Number Theory

October 10, 2019

1 Divisibility

Given two integers a,b with a # 0. We say that a divides b, written
a | b, if there exists an integer ¢ such that

b = qa.

When this is true, we say that a is a factor (or divisor) of b, and b is a
multiple of a. If a is not a factor of b, we write

atb.

Any integer n has divisors +1 and +n, called the trivial divisors of
n. If a is a divisor of n, so is —a. A positive divisor of n other than the
trivial divisors is called a nontrivial divisor of n. Every integer is a
divisor of 0.

A positive integer p other than 1 is called a prime if it does not have
nontrivial divisors, i.e., its positive divisors are only the trivial divisors 1
and p. A positive integer is called composite if it is not a prime. The
first few primes are listed as

2.3.5.7,11,13,17,19, 23,29, 31,37, 41, 43, 47,53, 59, . . .

Proposition 1.1. Every composite number n has a prime factor p <
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Proof. Since n is composite, there are primes p and ¢ such that n = pqgk,
where k € P. Note that for primes p and ¢, one is less than or equal to
the other, say p < ¢. Then p* < pgk = n. Thus p < \/n. ]

Example 1.1. (a) 6 has the prime factor 2 < /6.
(b) 9 has the prime factor 3 = /9.

(¢) 35 has the prime factor 5 < v/35.

(d) Is 143 a prime? We find that /143 < /144 = 12. For i =
2,3,5,7,11, check whether i divides 143. We find out ¢ 1 143 for
i =2,3,5,7 and 11 | 143. So 143 is a composite number.

(e) Is 157 a prime? Since /157 < 4/169 = 13. Foreachi =2,3,5,7, 11,
we find out that ¢ { 157. We see that 157 has no prime factor less or
equal to v/ 157. So 157 is not a composite; 157 is a prime.

Proposition 1.2. Let a, b, ¢ be nonzero integers.

(a) If a | b and b | a, then a = +b.

(b) If a | b and blc, then a | c.

(¢) Ifa|b and a | ¢, then a | (bx + cy) for all x,y € Z.

Proof. (a) Write b = qra and a = ¢9b for some qq, g2 € Z. Then b = q1¢2b.
Dividing both sides by b, we have g;qo = 1. This forces that ¢; = ¢o = +1.

Thus b = =+a.
(b) Write b = qra and ¢ = @b for some integers q1,q2 € Z. Then

G

)
q1q2a. This means that a | c.
) Write b = gia and ¢ = goa for some q1, q2 € Z. Then

bx + cy = qrar + gay = (r + @y)a
for any x,y € Z. This means that a | (bx + cy).
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Theorem 1.3. There are infinitely many prime numbers.
Proof. Suppose there are finitely many primes, say, they are listed as
follows
P, P2y - Pk-

Then the integer

a=pp2--pr+1
is not divisible by any of the primes p1, po, . .., pr because the remainders
of a divided by each p; is always 1, where ¢ = 1,..., k. This means that
a has no prime factors. By definition of primes, the integer a is a prime,
and this prime is larger than all primes py, po, ..., pr. So it is larger than
itself, which is a contradiction. O]

Theorem 1.4 (Division Algorithm). For any a,b € Z with a > 0,
there exist unique integers q,r such that

b=qga+r, 0<r<a.
Proof. Define the set S = {b—ta > 0:t € Z}. Then S is nonempty
and bounded below. By the Well Ordering Principle, S has the unique
minimum integer r. Then there is a unique integer ¢ such that b —qa = r.
Thus
b=qa+r.

Clearly, r > 0. We claim that » < a. Suppose r > a. Then

b—(¢q+la=(b—qga)—a=r—a>0.
This means that r — a is an element of S, but smaller than r. This is
contrary to that r is the minimum element in S. O
Example 1.2. For integers a = 24 and b = 379, we have

379 =15-24 4+ 19, qg=15, r=19.

For integers a = 24 and b = —379, we have

—379 = —14 - 24 + 5, qg=—14, r =5.
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2 Greatest Common Divisor

For integers a and b, not simultaneously 0, a common divisor of a and
b is an integer ¢ such that ¢ | a and ¢ | b.

Definition 2.1. Let a and b be integers, not simultaneously 0. A positive
integer d is called the greatest common divisor of a and b, denoted

ged(a, ), if
(a) d|a,d]|b, and
(b) If ¢ | @ and ¢ | b, then ¢ | d.

Two integers a and b are said to be coprime (or relatively prime) if

ged(a, b) = 1.
Theorem 2.2. For any integers a,b € Z, not all zero, if
b=gqga—+r
for some integers q,r € 7, then
gced(a, b) = ged(a, ).

