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1 Divisibility

Given two integers a, b with a 6= 0. We say that a divides b, written

a | b, if there exists an integer q such that

b = qa.

When this is true, we say that a is a factor (or divisor) of b, and b is a

multiple of a. If a is not a factor of b, we write

a - b.

Any integer n has divisors ±1 and ±n, called the trivial divisors of

n. If a is a divisor of n, so is −a. A positive divisor of n other than the

trivial divisors is called a nontrivial divisor of n. Every integer is a

divisor of 0.

A positive integer p other than 1 is called a prime if it does not have

nontrivial divisors, i.e., its positive divisors are only the trivial divisors 1

and p. A positive integer is called composite if it is not a prime. The

first few primes are listed as

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, . . .

Proposition 1.1. Every composite number n has a prime factor p ≤√
n.

1



Proof. Since n is composite, there are primes p and q such that n = pqk,

where k ∈ P. Note that for primes p and q, one is less than or equal to

the other, say p ≤ q. Then p2 ≤ pqk = n. Thus p ≤ √
n.

Example 1.1. (a) 6 has the prime factor 2 ≤ √
6.

(b) 9 has the prime factor 3 =
√

9.

(c) 35 has the prime factor 5 ≤ √
35.

(d) Is 143 a prime? We find that
√

143 <
√

144 = 12. For i =

2, 3, 5, 7, 11, check whether i divides 143. We find out i - 143 for

i = 2, 3, 5, 7, and 11 | 143. So 143 is a composite number.

(e) Is 157 a prime? Since
√

157 <
√

169 = 13. For each i = 2, 3, 5, 7, 11,

we find out that i - 157. We see that 157 has no prime factor less or

equal to
√

157. So 157 is not a composite; 157 is a prime.

Proposition 1.2. Let a, b, c be nonzero integers.

(a) If a | b and b | a, then a = ±b.

(b) If a | b and b|c, then a | c.
(c) If a | b and a | c, then a | (bx + cy) for all x, y ∈ Z.

Proof. (a) Write b = q1a and a = q2b for some q1, q2 ∈ Z. Then b = q1q2b.

Dividing both sides by b, we have q1q2 = 1. This forces that q1 = q2 = ±1.

Thus b = ±a.

(b) Write b = q1a and c = q2b for some integers q1, q2 ∈ Z. Then

c = q1q2a. This means that a | c.
(c) Write b = q1a and c = q2a for some q1, q2 ∈ Z. Then

bx + cy = q1ax + q2ay = (q1x + q2y)a

for any x, y ∈ Z. This means that a | (bx + cy).
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Theorem 1.3. There are infinitely many prime numbers.

Proof. Suppose there are finitely many primes, say, they are listed as

follows

p1, p2, . . . , pk.

Then the integer

a = p1p2 · · · pk + 1

is not divisible by any of the primes p1, p2, . . . , pk because the remainders

of a divided by each pi is always 1, where i = 1, . . . , k. This means that

a has no prime factors. By definition of primes, the integer a is a prime,

and this prime is larger than all primes p1, p2, . . . , pk. So it is larger than

itself, which is a contradiction.

Theorem 1.4 (Division Algorithm). For any a, b ∈ Z with a > 0,

there exist unique integers q, r such that

b = qa + r, 0 ≤ r < a.

Proof. Define the set S = {b − ta ≥ 0 : t ∈ Z}. Then S is nonempty

and bounded below. By the Well Ordering Principle, S has the unique

minimum integer r. Then there is a unique integer q such that b−qa = r.

Thus

b = qa + r.

Clearly, r ≥ 0. We claim that r < a. Suppose r ≥ a. Then

b− (q + 1)a = (b− qa)− a = r − a ≥ 0.

This means that r − a is an element of S, but smaller than r. This is

contrary to that r is the minimum element in S.

Example 1.2. For integers a = 24 and b = 379, we have

379 = 15 · 24 + 19, q = 15, r = 19.

