1 Divisibility

Given two integers a, b with a # 0. We say that a divides
b, written
a|b,
if there exists an integer ¢ such that
b = qa.

When this is true, we say that a is a factor (or divisor) of
b, and b is a multiple of a. If a is not a factor of b, we write

atb.

Any integer n has divisors £1 and #4n, called the trivial
divisors of n. If a is a divisor of n, so is —a. A positive divi-
sor of n other than the trivial divisors is called a nontrivial
divisor of n. Every integer is a divisor of 0.

A positive integer p (# 1) is called a prime if it has no
nontrivial divisors, i.e., its positive divisors are only the trivial
divisors 1 and p.

A positive integer is called composite if it is not a prime.
The first few primes are listed as

2,3,5,7,11,13,17,19, 23,29, 31, 37,41, 43,47, 53, 59.
Proposition 1.1. Every composite number n has a prime

factor p < \/n.

Proof. Since n is composite, there are primes p and ¢ such
that n = pqk, where £ € P. Note that for primes p and
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g, one is less than or equal to the other, say p < ¢q. Then
p? < pgk =n. Thus p < \/n. (]

Example 1.1. 6 has the prime factor 2 < v/6;

9 has the prime factor 3 = 1/9:

35 has the prime factor 5 < V/35.

[s 143 a prime?
We find V143 < /144 = 12. For i = 2,3,5,7,11, check
whether ¢ divides 143. We find out i 1 143 for ¢ = 2,3,5,7,
and 11 | 143. So 143 is a composite number.

[s 157 a prime?
Since V157 < /169 = 13. For i = 2,3,5,7, 11, we find out
i 1 157. We see that 157 has no prime factor less or equal to
V/157. So 157 is not a composite: 157 is a prime.

Proposition 1.2. Let a, b, ¢ be nonzero integers.

(a) If a | b and b | a, then a = +b.

(b) If a | b and blc, then a | c.

(¢c) If a | b and a | ¢, then a | (bx + cy) for any x,y € Z.

Proof. (a) Write b = qa, a = ¢ob for some ¢y, g2 € Z. Then

b= q1q2b.

Dividing both sides by b, we have g;qo = 1. This forces that
q1 = g = £1. Thus b = *a.

(b) Write b = qa, ¢ = g¢ob for some integers qi,q2 € Z.
Then ¢ = g1goa. This means that a | ¢
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(c) Write b = q1a, ¢ = gea for some ¢1,q € Z. Then, for
any ¥,y € 4,
bx + cy = qaz + gay = (1 + gy)a.
This means that a | (bx + cy). (]
Theorem 1.3. There are infinitely many prime numbers.

Proof. Suppose there are finitely many primes, say, they are
listed as follows

b1, P2y, DPk-
Then the integer

a=pp2---pp+1

is not divisible by any of the primes p1, po, . .., pr because the
remainders of a divided by any p; is always 1, 1 <17 < k. This
means that a has no prime factors. By definition of primes,
the integer a is a prime, and this prime is larger than all primes
P1, P2, - .., Pr. D0 it is larger than itself, a contradiction. [

Theorem 1.4 (Division Algorithm). For any a,b € Z
with a > 0, there exist unique integers q,r such that

b=qa+r, 0<r<a.

Proof. Define the set S = {b —ta > 0 :t € Z}. Then
S is nonempty and bounded below. By the Well-Ordering
Principle, S has the unique minimum integer r. Then there
is a unique integer g such that b — qa = r. Thus

b=qa—+r.
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Clearly, » > 0. We claim that » < a. Suppose r > a, then
b—(¢g+1)a=r—a>0.

This means that » — a is an element of .S, but smaller than r.
This is contrary to that r is the minimum element in S. [

Example 1.2. For integers a = 24 and b = 379, we have
379 =15-24 4 19, qg =15, r =109.
For integers a = 24 and b = —379, we have
—379 = —14 - 24 4 5, q=—14, r =5.

2 Greatest Common Divisor

For integers a and b, not simultaneously 0, a common di-
visor of @ and b is an integer ¢ such that c|a and ¢|b.

Definition 2.1. Let a,b € Z, not simultaneously 0. A pos-

itive integer d is called the greatest common divisor of
a and b, denoted by ged(a, b), if

(a)d | a, d|b, and
(b) If ¢ | a and ¢ | b, then ¢ | d.

Two integers a and b are called coprime (or relatively
prime) if ged(a, b) = 1.

Theorem 2.2. For any integers a,b € Z, if
b=gqga+r
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for some integers q,r € Z, then
gced(a, b) = ged(a, 7).

Proof. Write dy = ged(a, b), dy = ged(a, ).

Since dy | @ and dy | b, then dy | r because r = b — qa.
So d; is a common divisor of a and r. Thus, by definition of
ged(a, 1), dy divides do. Similarly, since do | @ and dy | 7,
then dy | b because b = qa + r. So dy is a common divisor of
a and b. By definition of gcd(a, b), dy divides d;. Hence, by
Proposition 1.2 (a), dy = £ds. Thus dy = do. ]

The above proposition gives rise to a simple constructive
method to calculate ged by repeating the Division Algorithm.

Example 2.1. Find ged (297, 3627).

3627 = 12297 + 63, ecd(297,3627) = ged(63,297)
297 = 463+ 45, — ped(45, 63)
63 = 1-45+18, = gcd(18,45)
45 = 2-18409, = gcd(9,18)
18 = 2.9 — 9

The procedure to calculate ged(297,3627) applies to any
pair of positive integers.

Let a,b € N be nonnegative integers. Write d = ged(a, b).
Repeating the Division Algorithm, we find nonnegative inte-



gers q;, 7; € N such that

b = qoa + 70, 0<ry<a,

— QITO+T17 0 é r < To,
ro = @ori+ 7o, 0 <1y <ry,
r = q3ro+ 713, 0 <rg<ry,

Th—2 = QpTh—1+ Tk, 0 < 1rp <rp_1,

Tk-1 = Qk+1Tk + Thy1, The1 = 0.

The nonnegative sequence {r;} is strictly decreasing. It
must end to 0 at some step, say, .1 = 0 for the very first
time. Then 7; # 0, 0 < ¢ < k. Reverse the sequence {r;}*_,
and make substitutions as follows:

d = Tk,

<
=
|

Tk—2 — qkTk-1,
T'k—1 = Tk—3 — qk—1TkL—2,

1 = a4 — ({17,
ro = b— qa.

We see that ged(a, b) can be expressed as an integral linear
combination of @ and b. This procedure is known as the Eu-
clidean Algorithm.

We summarize the above argument into the following the-
orem.

Theorem 2.3. For any integers a,b € Z, there exist in-
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tegers x,y € 7. such that
ged(a, b) = ax + by.

Example 2.2. Express ged(297,3627) as an integral linear
combination of 297 and 3627.

Dy the Division Algorithm, we have ged(297,3627) = 9.
By the Euclidean Algorithm,

0 = 45—2-18
= 45 — 2(63 — 45)
= 3.45—2-63
— 3(297 —4-63) — 2 63
— 3.297 — 14 - 63
— 3297 — 14(3627 — 12 - 297)
— 171297 — 14 - 3627.

Example 2.3. Find ged(119, 45) and express it as an integral
linear combination of 45 and 119.
Applying the Division Algorithm,

119 =2-45+429

45 =29 4 16
29 =164+ 13
16 =134 3

13 =4-3+1



So ged(119,45) = 1. Applying the Euclidean Algorithm,

1 =13—4-3=13—4(16 — 13)
=5-13—4-16=5(20 — 16) — 4 - 16
=5.29—-9.16=15-29 — 9(45 — 29)
—14-290—9-45=14(119 —2-45) — 9 - 45
—14-119 — 37 - 45

Example 2.4. Find ged(119, —45) and express it as linear
combination of 119 and -45.

We have ged(119, —45) = ged(119,45) = 1. Since
1 — 14119 — 37 - 45,
we have ged(119, —45) = 14 - 119 4 37 - (—45).

Remark. For any a,b € 7Z, ged(a, —b) = ged(a,b). Ex-
pressing ged(a, —b) in terms of a and —b is the same as that
of expressing ged(a, b) in terms of a and b.

Proposition 2.4. If a | bc and ged(a,b) = 1, then a | c.

Proof. By the Euclidean Algorithm, there are integers x,y €
Z. such that ax + by = 1. Then

c=1-c=(ax+ by)c = acx + bey.

Since a | ac and a | be, thus ¢ | (acx+bey) by Proposition 1.2
(¢). Therefore a | c. ]



Theorem 2.5 (Unique Factorization). Fvery integer
a > 2 can be uniquely factorized into the form

— 61,,62 €
a4 =DpP1Py - Pms
where p1,pa,...,pm are distinct primes, e, €s, ..., €, are

positive integers, and p1 < py < -+ < ps.

Proof. (Not required) We first show that a has a factorization
into primes. If a has only the trivial divisors, then a itself is
a prime, and it obviously has unique factorization. If a has
some nontrivial divisors, then

a = bc

for some positive integers b,c € P other than 1 and a. So
b < a, ¢ < a. By induction, the positive integers b and ¢ have
factorizations into primes. Consequently, a has a factorization
Into primes.

Next we show that the factorization of a is unique in the
sense of the theorem.

Let a = q{1q§2 .- aJ" be any factorization, where q1, qo, . . . , g
are distinct primes, fi, fo, ..., f, are positive integers, and
G < @ <---<qy Weclaimthat m =n, p; =¢q;, ¢, = f;
forall 1 <7 <m.

Suppose p;1 < ¢i. Then p; is distinct from the primes
q1,q2, - - -, qn. 1t is clear that ged(py, ¢;) = 1, and so

ged(p1, qlfl) =1 forall 1<i<n.
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Note that p; | q{lqu ..~ al". Since ged(py, q{l) = 1, by Propo-
sition 2.4, we have pp | q2f2 ..-afr. Since gcd(pl,q2fQ) = 1,
again by Proposition 2.4, we have py | q§2 ..~ alr. Repeating
the argument, eventually we have p; | ¢/, which is contrary
to ged(py, g/r) = 1. We thus conclude p; > ¢. Similarly,
q1 > p1. Therefore p; = ¢;. Next we claim e; = f;.

Suppose e; < fi1. Then

pg2 - pf,c;gl p— p{l_elqgé .. q;é”

This implies that pi|pg---pim. If m = 1, then pg? - - - pim =
1. So p; | 1. This is impossible because p; is a prime. If
m > 2, since ged(py, p;) = 1, we have ged(py, p;’) = 1 for
all 2 < ¢ < m. Applying Proposition 2.4 repeatedly, we
have pq|pSm, which is contrary to ged(py, pém) = 1. We thus
conclude e; > f1. Similarly, f; > ey. Therefore e; = f;.
Now we have obtained pg?- - - pim = q2f2 gl Itm < on,

then by induction we have p1 = ¢1,...,pyn = ¢, and e; =
fi,...,em = fm. Thus 1 = qglmjf ..~ @/n. This is impossible
because ¢41, ..., q, are primes. So m > n. Similarly, n >
m. Hence we have m = n. By induction, we have ey =
fg,...,em:fm.

Our proof is finished. ]

Example 2.5. Factorize the numbers 180 and 882, and find
gcd (180, 882).

Solution. 180/2=90, 90/2=45, 45/3=15, 15/3=5, 5/5=1.
Then 360 = 2% -3%-5. Similarly, 882/2=441, 441/3=147,
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147/3=49, 49/7=7, 7/7=1. We have 832 = 2 - 3* - 7%, Thus
gcd(180,882) = 2+ 32 = 18,

3 Least Common Multiple
For two integers a and b, a positive integer m is called a
common multiple of a and b if a | m and b | m.

Definition 3.1. Let a,b € Z. The least common mul-
tiple of a and b, denoted by lem(a, b), is a positive integer m
such that

(a) a | m, b | m, and
(b) If a | cand b | ¢, then m | c.
Proposition 3.2. For any nonnegative integers a,b € N,

ab = ged(a, b) - lem(a, b).

Proof. Let a = pS'p2---pf and b = pl'pl2- - pln, where
pr< py < --- < p,, € and f; are nonnegative integers,

1 <17 < n. Then by the Unique Factorization Theorem,

ged(a,b) = pi'py’ - Py,
lem(a, b) = py'py* - - pi,
where ¢g; = min(e;, f;), h; = max(e;, f;), 1 < ¢ < n. Note
that for any real numbers x,y € R,
min(x, y) + max(z,y) =z + y.
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Thus

Therefore
_e1tf1 et fo en+
ab — pl p2 . o .pnn fn
. g1+h1_gotho +h
= Ppr Py RN AN

= ged(a, b) - lem(a, b).

4 Solving ax + by = ¢

Example 4.1. Find an integer solution for the equation
25z + 65y = 10.

Solution. Applying the Division Algorithm,

65 = 2.25+ 15,
25 = 15+ 10,
15 = 10 + 5.

Then ged(25,65) = 5. Applying the Euclidean Algorithm,

5 = 15— 10
15 — (25 — 15)
—2542-15
—2542- (65— 2-25)
= —5-25+4 2 65.
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By inspection, (z,y) = (—5,2) is a solution for the equation
20x + 6oy = 5.

Since % = 2, then (z,y) = 2(—5,2) = (—10,4) is a solution
for 25x + 65y = 10.

Example 4.2. Find an integer solution for the equation
25 + 6oy = 18.

Solution. Since ged(25,65) = 5, if the equation has a solu-
tion, then 5 | (25x 4+ 65y). So 5 | 18 by Proposition 1.2 (c).
This is a contradiction. Hence the equation has no solution.

Theorem 4.1. The linear Diophantine equation
axr + by = c,
has a solution if and only if ged(a, b) | c.
Theorem 4.2. Let S be the set of solutions of the equation
ar + by = c. (1)
Let Sy be the set of solutions of the homogeneous equation
ax + by = 0. (2)
If (z,y) = (ug,vo) is a solution of (2), then S is given by
S =A{(ug+s,v9+1):(s,t) €Sy}

In other words, all solutions of (1) are given by

r = Up+ S
{y it BDES (3)
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Proof. Since (x,y) = (ug, vg) is a solution of (1), then auy +
bvg = c¢. For any solution (z,y) = (s,t) of (2), we have
as + bt = 0. Thus

a(ug + s) + blvg + t) = (aug + bvg) + (as + bt) = c.

This means that (z,y) = (up + s, vo + t) is a solution of (1).
Conversely, for any solution (z,y) = (u,v) of (1), we have
au + bv = c. Let (sg,ty) = (u — ug, v — vg). Then
asy+ bty = a(u — ug) + b(v — vy)

= (au + bv) — (aug + bvy)

= c—c=0.
This means that (sg, to) is a solution of (2). Note that

(u,v) = (ug + S0, v0 + o).

This shows that the solution (x,y) = (u,v) is a solution of

the form in (3). Our proof is finished. ]

Theorem 4.3. Let d = ged(a,b). The solution set Sy of
axr + by =0

1S given by

s={t(i-5) +e2)

In other words,

= (b)d)k
{y ~ Yk kez



Proof. The equation ax 4+ by = 0 can be written as
axr = —by.

Write m = ax = —by. Then a | m and b | m, i.e., m is a
multiple of @ and b. Thus m = k - lem(a, b) for some k € Z.
Therefore ax = k - lem(a, b) implies

~ k-lem(a,b) kab kb

X

a da d
Similarly, —by = k - lem(a, b) implies

_ k-lem(a,b)  kab  ka
S b —=db 4

Y

[]

Theorem 4.4. Let d = ged(a,b) and d | c. Let (ug, vy) be
a particular solution of the equation

ax + by = c.

The all solutions of the above equation are given by

Tr = ’LLQ—Fbk/d
y = vy —ak/d’

Proof. 1t follows from Theorem 4.2 and Theorem 4.3. ]

ke Z.

Example 4.3. Find all integer solutions for the equation

20x + 65y = 10.
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Solution. Find ged(25,65) = 5 and have got a special solu-
tion (z,y) = (—10,4) in a previous example. Now consider
the equation 25x + 65y = 0. Divide both sides by 5 to have,

bx + 13y = 0.

Since ged(5, 13) = 1, all solutions for the above equation are
given by (z,y) = k(—13,5), k € Z. Thus all solutions of
25x + 65y = 10 are given by

r = —10— 13k
fo- 0o kez
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Example 4.4.
168x 4 668y = 888.

Solution. Find ged (168, 668) = 4 by the Division Algorithm

668 = 3168+ 164
168 = 164 +4
164 = 41 -4

By the Euclidean Algorithm,

1 = 168 — 164
= 168 — (668 — 3 - 168)
— 4-168 4 (—1) - 668.

Dividing 8% = 222, we obtain a special solution
(z,y) = 222(4, —1) = (888, —222)

Solve 168x 4+ 668y = 0. Dividing both sides by 4,

2x + 167y =0 ie. 42x = —167y.
The general solutions for 168x 4+ 668y = 0 are given by

(x,y) = k(167,—42), k € Z.
The general solutions for 168x + 668y = 888 are given by
(x,y) = (888, —222) + k(167, —42), k € Z.

. r = 888 +167k
1.e.{y _ 999 _4ok k e 7.

17



5 Modulo Integers

Let n be a fixed positive integer. Two integers a and b are
said to be congruent modulo n, written

a = b (mod n)
and read “a equals b modulo n,” if n | (b —a).
For all k,l € Z, a = b (mod n) is equivalent to
a+kn =b+In (mod n).
In fact, the difference
(b+in)—(a+kn)=(0b—a)+ (1 —Fk)n

is a multiple of n if and only if b — a is a multiple of n.

Example 5.1.
3 =5 (mod 2), 368 = 168 (mod 8),
—8 =10 (mod 9), 3 # 5 (mod 3),
368 # 268 (mod 8), —8 # 18 (mod 9).
Proposition 5.1. Let n be a fixed positive integer. If
a; = by (mod n), as = by (mod n),

then
a1 + az = by + by (mod n),
a1 — ag = by — by (mod n),

18



a1as = biby (mod n).
Ifa=b(modn), d|n, then

a = b (mod d).

Proof. Since a; = by (mod n), as = by (mod n), there are
integers ki, ko such that

b1 — a1 = /ﬁn, bg — A9 = kgn.

Then
(bl -+ bg) — (a1 + ag) — (kl + k2>n;
(bg — b1> — (CLl — CLQ) = </€1 — kg)ﬂ;
blbz — a1 = b1b2 — 61&2 + blag — a1a9
= b1<b2 — CLQ) + (bl — CL1)CL2
= bk'n + knad’
— (blkg + a2k1>n.
Thus

a1 £ as = by £ by (mod n);
a1as = biby (mod n).
If d | n, then n = dl for some | € Z. Thus

b—a=kn=(kl)d.
Therefore, a = b (mod d). (]
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Example 5.2.
6 =14 (mod 8) = 2-6=2-14 (mod 8);
14 8

§

However,
2:3=2-7(mod 8) == 3 =7 (mod 8).
In fact,
3 # 7 (mod 8).
Theorem 5.2. Let ¢ | a, ¢ | b, and ¢ |n. Then

b
a=b(modn) <= 222 (modﬁ).
c c C

Proof. Write a = cay, b = ¢by, n = cny. Then

a=b(modn) <= b—a=kn foran integer k
< c(by — a1) = kenyg
< b/c—a/c=0b —a; = kn
< a/c=b/c (mod n/c).

Theorem 5.3.
a=b(modm), a=b(modn),
<
a = b (mod lem(m, n)).

In particular,
ged(m,n) =1 <= a = b (mod mn).
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Proof. Writel = lem(m,n). Ifa = b (mod m), a = b (mod n),
then m | (b—a) and n | (b —a). Thusl | (b — a), ie.,
a =b(mod ).

Conversely, if @ = b (mod [), then [ | (b — a). Since m | [,
n |1, wehave m | (b—a), n| (b—a). Thus a = b (mod m),
a = b (mod n).

In particular, if ged(m,n) = 1, then [ = mn. (]
Definition 5.4. An integer a is called invertible modulo
n if there exists an integer b such that

ab =1 (mod n).
If so, b is called the inverse of a modulo n.

Proposition 5.5. An integer a is tnvertible modulo n if
and only if ged(a,n) =1

Proof. “=": If a is invertible modulo n, say its inverse is b,
then exists an integer k such that ab =1+ kn, i.e.,

1 =ab— kn.

Thus ged(a, n) divides 1. Hence ged(a,n) = 1.
“«<": By the Euclidean Algorithm, there exist integers u, v
such that 1 = au + nv. Then au =1 (mod n). ]

Example 5.3. The invertible integers modulo 12 are the
following numbers
1,5,7,11.

Numbers 0, 2, 3,4, 6, 8,9, 10 are not invertible modulo 12.
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Theorem 5.6. Let ged(c,n) = 1. Then
a=b(modn) <= ca = cb (mod n)

Proof. By the Euclidean Algorithm, there are integers wu, v
such that
l = cu + nv.

Then 1 = cu (mod n); i.e., a and u are inverses of each other
modulo n
“=": ¢=c(modn)and a = b (mod n) imply

ca = cb (mod n).
This true without ged(c,n) = 1.
“<=": ca = ¢b (mod n) and v = u (mod n) imply that
uca = uch (mod n).

Replace uc = 1 — vn; we have a — avn = b — bun (mod n).
This means a = b (mod n). ]

Example 5.4. Find the inverse modulo 15 for each of the
numbers 2, 4, 7, 8, 11, 13.

Solution. Since 2-8 =1 (mod 15), 4-4 = 1 (mod 15). Then
2 and 8 are inverses of each other; 4 is the inverse of itself.

Write 15 =2-74+1. Then 15 —2-7=1. Thus —2.-7 =
1 (mod 15). The inverse of 7 is -2. Since —2 = 13 (mod 15),
the inverse of 7 is also 13. In fact,

7-13 =1 (mod 15).
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Similarly, 15 =11+4,11=2-4+ 3. 4 =341, then
| =4-3=4—(11-2-4)
—3.4-11=3-(15—11) — 11
= 15—4-11.
Thus the inverse of 11 is —4. Since —4 = 11 (mod 15), the
inverse of 11 is also itself, i.e., 1111 = 1 (mod 15).

6 Solving ax = b (mod n)

Theorem 6.1. The congruence equation
ax = b (mod n)
has a solution if and only if ged(a,n) divides b.

Proof. Let d = ged(a,n). The congruence equation has a
solution if and only if there exist integers x and k such that
b = ax + kn. This is equivalent to d | b. ]

Remark. For all £,[ € Z., we have
ax =b (mod n) <= (a+kn)x =b+In (mod n).
In fact, the difference
(b+1In)—(a+kn)x = (b—ax)+ (I — kz)n
is a multiple of n if and only if b — ax is a multiple of n.

Theorem 6.2. Let ged(a,n) = 1. Then there exists an
integer u such that au = 1 (mod n); the solutions for the
equation ax = b (mod n) are given by

r = ub (mod n).
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Proof. Since ged(a,n) = 1, there exist u,v € Z such that
l =au+nv. Sol = au (modn), ie, au = 1 (mod n).
Since u is invertible modulo n, we have

ax = b (mod n) <= uax = ub (mod n).
Since au = 1 — nw, then uaxr = (1 —nv)r = x — ven. Thus
ax = b (mod n) <= = — ven = ub (mod n).
Therefore

ax = b (mod n) <= z = ub (mod n).

Example 6.1. Find all integers x for
92 = 27 (mod 15).
Solution. Find ged(9,15) = 3. Dividing both sides by 3,
3z =9 (mod 5) <= 3z =4 (mod)H).

Since ged(3,5) = 1, the integer 3 is invertible and its inverse
is 2. Multiplying 2 to both sides,

6z = 8 (mod 5).
Since 6 = 1 (mod 5), 8 = 3 (mod 5), then
r = 3 (mod b5).

In other words,
r=3+5bk, kel
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Example 6.2. Solve the equation 668z = 888 (mod 168).
Solution. Find gcd (668, 168) = 4, then
167x = 222 (mod 42).
By the Division Algorithm,
167=3-42+41; 42=41+1.
By the Euclidean Algorithm,

1 =42 —41 =42 — (167 — 3-42) =4 - 42 — 167.
Then —167 = 1 (mod 42); the inverse of 167 is —1. Multi-
plying —1 to both sides, we have x = —222 (mod 42). Thus

r=—12 (mod 42) or x =30 (mod 42); ie.

x=30+42k, ke Z.

Algorithm for solving ax = b (mod n).

Step 1. Find d = ged(a, n) by the Division Algorithm.

Step 2. If d = 1, apply the Euclidean Algorithm to find
u,v € Z such that 1 = au + nv.

Step 3. Do the multiplication uaxr = ub (mod n). All
solutions & = ub (mod n) are obtained. Stop.

Step 4. If d > 1, check whether d | b. If d 1 b, there is no
solution. Stop. If d | b, do the division

%ng (mod%).

Rewrite a/d as a, b/d as b, and n/d as n. Go to Step 1.
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Proof. Since 1 = au + nv, we have au = 1 (mod n). This
means that a and v are inverses of each other modulo n. So

ax = b (mod n) <= uax = ub (mod n).
Since ua = 1 — vn, then uaxr = (1 —vn)r = x — ven. Thus

uaxr = ub (mod n) <= = = ub (mod n).

Example 6.3. Solve the equation 245z = 49 (mod 56).
Solution. Applying the Division Algorithm,

245 =4-56+ 21
6 =2-214+14
21 =14 47

Applying the Euclidean Algorithm,

7 =21—14=21— (56 —2-21)
—=3.21 —56 =3 (245 — 4 - 56) — 56
—3.245 — 13- 56

Dividing both sides by 7, we have
1=3-35—-13-8.

Thus 3 - 35 = 1 (mod 8). Dividing the original equation by
7, we have 35z = 7 (mod 8). Multiplying 3 to both sides, we
obtain solutions

r =21 =5 (mod 8)
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7 Chinese Remainder Theorem

Example 7.1. Solve the system
r =0 (mod nq)
r =0 (mod ny)

Solution. By definition of solution, x is a common multiple of
ny and no. So x is a multiple of lem(nq, ng). Thus the system
is equivalent to

r =0 (mod lem(ny, ns)).
Theorem 7.1. Let S be the solution set of the system
{ a1x = by (mod nq)

asl = b2 (mod NQ>

(4)

Let Sy be the solution set of the homogeneous system

{ a1z = 0 (mod ny)

asx = 0 (mod ny)

(5)

If © = xy is a solution of (4), then all solutions of (4) are
given by

r=x0+S, s€E.US. (6)
Proof. We first show that x = x¢ + s, where s € 5y, are

indeed solutions of (4). In fact, since xg is a solution for (4)
and s is a solution for (5), we have

a1xy = by (mod nq) a1s =0 (mod ny)
asxy = by (mod ngy) ass = 0 (mod ng)
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i.e., ny divides (by — a1xg) and ays; no divides (by — asxy)
and ags. Then ny divides [(by — a1xg) — ais], and ng divides
[(by — asxg) — asgs|; i.e., ny divides [by — a1(xg + s)|, and ng
divides [by — az(xg + s)]. This means that x = z¢p+ s is a
solution of (4).

Conversely, let z = t be any solution of (4). We will see that
so =t — 1 is a solution of (5). Hence the solution t = xy+ s
is of the form in (6). ]

Algorithm for solving the system

a1z = by (mod ny) 7
asl = b2 (mod n2>
Step 1. Reduced the system to the form
{ r = ¢1 (mod my)

r = ¢y (mod my)

(8)

Step 2. Set x = ¢ + ymq = ¢ + z2my, where y, z € Z.
Find a solution (y, z) = (yo, 20) for the equation

miy — Moz = Co — €.

Consequently, xg = ¢1 + miyg = ¢ + mozp.

Step 3. Set m = lem(mq, mo). The system (7) becomes

r = xy (mod m).

Proof. 1t follows from Theorem 7.1. ]
Example 7.2. Solve the system

10x 6 (mod 4)
122 = 30 (mod 21)
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Solution. Applying the Division Algorithm,
ocd(10,4) =2, ged(12,21) = 3.
Dividing the 1st equation by 2 and the second equation by 3,

br = 3 (mod 2) r =1 (mod 2)
{4x510 (mod 7) <:>{4:1353(mod7)

The system is equivalent to

{le(mon)
r =6 (mod 7)

Set v =14+2y=6+7z,y,z € Z. Then
20 — [z = b.

Applying the Division Algorithm, 7 =324 1. Applying the
Euclidean Algorithm, 1 = —3-2+7. Then 5= —15-2+5-7.
We obtain a solution (yo, z9) = (—15, —5). Thus

xo=1+2yy =64 7zy = —29

is a special solution. The general solution for

{xEO(mon)
r =0 (mod 7)

is £ = 0 (mod 14). Hence the solution is given by
r=-29=—1=13 (mod 14)
Example 7.3. Solve the system

122 = 96 (mod 20)
20z = 70 (mod 30)
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Solution. Applying the Division Algorithm to find,
ged(12,20) =4, ged(20, 30) = 10.
24 (mod 5)

{ 3T

21 7 (mod 3)

Applying the Euclidean Algorithm,
ged(3,5)=1=2-3—1-5.

Then 2 -3 =1 (mod 5). Similarly,
ged(2,3)=1=—-1-2+1-3

and —1-2 =1 (mod 3). (Equivalently, 2 -2 = 1 (mod 3).)
Then, 2 is the inverse of 3 modulo 5; —1 or 2 is the inverse of
2 modulo 3. Thus

Then

23w 224 (mod 5)
—1-2x = —1-7 (mod 3)
iy 3 (mod 5)
T 2 (mod 3)
Set © = 3+ 5y = 2+ 3z, where y, z € Z. That is,
by — 3z = —1.

We find a special solution (yo, 29) = (1,2). So xy = 3+ 5y =
2 4 3zyp = 8. Thus the original system is equivalent to

r =8 (mod 15)
and all solutions are given by
r =8+ 1dk, ke Z.

DO

48
—7
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Example 7.4. Find all integer solutions for the system

r = 486 (mod 186)
r = 386 (mod 286)

Solution. The system can be reduced to

r = 114 (mod 186)
r = 100 (mod 286)

Set x = 114 + 186y = 100 + 286z, i.e.,
186y — 286z = —14.
Applying the Division Algorithm,
286 = 186 + 100,

186 = 100 + 86,
100 = 86+ 14,
86 = 614+ 2.
Then ged(186,286) = 2. Applying the Euclidean Algorithm,

2 =80—6-14
= 86 — 6(100 — 86) = 7-86 — 6 - 100
7(186 — 100) — 6 - 100 = 7 - 186 — 13 - 100
= 7-186 — 13(286 — 186) = 20 - 186 — 13 - 286.
Note that _714 = —7. So we get a special solution
<y07 ZO) — _7(207 13) — (_1407 _91)

Thus g = 114 4 186y, = 100 4 2862y = —25926. Note that
lem (186, 286) = 26598. The general solutions are given by

r = —25926 = 672 (mod 26598).
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Theorem 7.2 (Chinese Remainder Theorem). Let
ni,ng,...,n, € P. If ged(ni,n;) =1 for alli # j, then the
system of congruence equations

r = by (mod ny)
r = by (mod no)

r = by (mod ny).
has a unique solution modulo ning - - - ny.

Thinking Problem. In the Chinese Remainder Theorem,
if

ged(ng, nj) =1,
is not satisfied, does the system have solutions? Assuming it
has solutions, are the solutions unique modulo some integers?

8 Important Facts

l.a =b (modn) <= a+ kn = b+ In (modn) for all
k,l €Z.

2.1f ¢ | a, c|b, c|n, then
a=b(modn) <= a/c=b/c(modn/c).

3. An integer a is called invertible modulo n if there exists
an integer b such that

ab =1 (mod n).
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If so, b is called the inverse of a modulo n.
4. An integer a is invertible modulo n <= ged(a, n) = 1.
5. If ged(e,n) = 1, then
a=b(modn) <= ca = cb (mod n).
6. Equation ax = b (mod n) has solution <= gcd(a, n) | b.
7. Forall k,l € Z,

ar =b (mod n) <= (a+ kn)xr =0+ In (mod n).
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