Proof. Write dy = ged(a, b), do = ged(a, 7).

Since dy | a and dy | b, then dy | r because r = b — ga. So d; is a
common divisor of @ and r. Thus, by definition of ged(a, r), dy divides ds.
Similarly, since dy | @ and ds | 7, then dy | b because b = qa + . So do
is a common divisor of a and b. By definition of ged(a, b), dy divides dj.

Hence, by Proposition 1.2 (a), dy = £ds. Thus dy = ds. O]

The above proposition gives rise to a simple constructive method to
calculate ged by repeating the Division Algorithm.

Example 2.1. Find ged (297, 3627).



3627 = 12297 + 63,

297 = 463445,

63 = 1-45+18,
45 = 2-1849,
18 =29

gcd(297,3627) = ged
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= 9.

The procedure to calculate ged(297, 3627) applies to any pair of positive

integers.

Let a,b € N be nonnegative integers. Write d = ged(a, b). Repeating
the Division Algorithm, we find nonnegative integers ¢;, r; € N such that

b = qoa + 1, 0<ry<a,
a = qro+ry, 0 <mr <o,
ro = @ori+ 1o, 0<ry <y,

T = Qq3r+7T3, 0 <173 <ry,

Th—o = QTk—1+ 7Tk, 01 < 7pq,
Tk—1 = Qr1Tk + k1, The1 = 0.

The nonnegative sequence {r;} is strictly decreasing. It must end to 0

at some step, say, i1 = 0 for the very first time. Then r; #£ 0,0 <1 < k.

Reverse the sequence {r;}*_, and make substitutions as follows:

d
Tk
T'k—1

1
o

Tk,
Tk—2 — qKTE—1,
Ty—3 — qk—1Tk—2,

= a4 — {17y,
= b— qa.

We see that ged(a, b) can be expressed as an integral linear combination
of a and b. This procedure is known as the Euclidean Algorithm.
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We summarize the above argument into the following theorem.

Theorem 2.3. For any integers a,b € 7, there exist integers x,y € Z
such that
ged(a, b) = ax + by.

Example 2.2. Express gcd (297, 3627) as an integral linear combination
of 297 and 3627.

Dy the Division Algorithm, we have ged(297,3627) = 9. By the Eu-
clidean Algorithm,

0 = 45—2-18
15 — 2(63 — 45)
3.45—2-63

3(207 — 4 - 63) — 2 - 63
3.297 — 14 - 63

3297 — 14(3627 — 12 - 297)
— 171-297 — 14 - 3627.

Example 2.3. Find gcd(119,45) and express it as an integral linear
combination of 45 and 119.
Applying the Division Algorithm,

119 =2-45+29

45 =29+ 16
29 =16+ 13
16 =1343

13 =4-3+1



So ged(119,45) = 1. Applying the Euclidean Algorithm,

1 =13—4-3=13—4(16 — 13)
—5.13—4-16=5(20 — 16) — 4 16
=5-29—-9-16=5-29 — 9(45 — 29)
=14-29—-9-45=14(119—-2-45) —9-45
=14-119 — 37 - 45

Example 2.4. Find ged(119, —45) and express it as linear combination
of 119 and -45.

We have ged(119, —45) = ged(119,45) = 1. Since
| = 14-119 — 37 - 45,
we have ged(119, —45) = 14 - 119 + 37 - (—45).
Remark. Foranya,b € Z, ged(a, —b) = ged(a, b). Expressing ged(a, —b)

in terms of @ and —b is the same as that of expressing ged(a, b) in terms

of @ and b.

Corollary 2.4. Integers a,b, not all zero, are coprime if and only if
there exist integers x,y such that ax + by = 1. []

Proposition 2.5. If a | bc and ged(a,b) =1, then a | c.
Proof. By the Euclidean Algorithm, there are integers x,y € Z such that
ax + by = 1. Then

c=1-c=(ax+ by)c = acx + bey.

Since a | be and obviously a | ac, we have a | (acz+bey) by Proposition 1.2
(¢). Therefore a | c. (]

Theorem 2.6 (Unique Factorization). Fvery integer a > 2 can be
uniquely factorized into the form

€1,,62

a = P Py

7
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where p1,pa, ..., pm are distinct primes, eq, s, . .., e, are positive in-
tegers, and p1 < py < -+ < ps.

Proof. (Not required) We first show that a has a factorization into primes.
If a has only the trivial divisors, then a itself is a prime, and it obviously
has unique factorization. If a has some nontrivial divisors, then

a = bc

for some positive integers b, ¢ € P other than 1 and a. So b < a, ¢ < a.
By induction, the positive integers b and ¢ have factorizations into primes.
Consequently, a has a factorization into primes.

Next we show that the factorization of a is unique in the sense of the

theorem.
Let a = q{lqu -a/r be any factorization, where qi,¢qs,...,q, are
distinct primes, fi, fo,..., f, are positive integers, and ¢1 < ¢ < -+ <

¢n. We claim that m=n, p; =¢q;, ¢, = fi forall 1 <7 < m.
Suppose p1 < qp. Then py is distinct from the primes ¢1, qo, . .., qn. It
is clear that ged(p1, ¢;) = 1, and so

ged(py, qf") =1 forall 1<i<n.

Note that p; ] q{lqgQ -af". Since ged(py, q1 ') = 1, by Proposition 2.5,
we have p | q2 --afn. Since ged(py, q2f ) = 1, again by Proposition 2.5,
we have py | q?J:Q ..-a/". Repeating the argument, eventually we have
p1 | ¢/», which is contrary to ged(py, ¢/7) = 1. We thus conclude p; > ¢;.
Similarly, ¢ > p1. Therefore p; = ¢;. Next we claim e; = f;.

Suppose e; < fi. Then

P p = pl e gl

This implies that py|pg?---pim. If m =1, then p5?---pfm = 1. So py | 1.
This is impossible because p; is a prime. If m > 2, since ged(py, p;) = 1,
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we have ged(py,p;’) = 1 for all 2 < ¢ < m. Applying Proposition 2.5
repeatedly, we have py|pSm, which is contrary to ged(py, pim) = 1. We
thus conclude e; > fy. Similarly, fi > ey. Therefore e; = f;.

Now we have obtained pg?-- - pim = qu2 -.-g/n. If m < n, then by
induction we have p1 = q1,...,pm = qn and ey = f1,..., e, = fn. Thus
1= qfnﬁﬁl fe q;ﬁ”. This is impossible because ¢,41, . . ., ¢, are primes. So
m > n. Similarly, n > m. Hence we have m = n. By induction, we have
62:f2,...,6m:fm.

Our proof is finished. ]

Example 2.5. Factorize the numbers 180 and 882, and find ged (180, 882).

Solution. 180/2=90, 90/2=45, 45/3=15, 15/3=5, 5/5=1. Then 360 =
2%.3%.5. Similarly, 882/2=441, 441/3=147, 147/3=49, 49/7=7, 7/7=1.
We have 882 = 2 - 3% - 72, Thus ged(180,882) = 2 - 32 = 18.

3 Least Common Multiple
For two integers a and b, a positive integer m is called a common mul-
tiple of a and b if a | m and b | m.

Definition 3.1. Let a,b € Z, not all zero. The least common mul-
tiple of a and b, denoted by lem(a, b), is a positive integer m such that

(a) a | m, b|m, and
(b) If a | cand b | ¢, then m | c.
Proposition 3.2. For nonnegative integers a,b € N, not all zero,

ab = ged(a, b) - lem(a, b).

Proof. Let a = p{'p*---pS» and b = p{1p£2 o.pln where p; < py <

n

- < pn, € and f; are nonnegative integers, 1 < ¢ < n. Then by the

9



Unique Factorization Theorem,
ged(a,b) = pi'py’ - piy,
hi h
lem(a,b) = py'py*--- Py,

where g; = min(e;, fi), h; = max(e;, f;), 1 < i < n. Note that for any
real numbers z,y € R,

min(z, y) + max(x,y) = + ¥.

Thus
gi+thi=e+fi, 1<i<n
Therefore
ab — p§1+f1p32+f2 . .pZn—i-fn
h h n+hn
_ p?ﬁ 1pg2+ 2. -p% +

= gcd(a, b) - lem(a, b).

4 Solving ax + by = ¢

Example 4.1. Find an integer solution for the equation
25x + 65y = 10.
Solution. Applying the Division Algorithm to find ged(25, 65):

65 = 225+ 15,
25 = 15+ 10,
15 = 10+ 5.
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Then ged(25,65) = 5. Applying the Euclidean Algorithm to express 5 as
an integer linear combination of 25 and 65:

5 = 15—10
= 15— (25— 15)
— —25+2-15
— —25+2-(65—2-25)
= —5.25+2-65.

By inspection, (x,y) = (—5,2) is a solution for the equation
255 + 65y = 5.

Since 10/5 = 2, we see that (z,y) = 2(—5,2) = (—10,4) is a solution for
25x 4 65y = 10.

Example 4.2. Find an integer solution for the equation
25x 4 65y = 18.

Solution. Since ged(25,65) = 5, if the equation has a solution, then
5| (252 + 65y). So 5 | 18 by Proposition 1.2 (¢). This is a contradiction.
Hence the equation has no integer solution.

Theorem 4.1. The linear Diophantine equation
axr + by = c,
has a solution if and only if d | ¢, where d = ged(a, b).

Theorem 4.2. Let S be the set of integer solutions of the nonhomo-
geneous equation
ax + by = c. (1)

Let Sy be the set of integer solutions of the homogeneous equation
ar + by = 0. (2)
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If (x,y) = (ug,vg) s an integer solution of (1), then S is given by
S = {(”LLO + S, Vg —l—t) : (S,If) € S()}

In other words, all integer solutions of (1) are given by

r = Uyg+S
{y st BDES (3)

Proof. Since (x,y) = (ug, vo) is asolution of NHEq (1), then aug+bug = c.
For any solution (z,y) = (s,t) of HE (2), we have as + bt = 0. Thus

a(ug + s) + blvg +t) = (aug + bvg) + (as + bt) = c.

This means that (z,y) = (ug + s, vy + t) is a solution of NHEq (1).
Conversely, for any solution (x,y) = (u,v) of NHEq (1), we have au +
bv = c. Let (sg,t9) = (u — up, v — vp). Then

aso+ bty = alu — ug) + b(v — vy)
= (au + bv) — (auy + bvy)
= c—c=0.
This means that (s, ty) is a solution of HEq (2). Note that
(u,v) = (ug + So,v0 + to)-

This shows that the solution (x,y) = (u,v) of NHEq (1) is a solution of
the form in (3). Our proof is finished. (]

Proposition 4.3. Let d = ged(a, b). The integer solution set Sy of
axr +by =0

18 given by

So = {k(b/d, —a/d) : k € Z).

= (b/d)k
S AR

In other words,



Proof. The equation ax 4+ by = 0 can be written as ax = —by. Write
m = axr = —by. Then a | m and b | m, i.e., m is a multiple of a and
b. Thus m = k - lem(a, b) for some k € Z. Therefore ax = k - lem(a, b)
implies

k- lem(a, b) _ kab kb

a da  d
Likewise, —by = k - lem(a, b) implies

_ k-lem(a,b)  kab  ka

X

J ) —db d

[]

Theorem 4.4. Let d = ged(a,b) and d | ¢. Let (ug,vo) be a particular
integer solution of the equation

ax + by = c.

Then all integer solutions of the above equation are given by
{ r = Up+ bk/d
y = vg—ak/d’
Proof. It follows from Theorem 4.2 and Proposition 4.3. ]
Example 4.3. Find all integer solutions for the equation

25x + 65y = 10.

Solution. Find ged(25,65) = 5 and have got a special solution (x,y) =
(—10,4) in a previous example. Now consider the equation 25x + 65y = 0.
Divide both sides by 5 to have,

bx + 13y = 2.

Since ged(5,13) = 1, all solutions for the above equation are given by
(x,y) = k(—=13,5), k € Z. Thus all solutions of 25x + 65y = 10 are given
by

ke Z.

{x——lO—lSk ke,

y = 445k’
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Example 4.4.
168z + 668y = 888.

Solution. Find ged(168,668) = 4 by the Division Algorithm

668 = 3168+ 164
168 = 164+ 4
164 = 41-4

By the Euclidean Algorithm,

1 = 168 — 164
— 168 — (668 — 3 - 168)
— 4168+ (—1) - 668.

888
4

Dividing == = 222, we obtain a special solution
(x,y) = 222(4, —1) = (888, —222)
Solve 168z + 668y = 0. Dividing both sides by 4,
22+ 167y =0 ie 42z = —1067y.
The general solutions for 1682 4 668y = 0 are given by
(x,y) = k(167,—42), k € Z.
The general solutions for 168x + 668y = 888 are given by
(x,y) = (888, —222) + k(167,—42), k € Z.

: {CE = 888 +167k
L.e.

y = —222 —42k "’ hez.
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5 Modulo Integers

Let n be a fixed positive integer. Two integers a and b are said to be
congruent modulo n, written

a = b (mod n)

and read “a equals b modulo n” if n | (b — a).

For all k,l € Z, a = b (mod n) is equivalent to
a+kn=0b+In (modn).
In fact, the difference
(b+in)—(a+kn)=(0b—a)+ (—k)n

is a multiple of n if and only if b — a is a multiple of n.

Example 5.1.
3 =5 (mod 2), 368 =168 (mod 8), —8 =10 (mod 9),
3# 5 (mod 3), 368 % 268 (mod 8), —8 % 18 (mod 9).
Proposition 5.1. Let n be a fixed positive integer.
(a) If ay = by (mod n) and ay = by (mod n), then
a1+ as = by £ by (mod n), ajas = biby (mod n).
(b) If a =0 (mod n), d|n, then a = b (mod d).

(c) If d divides all integers a,b,n, then

a b n
a=0b(modn) <= g:c—l<moda>.
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Proof. (a) Since a; = by (mod n) and ay = by (mod n), there are integers
k1 and ko such that

b1 — a] = ]ﬁn, bg — a9 = kgn.

Then
(bl + bg) + (CLl + CLQ) = (]{71 + kz)n,
b1b2 — a1y = b1b2 — b1a2 + blCLQ — 109
= bl(bg — CLQ) + (bl — a1>a2
= bk'n + knd
= (blkg + agkl)n.
Thus

a1 + as = by £+ by (mod n);
a1as = biby (mod n).

(b) Since d | n, we have n = dl for some [ € Z. Then
b—a=kn=(kl)d, ie, a=b(modd).

(¢) @ =b (mod n) iff b — a = kn for an integer k, which is iff
b a n . a b n
C_i—g—kXE, 1.€., C—izg(mOdg)
[]
Example 5.2.
6 = 14 (mod 8) X 6 =2 x 14 (mod 8),

— 2
14
6 =14 (mod 8) <— gz— (mod%).

However,
2x3=2x7(mod8 =5 3=7(modS8).
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In fact,
3 # 7 (mod 8).

Theorem 5.2. If gcd(m,n) = 1, then
a=bmodm, a=bmodn < a=0bmodmn.
More generally,
a=bmodm, a=bmodn < a=bmod lem(m,n).

Proof. Let | = lem(m,n). If a = b mod m and a = b mod n, then
m | (b—a)andn | (b—a). Thusl | (b—a),ie., a = bmod [. Conversely,
if a = b (mod (), then [ | (b —a). Since m | [, n | I, we have m | (b — a),
n | (b—a). Thus a = b mod m, a = b mod n.

In particular, if ged(m,n) = 1, we have lem(m,n) = mn. (]

Definition 5.3. An integer a is said to be invertible modulo n if there
exists an integer b such that

ab = 1 mod n.

If so, b is called the inverse of a modulo n.

Proposition 5.4. An integer a is invertible modulo n if and only if
ged(a,n) =1

Proof. “=" If a is invertible modulo n, say, its inverse is b, then there
exists an integer k such that ab =1+ kn, i.e., 1 = ab — kn, which is an
integer linear combination of @ and n. Thus ged(a,n) divides 1. Hence
ged(a,n) = 1.

“«<” By the Euclidean Algorithm, there exist integers u,v such that
1 = au + nv. Then au = 1 mod n. []

If a and b are invertible modulo n, so is ab.
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Another way to introduce modulo integers is to consider the quotient
set Z,, over the equivalence relation ~,, (or just ~) defined by a ~,, b iff
n|(b—a), ie.,

Zp ={0],[1],...;[n =1} =Z/~, .
There are addition and multiplication on Z,, defined by
la] +[b] == [a+10], [a][b] := |ab).
The addition and multiplication are well-defined:
[ +V]=[a+0b], [dV]=]ab]

In fact, if [a] = |@] and [b] = [b], then @’ — a = pn and b’ — b = gn; thus
(a+0)—(a+b) =(p+qnand a'b —ab= (a+ pn)(b+gn) — ab =
(pb + qa + pgn)n; hence [a’ 4+ V'] = [a + b] and [aV'] = [ab].

The class [0] is the zero and [1] the unit of Z,, i.e., [a] 4+ [0] = |a] and
al[1] = [1]la] = [a].

An element |a] is said to be invertible in Z,, if there exists an element
b] € Z,, called an inverse of [a], such that

a][b] = [ab] = [1].

If [a] is invertible, then its inverse is unique, the unique inverse is written

as [a] 1.

If [a] and [b] are invertible modulo n, so is [ab].

Theorem 5.5 (Fermat’s Little Theorem). Let p be a prime. If a is an
integer such that p { a, then

a’~' =1 (mod p).

Proof. Consider the map f, : Z, — Z, by fu([x]) = |az]|. Since p 1 a,
i.e., ged(p,a) = 1, so |a] is invertible. Let b be an inverse of a modulo p.
Then fj is the inverse function of f,. Thus f, is a bijection.
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Let Z; = {[1], 2], ..., [p—1]}. Since fo([0]) = [0], we see that f,(Z;) =

Z;. Now we have

p—1 p—1
TR VR VI | R N
k=1 k:_l cefa(Zy) €L
Note that J[?—}[k] is invertible. It follows that [a]?~! = [1]. ]

Proposition 5.6 (Generalized Fermat’s Little Theorem). Let p and ¢
be distinct prime numbers. If a is an integer such that p{a and q 1 a,
then

aP~Y4=Y =1 (mod pq).

Proof. By Fermat’s Little Theorem we have a?~! = 1 mod p. Raising to
the power ¢ — 1, we have

aP~V"Y =1 (mod p).

This means that p | (a®~D@=Y — 1), Likewise, q | (a??~D@=1) —1). Since
p and ¢ are coprime, we see that pg | (a?~D@=D — 1) in other words,
a1~ = 1 (mod pq). W

Theorem 5.7 (Euler’s Theorem). For integer n > 2 and integer a
such that ged(a,n) =1,

a?™ =1 (mod n),
where p(n) is the number of invertible integers modulo n.

Proof. Let Z denote the set of invertible elements of Z,,. Note that [a] is
invertible, f, : Z, — Z, by f.([x]) = |ax] is bijective, and f,(Z}) = Z*.
Then

% T Il = T lalzl = T lazl= ] W= ]] [«

[2]€Z, [w]€Z;, [x]€Z, )€ fa(Z3) [x]€Z,
Since [ [1,1ez: [2] is invertible, it follows that [a]?™) = [1]. (]
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Fermat’s Little Theorem and its generalization are special cases of Eu-
ler’s Theorem. In fact, o(p) = p — 1 and w(pq) = (p — 1)(q¢ — 1) for
distinct primes p, q.

Example 5.3. The invertible integers modulo 12 are the following num-
bers
1,5,7,11.

Numbers 0, 2, 3,4, 6, 8,9, 10 are not invertible modulo 12.
Theorem 5.8. Let ged(c,n) = 1. Then

a=0b(modn) <= ca = cb(mod n)
Proof. By the Euclidean Algorithm, there are integers u, v such that
1 = cu+ nov.

Then 1 = cu (mod n); i.e., a and u are inverses of each other modulo n
“=": ¢ =c(mod n) and a = b (mod n) imply

ca = cb (mod n).

This true without ged(c,n) = 1.
“<": ca = ¢b (mod n) and u = u (mod n) imply that

uca = uch (mod n).

Replace uc = 1 — vn; we have a — avn = b — bun (mod n). This means
a = b (mod n). (]

Example 5.4. Find the inverse modulo 15 for each of the numbers 2, 4,
7,8, 11, 13.

Solution. Since 2-8 =1 (mod 15),4-4 =1 (mod 15). Then 2 and 8 are
inverses of each other; 4 is the inverse of itself.
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Write 15 =2-7+ 1. Then 15 —2-7=1. Thus —2-7 =1 (mod 15).
The inverse of 7 is -2. Since —2 = 13 (mod 15), the inverse of 7 is also 13.

In fact,
7-13 =1 (mod 15).

Similarly, 15 =11+4, 11 =2-4+3,4 =3+ 1, then

1 = 4-3=4—(11-2-4)
= 3.4-11=3-(15-11)—11
= 15—4-11.

Thus the inverse of 11 is —4. Since —4 = 11 (mod 15), the inverse of 11
is also itself, i.e., 11-11 =1 (mod 15).

6 Solving ax = b (mod n)

Theorem 6.1. The congruence equation
ax = b (mod n)
has a solution if and only if ged(a,n) divides b.

Proof. Let d = ged(a,n). The congruence equation has a solution if and
only if there exist integers x and k such that b = ax + kn. This is
equivalent to d | b. ]

Remark. For all k,[ € Z, we have
ar =b (mod n) <= (a+kn)x = b+ In (mod n).
In fact, the difference
(b+1In)—(a+kn)x = (b—ax)+ (I — kx)n

is a multiple of n if and only if b — ax is a multiple of n.
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Theorem 6.2. Let ged(a,n) = 1. Then there exists an integer u such
that au = 1 (mod n); the solutions for the equation ax = b (mod n)
are given by

r = ub (mod n).

Proof. Since ged(a,n) = 1, there exist u,v € Z such that 1 = au + nv.
So 1 = au (mod n), i.e., au = 1 (mod n). Since u is invertible modulo n,
we have

ax = b (mod n) <= uaxr = ub (mod n).

Since au = 1 — nv, then wax = (1 — nv)xr = x — vaen. Thus
ax = b (mod n) <= = — vaen = ub (mod n).

Therefore
ax = b (mod n) <= = = ub (mod n).

Example 6.1. Find all integers x for
9z = 27 (mod 15).
Solution. Find ged(9, 15) = 3. Dividing both sides by 3,
3z =9 (mod 5) <= 3z =4 (mod)H).

Since ged(3,5) = 1, the integer 3 is invertible and its inverse is 2. Multi-
plying 2 to both sides,
6z = 8 (mod 5).

Since 6 = 1 (mod 5), 8 = 3 (mod 5), then
z =3 (mod 5).

In other words,
r =345k, keZ.
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Example 6.2.
13z = 8 (mod 15)

The inverse of 13 is 7 modulo 15. We have
7x 13z =7 x 8 (mod 15) = 56 (mod 15) = 11 (mod 15).
So x = 11 (mod 15).
Example 6.3. Solve the equation 668z = 888 (mod 168).
Solution. Find ged(668, 168) = 4. Dividing both sides by 4,
1672 = 222 (mod 42).
By the Division Algorithm,
167 =3 x42+41, 42=41+ 1.
By the Euclidean Algorithm,
1 =42 — 41 =42 — (167 — 3-42) = 4 - 42 — 167.

Then —167 = 1 (mod 42). The inverse of 167 modulo 42 is —1. Multi-
plying —1 to both sides, we have x = —222 (mod 42). Thus

r=—12 (mod 42) or x =30 (mod 42); i.e.

x=30+42k, k€ Z.

Algorithm for solving ax = b (mod n).

Step 1. Find d = ged(a, n) by the Division Algorithm.

Step 2. If d = 1, apply the Euclidean Algorithm to find u, v € Z such
that 1 = au + nw.

Step 3. Do the multiplication uax = ub (mod n). All solutions
xr = ub (mod n) are obtained. Stop.
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Step 4. If d > 1, check whether d | b. If d { b, there is no solution.
Stop. If d | b, do the division

a_b(dn)
S = (mod—).

Rewrite a/d as a, b/d as b, and n/d as n. Go to Step 1.

Proof. Since 1 = au + nv, we have au = 1 (mod n). This means that a
and u are inverses of each other modulo n. So

ax = b (mod n) <= uazr = ub (mod n).
Since ua = 1 — vn, then uaxr = (1 — vn)r = xr — ven. Thus

uax = ub (mod n) <= = = ub (mod n).

Example 6.4. Solve the equation 245x = 49 (mod 56).

Solution. Applying the Division Algorithm,

245 =4-56 + 21
56 =2-21+14
21 =14+7

Applying the FEuclidean Algorithm,

7 =21—14=21— (56 —2-21)
=3.21—56=3- (245 —4-56) — 56
=3.245— 13- 56

Dividing both sides by 7, we have
1=3-35—-13-8.

Thus 3 - 35 = 1 (mod 8). Dividing the original equation by 7, we have
35z = 7 (mod 8). Multiplying 3 to both sides, we obtain solutions

r=21=5 (mod 8)
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7 Chinese Remainder Theorem

Example 7.1. Solve the system
x =0 (mod ny)
x =0 (mod ny)

Solution. By definition of solution,  is a common multiple of n; and ns.
So z is a multiple of lem(ny, n2). Thus the system is equivalent to

r =0 (mod lem(nq, ng)).
Theorem 7.1. Let S be the solution set of the system
{ a1z = by (mod nq)

asx = by (mod ny)

(4)
Let Sy be the solution set of the homogeneous system

a1z = 0 (mod ny)
asx = 0 (mod no)

(5)

If © = xg is a solution of (4), then all solutions of (4) are given by
r=x0+s, s€J5. (6)

Proof. We first show that © = xy + s, where s € S, are indeed solutions
of (4). In fact, since x is a solution for (4) and s is a solution for (5), we
have
a1xg = by (mod ny) a;s =0 (mod ny)
{ asry = by (mod ny) { ass = 0 (mod ngy)
i.e., ny divides (by — ayxg) and ays; ng divides (by — asxy) and ags. Then
ny divides [(by — a1xg) — ays], and ny divides [(by — agxy) — assl; i.e., ny
divides [by — aq(xg+ s)], and ny divides [by — as(zg+ s)]. This means that
xr = xo+ s is a solution of (4).
Conversely, let x = ¢ be any solution of (4). We will see that sy =t —x
is a solution of (5). Hence the solution ¢t = x¢+ sq is of the form in (6). [
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Algorithm for solving the system
{ a1x = by (mod nq)
asx = by (mod ny)
Step 1. Reduce the system to the form
{ r = ¢; (mod my)

T = ¢ (mod my)

(8)

Step 2. Set x = ¢ +ym1 = co+2my, where y, z € Z. Find a solution

(y, z) = (yo, 20) for the equation
miy — mez = Co — (1.

Consequently, xg = ¢; + miyy = ¢ + Mo 2.
Step 3. Set m = lem(my, my). The system (7) becomes

r = x( (mod m).
Proof. Tt follows from Theorem 7.1.

Example 7.2. Solve the system
6 (mod 4)

10z
12x 30 (mod 21)
Solution. Applying the Division Algorithm,
gcd(10,4) = 2, ged(12,21) = 3.

Dividing the 1st equation by 2 and the second equation by 3,

Shr = 3 (mod 2) r =1 (mod 2)
{43:510 (mod 7) — { 4z =3 (mod 7)

The system is equivalent to

{le(mon)
x =6 (mod 7)
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Set v =1+2y=6+72, 9,2 € Z. Then
2y — Tz = D.

Applying the Division Algorithm, 7 =3 -2 + 1. Applying the Euclidean
Algorithm, 1 = —=3-2+47. Then 5 = —15-2+5-7. We obtain a solution
(Yo, z0) = (=15, =5). Thus

xo=14+2yy =6+ 729 = —29

is a special solution. The general solution for

{xEO(mon)
r =0 (mod 7)

is x = 0 (mod 14). Hence the solution is given by
r=-29=—1=13 (mod 14)
Example 7.3. Solve the system

122 = 96 (mod 20)
20z = 70 (mod 30)

Solution. Applying the Division Algorithm to find,
ged(12,20) =4,  ged(20,30) = 10.

3T
2T

Applying the Euclidean Algorithm,

Then
24 (mod 5)

7 (mod 3)

ocd(3,5) =1=2-3—1-5.
Then 2 -3 =1 (mod 5). Similarly,
ocd(2,3) =1=—1-241-3
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and —1-2 =1 (mod 3). (Equivalently, 2-2 =1 (mod 3).) Then, 2 is the
inverse of 3 modulo 5; —1 or 2 is the inverse of 2 modulo 3. Thus
2 - 3x 224 (mod b5)
{—1- x —1-7 (mod 3)
x
L

48 =3 (mod b5)

—7=2 (mod 3)

Set x = 3+ by = 2 + 3z, where y, z € Z. That is,
Sy — 3z = —1.

We find a special solution (g, 29) = (1,2). So xg = 3+5yy = 2+3z9 = 8.
Thus the original system is equivalent to

r =8 (mod 15)

DO

and all solutions are given by
r=8+ 15k, ke Z.

Example 7.4. Find all integer solutions for the system

r = 486 (mod 186)
r = 386 (mod 286)

Solution. The system can be reduced to

{ T 114 (mod 186)
T

100 (mod 236)
Set = 114 + 186y = 100 + 2862, i.c.,

186y — 286z = —14.
Applying the Division Algorithm,
286 = 186 + 100,
186 = 100 + 86,
100 = 86 + 14,
86 = 6-14+ 2.
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Then ged(186,286) = 2. Applying the Euclidean Algorithm,

2 = 86—06-14
— 86— 6(100 — 86) = 7- 86 — 6 - 100
— 7(186 — 100) — 6 - 100 = 7 - 186 — 13 - 100
— 7186 — 13(286 — 186) = 20 - 186 — 13 - 286.

Note that _714 = —7. So we get a special solution
(40, 20) = —7(20,13) = (—140, —91).

Thus xy = 114+186y = 100428629 = —25926. Note that lem(186, 286) =
26598. The general solutions are given by

r = —25926 = 672 (mod 26598).

Theorem 7.2 (Chinese Remainder Theorem). Let ny,ng,...,n; € P.
If ged(ni, n;) =1 for alli # j, then the system of congruence equations

r = by (mod ny)
r = by (mod ny)
r = by (mod ny).

has a unique solution modulo nins - - - n;.

Thinking Problem. In the Chinese Remainder Theorem, if
ged(ni, ny) = 1,

is not satisfied, does the system have solutions? Assuming it has solutions,
are the solutions unique modulo some integers?

8 Important Facts

l.a=b(modn) <= a+kn=0b+In (modn) for all k,l € Z.
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@ N o otk W N

Afcl|a, c|b, cl|n,then

a=b(modn) <= a/c=b/c(modn/c).

. An integer a is called invertible modulo n if there exists an integer

b such that
ab =1 (mod n).

If so, b is called the inverse of a modulo n.

An integer a is invertible modulo n <= ged(a,n) = 1.

1f ged(e,n) =1, then

a=0b(modn) <= ca = cb(mod n).

. Equation az = b (mod n) has solution <= ged(a,n) | b.

For all k,1 € Z,

axr =b (mod n) <= (a+kn)x =b+ In (mod n).

Final Review

. Set System,

Propositional Logic System

Counting

Binary Relations

Recurrence Relations

Graph Theory

Elementary Probability

Integers and Modulo Integers (Number Theory)
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