For integers a = 24 and b = −379, we have

−379 = −14 · 24 + 5, q = −14, r = 5.
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2 Greatest Common Divisor

For integers a and b, not simultaneously 0, a common divisor of a and

b is an integer c such that c | a and c | b.
Definition 2.1. Let a and b be integers, not simultaneously 0. A positive

integer d is called the greatest common divisor of a and b, denoted

gcd(a, b), if

(a) d | a, d | b, and

(b) If c | a and c | b, then c | d.

Two integers a and b are said to be coprime (or relatively prime) if

gcd(a, b) = 1.

Theorem 2.2. For any integers a, b ∈ Z, not all zero, if

b = qa + r

for some integers q, r ∈ Z, then

gcd(a, b) = gcd(a, r).

Proof. Write d1 = gcd(a, b), d2 = gcd(a, r).

Since d1 | a and d1 | b, then d1 | r because r = b − qa. So d1 is a

common divisor of a and r. Thus, by definition of gcd(a, r), d1 divides d2.

Similarly, since d2 | a and d2 | r, then d2 | b because b = qa + r. So d2

is a common divisor of a and b. By definition of gcd(a, b), d2 divides d1.

Hence, by Proposition 1.2 (a), d1 = ±d2. Thus d1 = d2.

The above proposition gives rise to a simple constructive method to

calculate gcd by repeating the Division Algorithm.

Example 2.1. Find gcd(297, 3627).
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3627 = 12 · 297 + 63,

297 = 4 · 63 + 45,

63 = 1 · 45 + 18,

45 = 2 · 18 + 9,

18 = 2 · 9;

gcd(297, 3627) = gcd(63, 297)

= gcd(45, 63)

= gcd(18, 45)

= gcd(9, 18)

= 9.

The procedure to calculate gcd(297, 3627) applies to any pair of positive

integers.

Let a, b ∈ N be nonnegative integers. Write d = gcd(a, b). Repeating

the Division Algorithm, we find nonnegative integers qi, ri ∈ N such that

b = q0a + r0, 0 ≤ r0 < a,

a = q1r0 + r1, 0 ≤ r1 < r0,

r0 = q2r1 + r2, 0 ≤ r2 < r1,

r1 = q3r2 + r3, 0 ≤ r3 < r2,
...

rk−2 = qkrk−1 + rk, 0 ≤ rk < rk−1,

rk−1 = qk+1rk + rk+1, rk+1 = 0.

The nonnegative sequence {ri} is strictly decreasing. It must end to 0

at some step, say, rk+1 = 0 for the very first time. Then ri 6= 0, 0 ≤ i ≤ k.

Reverse the sequence {ri}k
i=0 and make substitutions as follows:

d = rk,

rk = rk−2 − qkrk−1,

rk−1 = rk−3 − qk−1rk−2,
...

r1 = a− q1r0,

r0 = b− q0a.

We see that gcd(a, b) can be expressed as an integral linear combination

of a and b. This procedure is known as the Euclidean Algorithm.
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We summarize the above argument into the following theorem.

Theorem 2.3. For any integers a, b ∈ Z, there exist integers x, y ∈ Z
such that

gcd(a, b) = ax + by.

Example 2.2. Express gcd(297, 3627) as an integral linear combination

of 297 and 3627.

Dy the Division Algorithm, we have gcd(297, 3627) = 9. By the Eu-

clidean Algorithm,

9 = 45− 2 · 18

= 45− 2(63− 45)

= 3 · 45− 2 · 63

= 3(297− 4 · 63)− 2 · 63

= 3 · 297− 14 · 63

= 3 · 297− 14(3627− 12 · 297)

= 171 · 297− 14 · 3627.

Example 2.3. Find gcd(119, 45) and express it as an integral linear

combination of 45 and 119.

Applying the Division Algorithm,

119 = 2 · 45 + 29

45 = 29 + 16

29 = 16 + 13

16 = 13 + 3

13 = 4 · 3 + 1
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So gcd(119, 45) = 1. Applying the Euclidean Algorithm,

1 = 13− 4 · 3 = 13− 4(16− 13)

= 5 · 13− 4 · 16 = 5(29− 16)− 4 · 16

= 5 · 29− 9 · 16 = 5 · 29− 9(45− 29)

= 14 · 29− 9 · 45 = 14(119− 2 · 45)− 9 · 45

= 14 · 119− 37 · 45

Example 2.4. Find gcd(119,−45) and express it as linear combination

of 119 and -45.

We have gcd(119,−45) = gcd(119, 45) = 1. Since

1 = 14 · 119− 37 · 45,

we have gcd(119,−45) = 14 · 119 + 37 · (−45).

Remark. For any a, b ∈ Z, gcd(a,−b) = gcd(a, b). Expressing gcd(a,−b)

in terms of a and −b is the same as that of expressing gcd(a, b) in terms

of a and b.

Corollary 2.4. Integers a, b, not all zero, are coprime if and only if

there exist integers x, y such that ax + by = 1. ¤
Proposition 2.5. If a | bc and gcd(a, b) = 1, then a | c.
Proof. By the Euclidean Algorithm, there are integers x, y ∈ Z such that

ax + by = 1. Then

c = 1 · c = (ax + by)c = acx + bcy.

Since a | bc and obviously a | ac, we have a | (acx+bcy) by Proposition 1.2

(c). Therefore a | c.
Theorem 2.6 (Unique Factorization). Every integer a ≥ 2 can be

uniquely factorized into the form

a = pe1
1 pe2

2 · · · pem
m ,
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where p1, p2, . . . , pm are distinct primes, e1, e2, . . . , em are positive in-

tegers, and p1 < p2 < · · · < ps.

Proof. (Not required) We first show that a has a factorization into primes.

If a has only the trivial divisors, then a itself is a prime, and it obviously

has unique factorization. If a has some nontrivial divisors, then

a = bc

for some positive integers b, c ∈ P other than 1 and a. So b < a, c < a.

By induction, the positive integers b and c have factorizations into primes.

Consequently, a has a factorization into primes.

Next we show that the factorization of a is unique in the sense of the

theorem.

Let a = qf1
1 qf2

2 · · · afn
n be any factorization, where q1, q2, . . . , qn are

distinct primes, f1, f2, . . . , fn are positive integers, and q1 < q2 < · · · <

qn. We claim that m = n, pi = qi, ei = fi for all 1 ≤ i ≤ m.

Suppose p1 < q1. Then p1 is distinct from the primes q1, q2, . . . , qn. It

is clear that gcd(p1, qi) = 1, and so

gcd(p1, q
fi
i ) = 1 for all 1 ≤ i ≤ n.

Note that p1 | qf1
1 qf2

2 · · · afn
n . Since gcd(p1, q

f1
1 ) = 1, by Proposition 2.5,

we have p1 | qf2
2 · · · afn

n . Since gcd(p1, q
f2
2 ) = 1, again by Proposition 2.5,

we have p1 | qf2
3 · · · afn

n . Repeating the argument, eventually we have

p1 | qfn
n , which is contrary to gcd(p1, q

fn
n ) = 1. We thus conclude p1 ≥ q1.

Similarly, q1 ≥ p1. Therefore p1 = q1. Next we claim e1 = f1.

Suppose e1 < f1. Then

pe2
2 · · · pem

m = pf1−e1
1 qf2

2 · · · qfn
n .

This implies that p1|pe2
2 · · · pem

m . If m = 1, then pe2
2 · · · pem

m = 1. So p1 | 1.

This is impossible because p1 is a prime. If m ≥ 2, since gcd(p1, pi) = 1,
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we have gcd(p1, p
ei
i ) = 1 for all 2 ≤ i ≤ m. Applying Proposition 2.5

repeatedly, we have p1|pem
m , which is contrary to gcd(p1, p

em
m ) = 1. We

thus conclude e1 ≥ f1. Similarly, f1 ≥ e1. Therefore e1 = f1.

Now we have obtained pe2
2 · · · pem

m = qf2
2 · · · qfn

n . If m < n, then by

induction we have p1 = q1, . . . , pm = qm and e1 = f1, . . . , em = fm. Thus

1 = q
fm+1
m+1 · · · qfn

n . This is impossible because qm+1, . . . , qn are primes. So

m ≥ n. Similarly, n ≥ m. Hence we have m = n. By induction, we have

e2 = f2, . . . , em = fm.

Our proof is finished.

Example 2.5. Factorize the numbers 180 and 882, and find gcd(180, 882).

Solution. 180/2=90, 90/2=45, 45/3=15, 15/3=5, 5/5=1. Then 360 =

22 · 32 · 5. Similarly, 882/2=441, 441/3=147, 147/3=49, 49/7=7, 7/7=1.

We have 882 = 2 · 32 · 72. Thus gcd(180, 882) = 2 · 32 = 18.

3 Least Common Multiple

For two integers a and b, a positive integer m is called a common mul-

tiple of a and b if a | m and b | m.

Definition 3.1. Let a, b ∈ Z, not all zero. The least common mul-

tiple of a and b, denoted by lcm(a, b), is a positive integer m such that

(a) a | m, b | m, and

(b) If a | c and b | c, then m | c.
Proposition 3.2. For nonnegative integers a, b ∈ N, not all zero,

ab = gcd(a, b) · lcm(a, b).

Proof. Let a = pe1
1 pe2

2 · · · pen
n and b = pf1

1 pf2
2 · · · pfn

n , where p1 < p2 <

· · · < pn, ei and fi are nonnegative integers, 1 ≤ i ≤ n. Then by the
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Unique Factorization Theorem,

gcd(a, b) = pg1
1 pg2

2 · · · pgn
n ,

lcm(a, b) = ph1
1 ph2

2 · · · phn
n ,

where gi = min(ei, fi), hi = max(ei, fi), 1 ≤ i ≤ n. Note that for any

real numbers x, y ∈ R,

min(x, y) + max(x, y) = x + y.

Thus

gi + hi = ei + fi, 1 ≤ i ≤ n.

Therefore

ab = pe1+f1
1 pe2+f2

2 · · · pen+fn
n

= pg1+h1
1 pg2+h2

2 · · · pgn+hn
n

= gcd(a, b) · lcm(a, b).

4 Solving ax + by = c

Example 4.1. Find an integer solution for the equation

25x + 65y = 10.

Solution. Applying the Division Algorithm to find gcd(25, 65):

65 = 2 · 25 + 15,

25 = 15 + 10,

15 = 10 + 5.

10



Then gcd(25, 65) = 5. Applying the Euclidean Algorithm to express 5 as

an integer linear combination of 25 and 65:

5 = 15− 10

= 15− (25− 15)

= −25 + 2 · 15

= −25 + 2 · (65− 2 · 25)

= −5 · 25 + 2 · 65.

By inspection, (x, y) = (−5, 2) is a solution for the equation

25x + 65y = 5.

Since 10/5 = 2, we see that (x, y) = 2(−5, 2) = (−10, 4) is a solution for

25x + 65y = 10.

Example 4.2. Find an integer solution for the equation

25x + 65y = 18.

Solution. Since gcd(25, 65) = 5, if the equation has a solution, then

5 | (25x + 65y). So 5 | 18 by Proposition 1.2 (c). This is a contradiction.

Hence the equation has no integer solution.

Theorem 4.1. The linear Diophantine equation

ax + by = c,

has a solution if and only if d | c, where d = gcd(a, b).

Theorem 4.2. Let S be the set of integer solutions of the nonhomo-

geneous equation

ax + by = c. (1)

Let S0 be the set of integer solutions of the homogeneous equation

ax + by = 0. (2)
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If (x, y) = (u0, v0) is an integer solution of (1), then S is given by

S = {(u0 + s, v0 + t) : (s, t) ∈ S0}.
In other words, all integer solutions of (1) are given by

{
x = u0 + s

y = v0 + t
, (s, t) ∈ S0. (3)

Proof. Since (x, y) = (u0, v0) is a solution of NHEq (1), then au0+bv0 = c.

For any solution (x, y) = (s, t) of HE (2), we have as + bt = 0. Thus

a(u0 + s) + b(v0 + t) = (au0 + bv0) + (as + bt) = c.

This means that (x, y) = (u0 + s, v0 + t) is a solution of NHEq (1).

Conversely, for any solution (x, y) = (u, v) of NHEq (1), we have au +

bv = c. Let (s0, t0) = (u− u0, v − v0). Then

as0 + bt0 = a(u− u0) + b(v − v0)

= (au + bv)− (au0 + bv0)

= c− c = 0.

This means that (s0, t0) is a solution of HEq (2). Note that

(u, v) = (u0 + s0, v0 + t0).

This shows that the solution (x, y) = (u, v) of NHEq (1) is a solution of

the form in (3). Our proof is finished.

Proposition 4.3. Let d = gcd(a, b). The integer solution set S0 of

ax + by = 0

is given by

S0 =
{
k(b/d, − a/d) : k ∈ Z}

.

In other words, {
x = (b/d)k

y = −(a/d)k
, k ∈ Z.
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Proof. The equation ax + by = 0 can be written as ax = −by. Write

m = ax = −by. Then a | m and b | m, i.e., m is a multiple of a and

b. Thus m = k · lcm(a, b) for some k ∈ Z. Therefore ax = k · lcm(a, b)

implies

x =
k · lcm(a, b)

a
=

kab

da
=

kb

d
.

Likewise, −by = k · lcm(a, b) implies

y =
k · lcm(a, b)

−b
=

kab

−db
= −ka

d
.

Theorem 4.4. Let d = gcd(a, b) and d | c. Let (u0, v0) be a particular

integer solution of the equation

ax + by = c.

Then all integer solutions of the above equation are given by{
x = u0 + bk/d

y = v0 − ak/d
, k ∈ Z.

Proof. It follows from Theorem 4.2 and Proposition 4.3.

Example 4.3. Find all integer solutions for the equation

25x + 65y = 10.

Solution. Find gcd(25, 65) = 5 and have got a special solution (x, y) =

(−10, 4) in a previous example. Now consider the equation 25x+65y = 0.

Divide both sides by 5 to have,

5x + 13y = 2.

Since gcd(5, 13) = 1, all solutions for the above equation are given by

(x, y) = k(−13, 5), k ∈ Z. Thus all solutions of 25x + 65y = 10 are given

by {
x = −10− 13k

y = 4 + 5k
, k ∈ Z.
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Example 4.4.

168x + 668y = 888.

Solution. Find gcd(168, 668) = 4 by the Division Algorithm

668 = 3 · 168 + 164

168 = 164 + 4

164 = 41 · 4
By the Euclidean Algorithm,

4 = 168− 164

= 168− (668− 3 · 168)

= 4 · 168 + (−1) · 668.

Dividing 888
4 = 222, we obtain a special solution

(x, y) = 222(4,−1) = (888,−222)

Solve 168x + 668y = 0. Dividing both sides by 4,

42x + 167y = 0 i.e. 42x = −167y.

The general solutions for 168x + 668y = 0 are given by

(x, y) = k(167,−42), k ∈ Z.

The general solutions for 168x + 668y = 888 are given by

(x, y) = (888,−222) + k(167,−42), k ∈ Z.

i.e.

{
x = 888 +167k

y = −222 −42k
, k ∈ Z.
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5 Modulo Integers

Let n be a fixed positive integer. Two integers a and b are said to be

congruent modulo n, written

a ≡ b (mod n)

and read “a equals b modulo n” if n | (b− a).

For all k, l ∈ Z, a ≡ b (mod n) is equivalent to

a + kn ≡ b + ln (mod n).

In fact, the difference

(b + ln)− (a + kn) = (b− a) + (l − k)n

is a multiple of n if and only if b− a is a multiple of n.

Example 5.1.

3 ≡ 5 (mod 2), 368 ≡ 168 (mod 8), −8 ≡ 10 (mod 9),

3 6≡ 5 (mod 3), 368 6≡ 268 (mod 8), −8 6≡ 18 (mod 9).

Proposition 5.1. Let n be a fixed positive integer.

(a) If a1 ≡ b1 (mod n) and a2 ≡ b2 (mod n), then

a1 ± a2 ≡ b1 ± b2 (mod n), a1a2 ≡ b1b2 (mod n).

(b) If a ≡ b (mod n), d | n, then a ≡ b (mod d).

(c) If d divides all integers a, b, n, then

a ≡ b (mod n) ⇐⇒ a

d
≡ b

d

(
mod

n

d

)
.
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Proof. (a) Since a1 ≡ b1 (mod n) and a2 ≡ b2 (mod n), there are integers

k1 and k2 such that

b1 − a1 = k1n, b2 − a2 = k2n.

Then

(b1 + b2)± (a1 + a2) = (k1 ± k2)n,

b1b2 − a1a2 = b1b2 − b1a2 + b1a2 − a1a2

= b1(b2 − a2) + (b1 − a1)a2

= bk′n + kna′

= (b1k2 + a2k1)n.

Thus

a1 ± a2 ≡ b1 ± b2 (mod n);

a1a2 ≡ b1b2 (mod n).

(b) Since d | n, we have n = dl for some l ∈ Z. Then

b− a = kn = (kl)d, i.e., a ≡ b (mod d).

(c) a ≡ b (mod n) iff b− a = kn for an integer k, which is iff

b

d
− a

d
= k × n

d
, i.e.,

a

d
≡ b

d

(
mod

n

d

)
.

Example 5.2.

6 ≡ 14 (mod 8) =⇒ 2× 6 ≡ 2× 14 (mod 8),

6 ≡ 14 (mod 8) ⇐⇒ 6

2
≡ 14

2

(
mod

8

2

)
.

However,

2× 3 ≡ 2× 7 (mod 8) 6=⇒ 3 ≡ 7 (mod 8).
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In fact,

3 6≡ 7 (mod 8).

Theorem 5.2. If gcd(m,n) = 1, then

a ≡ b mod m, a ≡ b mod n ⇔ a ≡ b mod mn.

More generally,

a ≡ b mod m, a ≡ b mod n ⇔ a ≡ b mod lcm(m,n).

Proof. Let l = lcm(m,n). If a ≡ b mod m and a ≡ b mod n, then

m | (b−a) and n | (b−a). Thus l | (b−a), i.e., a ≡ b mod l. Conversely,

if a ≡ b (mod l), then l | (b− a). Since m | l, n | l, we have m | (b− a),

n | (b− a). Thus a ≡ b mod m, a ≡ b mod n.

In particular, if gcd(m,n) = 1, we have lcm(m,n) = mn.

Definition 5.3. An integer a is said to be invertible modulo n if there

exists an integer b such that

ab ≡ 1 mod n.

If so, b is called the inverse of a modulo n.

Proposition 5.4. An integer a is invertible modulo n if and only if

gcd(a, n) = 1

Proof. “⇒” If a is invertible modulo n, say, its inverse is b, then there

exists an integer k such that ab = 1 + kn, i.e., 1 = ab− kn, which is an

integer linear combination of a and n. Thus gcd(a, n) divides 1. Hence

gcd(a, n) = 1.

“⇐” By the Euclidean Algorithm, there exist integers u, v such that

1 = au + nv. Then au ≡ 1 mod n.

If a and b are invertible modulo n, so is ab.
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Another way to introduce modulo integers is to consider the quotient

set Zn over the equivalence relation ∼n (or just ∼) defined by a ∼n b iff

n | (b− a), i.e.,

Zn = {[0], [1], . . . , [n− 1]} = Z/∼n .

There are addition and multiplication on Zn, defined by

[a] + [b] := [a + b], [a][b] := [ab].

The addition and multiplication are well-defined:

[a′ + b′] = [a + b], [a′b′] = [ab].

In fact, if [a] = [a′] and [b] = [b′], then a′ − a = pn and b′ − b = qn; thus

(a′ + b′) − (a + b) = (p + q)n and a′b′ − ab = (a + pn)(b + qn) − ab =

(pb + qa + pqn)n; hence [a′ + b′] = [a + b] and [a′b′] = [ab].

The class [0] is the zero and [1] the unit of Zn, i.e., [a] + [0] = [a] and

[a][1] = [1][a] = [a].

An element [a] is said to be invertible in Zn if there exists an element

[b] ∈ Zn, called an inverse of [a], such that

[a][b] = [ab] = [1].

If [a] is invertible, then its inverse is unique, the unique inverse is written

as [a]−1.

If [a] and [b] are invertible modulo n, so is [ab].

Theorem 5.5 (Fermat’s Little Theorem). Let p be a prime. If a is an

integer such that p - a, then

ap−1 ≡ 1 (mod p).

Proof. Consider the map fa : Zp → Zp by fa([x]) = [ax]. Since p - a,

i.e., gcd(p, a) = 1, so [a] is invertible. Let b be an inverse of a modulo p.

Then fb is the inverse function of fa. Thus fa is a bijection.
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Let Z∗p = {[1], [2], . . . , [p−1]}. Since fa([0]) = [0], we see that fa(Z∗p) =

Z∗p. Now we have

[a]p−1

p−1∏

k=1

[k] =

p−1∏

k=1

[ak] =
∏

z∈fa(Z∗p)

z =
∏

z∈Z∗p
z =

p−1∏

k=1

[k].

Note that
∏p−1

k=1[k] is invertible. It follows that [a]p−1 = [1].

Proposition 5.6 (Generalized Fermat’s Little Theorem). Let p and q

be distinct prime numbers. If a is an integer such that p - a and q - a,
then

a(p−1)(q−1) ≡ 1 (mod pq).

Proof. By Fermat’s Little Theorem we have ap−1 ≡ 1 mod p. Raising to

the power q − 1, we have

a(p−1)(q−1) ≡ 1 (mod p).

This means that p | (a(p−1)(q−1)− 1). Likewise, q | (a(p−1)(q−1)− 1). Since

p and q are coprime, we see that pq | (a(p−1)(q−1) − 1), in other words,

a(p−1)(q−1) ≡ 1 (mod pq).

Theorem 5.7 (Euler’s Theorem). For integer n ≥ 2 and integer a

such that gcd(a, n) = 1,

aϕ(n) = 1 (mod n),

where ϕ(n) is the number of invertible integers modulo n.

Proof. Let Z∗n denote the set of invertible elements of Zn. Note that [a] is

invertible, fa : Zn → Zn by fa([x]) = [ax] is bijective, and fa(Z∗n) = Z∗n.

Then

[a]|Z
∗
n|

∏

[x]∈Z∗n
[x] =

∏

[x]∈Z∗n
[a][x] =

∏

[x]∈Z∗n
[ax] =

∏

[y]∈fa(Z∗n)

[y] =
∏

[x]∈Z∗n
[x].

Since
∏

[x]∈Z∗n[x] is invertible, it follows that [a]ϕ(n) = [1].
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Fermat’s Little Theorem and its generalization are special cases of Eu-

ler’s Theorem. In fact, ϕ(p) = p − 1 and ϕ(pq) = (p − 1)(q − 1) for

distinct primes p, q.

Example 5.3. The invertible integers modulo 12 are the following num-

bers

1, 5, 7, 11.

Numbers 0, 2, 3, 4, 6, 8, 9, 10 are not invertible modulo 12.

Theorem 5.8. Let gcd(c, n) = 1. Then

a ≡ b (mod n) ⇐⇒ ca ≡ cb (mod n)

Proof. By the Euclidean Algorithm, there are integers u, v such that

1 = cu + nv.

Then 1 ≡ cu (mod n); i.e., a and u are inverses of each other modulo n

“⇒”: c ≡ c (mod n) and a ≡ b (mod n) imply

ca ≡ cb (mod n).

This true without gcd(c, n) = 1.

“⇐”: ca ≡ cb (mod n) and u ≡ u (mod n) imply that

uca ≡ ucb (mod n).

Replace uc = 1− vn; we have a− avn ≡ b− bvn (mod n). This means

a ≡ b (mod n).

Example 5.4. Find the inverse modulo 15 for each of the numbers 2, 4,

7, 8, 11, 13.

Solution. Since 2 · 8 ≡ 1 (mod 15), 4 · 4 ≡ 1 (mod 15). Then 2 and 8 are

inverses of each other; 4 is the inverse of itself.
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Write 15 = 2 · 7 + 1. Then 15− 2 · 7 = 1. Thus −2 · 7 ≡ 1 (mod 15).

The inverse of 7 is -2. Since −2 ≡ 13 (mod 15), the inverse of 7 is also 13.

In fact,

7 · 13 ≡ 1 (mod 15).

Similarly, 15 = 11 + 4, 11 = 2 · 4 + 3, 4 = 3 + 1, then

1 = 4− 3 = 4− (11− 2 · 4)

= 3 · 4− 11 = 3 · (15− 11)− 11

= 15− 4 · 11.

Thus the inverse of 11 is −4. Since −4 ≡ 11 (mod 15), the inverse of 11

is also itself, i.e., 11 · 11 ≡ 1 (mod 15).

6 Solving ax ≡ b (mod n)

Theorem 6.1. The congruence equation

ax ≡ b (mod n)

has a solution if and only if gcd(a, n) divides b.

Proof. Let d = gcd(a, n). The congruence equation has a solution if and

only if there exist integers x and k such that b = ax + kn. This is

equivalent to d | b.
Remark. For all k, l ∈ Z, we have

ax ≡ b (mod n) ⇐⇒ (a + kn)x ≡ b + ln (mod n).

In fact, the difference

(b + ln)− (a + kn)x = (b− ax) + (l − kx)n

is a multiple of n if and only if b− ax is a multiple of n.
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Theorem 6.2. Let gcd(a, n) = 1. Then there exists an integer u such

that au ≡ 1 (mod n); the solutions for the equation ax ≡ b (mod n)

are given by

x ≡ ub (mod n).

Proof. Since gcd(a, n) = 1, there exist u, v ∈ Z such that 1 = au + nv.

So 1 ≡ au (mod n), i.e., au ≡ 1 (mod n). Since u is invertible modulo n,

we have

ax ≡ b (mod n) ⇐⇒ uax ≡ ub (mod n).

Since au = 1− nv, then uax = (1− nv)x = x− vxn. Thus

ax ≡ b (mod n) ⇐⇒ x− vxn ≡ ub (mod n).

Therefore

ax ≡ b (mod n) ⇐⇒ x ≡ ub (mod n).

Example 6.1. Find all integers x for

9x ≡ 27 (mod 15).

Solution. Find gcd(9, 15) = 3. Dividing both sides by 3,

3x ≡ 9 (mod 5) ⇐⇒ 3x ≡ 4 (mod 5).

Since gcd(3, 5) = 1, the integer 3 is invertible and its inverse is 2. Multi-

plying 2 to both sides,

6x ≡ 8 (mod 5).

Since 6 ≡ 1 (mod 5), 8 ≡ 3 (mod 5), then

x ≡ 3 (mod 5).

In other words,

x = 3 + 5k, k ∈ Z.
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Example 6.2.

13x ≡ 8 (mod 15)

The inverse of 13 is 7 modulo 15. We have

7× 13x ≡ 7× 8 (mod 15) ≡ 56 (mod 15) ≡ 11 (mod 15).

So x ≡ 11 (mod 15).

Example 6.3. Solve the equation 668x ≡ 888 (mod 168).

Solution. Find gcd(668, 168) = 4. Dividing both sides by 4,

167x ≡ 222 (mod 42).

By the Division Algorithm,

167 = 3× 42 + 41, 42 = 41 + 1.

By the Euclidean Algorithm,

1 = 42− 41 = 42− (167− 3 · 42) = 4 · 42− 167.

Then −167 ≡ 1 (mod 42). The inverse of 167 modulo 42 is −1. Multi-

plying −1 to both sides, we have x ≡ −222 (mod 42). Thus

x ≡ −12 (mod 42) or x ≡ 30 (mod 42); i.e.

x = 30 + 42k, k ∈ Z.

Algorithm for solving ax ≡ b (mod n).

Step 1. Find d = gcd(a, n) by the Division Algorithm.

Step 2. If d = 1, apply the Euclidean Algorithm to find u, v ∈ Z such

that 1 = au + nv.

Step 3. Do the multiplication uax ≡ ub (mod n). All solutions

x ≡ ub (mod n) are obtained. