 ⇔ f(0, 0, x3) = x3 ∨ x̄3,

then
f(0, x2, x3) = (x2 ∧ x3 ∧ x̄3) ∨ (x̄2 ∧ (x3 ∨ x̄3))

= 0 ∨ (x̄2 ∧ 1)

= x̄2 ∧ 1

= x̄2.

Thus

f(x1, x2, x3) = (x1 ∧ x3) ∨ (x̄1 ∧ x̄2) = x1x3 ∨ x′1x
′
2.

A Boolean expression of the form

f(x1, . . . , xn) =

m
∨

k=1

fk(x1, . . . , xn),

is said to be in disjunctive normal form or sum-of-product form if each

fk(x1, . . . , xk) is a conjunction (product) of some of the literals

x1, . . . , xn, x̄1, . . . , x̄n.

The conjunction of literals is also known as minterm, and the disjunctive normal

form is known as the sum of minterms. The minterms of 3-variables are given

as follows:

(a, b, c) Minterm with value 1 at (a, b, c)

(0, 0, 0) x′y′z′

(0, 0, 1) x′y′z

(0, 1, 0) x′yz′

(0, 1, 1) x′yz

(1, 0, 0) xy′z′

(1, 0, 1) xy′z

(1, 1, 0) xyz′

(1, 1, 1) xyz

9



Every Boolean expression can be written in disjunctive normal form. You may

define conjunctive normal form in a similar way.

10



Example 2.3. Find a Boolean express for the Boolean function f : B3 → B

given by the table

(a, b, c) f(a, b, c) Minterm with value 1 at (a, b, c)

(0, 0, 0) 0 x′y′z′

(0, 0, 1) 1 x′y′z

(0, 1, 0) 1 x′yz′

(0, 1, 1) 1 x′yz

(1, 0, 0) 0 xy′z′

(1, 0, 1) 1 xy′z

(1, 1, 0) 1 xyz′

(1, 1, 1) 1 xyz

The Boolean function f can be expressed as

f(x, y, z) = x′y′z ∨ x′yz′ ∨ x′yz ∨ xy′z ∨ xyz′ ∨ xyz.

However, x′y′z ∨ xy′z is equivalent to y′z; x′yz′ ∨ x′yz is equivalent to x′y; and

xyz′ ∨ xyz is equivalent to xy. Thus f(x, y, z) is simplified to

f(x, y, z) = y′z ∨ x′y ∨ xy = y′z ∨ y.

3 Logic Networks

Computer science at hardware level includes design of devices to produce appro-

priate outputs from given inputs. For the inputs and outputs that are 0’s and

1’s, the problem is to design circuitry that transforms input data into required

output data. Mathematically, the transform is a Boolean function, which has

Boolean expressions. These Boolean expressions are build up from the literals

with logic connectives ∧,∨,¬, which can be realized by logic gates. We only

use the following six gates, which are ANSI/IEEE standard.

11



(a) AND (b) OR (c) NOT

(d) NAND (e) NOR (f) XOR

Figure 1: Six symbols of elementary logic gates

NOT AND OR NAND NOR XOR

x y x′ x ∧ y x ∨ y (x ∧ y)′ (x ∨ y)′ x⊕ y

0 0 1 0 0 1 1 0

0 1 1 0 1 1 0 1

1 0 0 0 1 1 0 1

1 1 0 1 1 0 0 0

Sometimes it is desirable or convenient to have all gates expressed in terms

of one or two types of gates. For instance, every Boolean function or Boolean

expression can be expressed by the same type gate or by two types of gates. For

instance, all gates can be expressed by the gate NAND.

The negation x′ = (x ∧ x)′ = A can be realized by

x A

The conjunction x ∧ y = (x ∧ y)′′ = B can be realized by

B
x
y

The disjunction x ∨ y = (x′ ∧ y′)′ = C can be realized by

C

y

x

12



Example 3.1. How to compute 28 + 15? We write the two integers in binary

numbers

43 = 32 + 8 + 2 + 1 = 1 · 25 + 0 · 24 + 1 · 23 + 0 · 22 + 1 · 21 + 1 · 20,

27 = 16 + 8 + 2 + 1 = 1 · 24 + 1 · 23 + 0 · 22 + 1 · 21 + 1 · 20.

We are to add binary the numbers 101011 (= 43 in base ten) and 11011 (= 27

in base ten). We perform
101011

+ 11011

1000110

Binary addition is similar to ordinary decimal addition. Working from right to

left, we can add the digits in each column. If the sum is 0 or 1, we write the sum

in the answer line and carry a digit 0 to the column on the left. If the sum is 2

or 3 (in the case of 1 + 1 and plus 1 carried from the right column), we write 0

or 1 respectively, and go to the next column on the left with a carry digit 1.

Half-adder. The rightmost column contains exactly two digits x, y [in the

example x = y = 1]. The answer digit in this column is x ⊕ y, and the carry

digit for the next column is xy. Note that S := x⊕ y = (x∨ y)(xy)′ is the digit

of output in this column, and C := xy is the carry digit to the column in the

left. See Figure

Sy
x

C=xy

Figure 2: Half-adder: S = x⊕ y, C = xy

Full-adder. For more general case with a carry input CI and a carry output

Co, we can combine two half-adders and an OR gate to have the following

network: S = x⊕ y ⊕ CI , Co = xy ∨ (x⊕ y)CI .

13



x
y

xy

x+y

S

CI

o

I(x+y)C

C

Figure 3: Full-adder: S = x⊕ y ⊕ CI , Co = xy ∨ (x⊕ y)CI

4 Karnaugh Maps

The Karnaugh map, also known as the K-map, is a method to simplify

Boolean expressions. The Karnaugh map reduces the need for extensive calcu-

lations by taking advantage of humans’ pattern-recognition capability.

A required Boolean function can be transferred from a truth table onto a two-

dimensional grid, where the cells are ordered in Gray code, and each cell position

represents one combination of input conditions, while each cell value represents

the corresponding output value. Optimal groups of 1s or 0s are identified, which

represent the terms of a canonical form of the logic in the original truth table.

These terms can be used to write a minimal Boolean expression representing the

Boolean function.

Example 4.1. Given a Boolean function f : B3 → B.

(a) The Karnaugh map is

yz yz′ y′z′ y′z

x 0 1 0 0

x′ 0 0 1 1

We see that

f(x, y, z) = xyz′ ∨ x′y′z′ ∨ x′y′z

= x′y′ ∨ xyz′.

14



(b) The Karnaugh maps is

yz yz′ y′z′ y′z

x 0 1 1 0

x′ 0 1 1 0

f(x, y, z) = xyz′ ∨ xy′z′ ∨ x′yz′ ∨ x′y′z′

= xz′ ∨ x′z′ = z′.

(c) The Karnaugh maps is

yz yz′ y′z′ y′z

x 1 0 0 1

x′ 1 1 0 1

f(x, y, z) = xyz ∨ xy′z ∨ x′yz ∨ x′yz′ ∨ x′y′z

= yz ∨ x′y ∨ y′z

= z ∨ x′y.

Example 4.2. Given a Boolean function f : B4 → B of four variables by the

Karnaugh map
zw zw′ z′w′ z′w

xy 0 1 0 0

xy′ 0 0 1 1

x′y′ 1 0 1 1

x′y 1 1 1 0

f(x, y, z, w) = xyzw′ ∨ xy′z′w′ ∨ xy′z′w ∨ x′y′zw ∨

x′y′z′w′ ∨ z′y′z′w ∨ x′yzw ∨ x′yzw′ ∨ x′yz′w′

= y′z′ ∨ x′zw ∨ yzw′ ∨ x′yw′.

Example 4.3. Given a Boolean function f : B4 → B of four variables by the

Karnaugh map
yz yz′ y′z′ y′z

wx 1 1 1 0

wx′ 0 1 1 1

w′x′ 1 1 1 1

w′x 1 1 1 0

15



f(x, y, z, w) = wxyz ∨ wxyz′ ∨ wxy′z′ ∨

wx′yz′ ∨ wx′z′y′z′ ∨ wx′y′z ∨

w′x′yz ∨ w′x′yz′ ∨ w′x′y′z′ ∨ w′x′y′z ∨

w′xyz ∨ w′xyz′ ∨ w′xy′z′

= z′ ∨ xy ∨ x′y′ ∨ w′x′

= z′ ∨ xy ∨ x′y′ ∨ w′y.

The Boolean function can be also written as

f(x, y, z, w) = (wxy′z ∨ wx′yz ∨ w′xy′z)′

= (w′ ∨ x′ ∨ y ∨ z′)(w′ ∨ x ∨ x′ ∨ z′)(w ∨ x′ ∨ y ∨ z′).

Example 4.4. Given a Boolean function f : B4 → B of four variables by the

Karnaugh map
yz yz′ y′z′ y′z

wx 1 1 1 0

wx′ 1 0 1 1

w′x′ 0 1 1 0

w′x 0 0 1 1

f(x, y, z, w) = wxyz ∨ wxyz′ ∨ wxy′z′ ∨

wx′yz ∨ wx′y′z′ ∨ wx′y′z ∨

w′x′yz′ ∨ w′x′y′z′ ∨ w′xy′z′ ∨ w′xy′z

= wxy ∨ wx′z ∨ y′z′ ∨ w′xy′z.

Example 4.5. f(x, y, z) = w′y ∨ y′z ∨ xy′z′ ∨ wx′z′ for the following table.

yz yz′ y′z′ y′z

wx 0 0 1 1

wx′ 0 1 1 1

w′x′ 1 1 0 1

w′x 1 1 1 1

Example 4.6. Find the function the Boolean formulas f(x, y, z) for the fol-

16



lowing tables.

yz yz′ y′z′ y′z

wx 1 0 0 1

wx′ 0 1 1 0

w′x′ 0 1 1 0

w′x 1 0 0 1

yz yz′ y′z′ y′z

wx 0 1 1 0

wx′ 1 1 1 1

w′x′ 1 1 1 1

w′x 0 1 1 0

yz yz′ y′z′ y′z

wx 1 1 1 1

wx′ 1 0 0 1

w′x′ 1 0 0 1

w′x 1 1 1 1

yz yz′ y′z′ y′z

wx 0 1 1 0

wx′ 1 0 0 1

w′x′ 1 0 0 1

w′x 0 1 1 0

17


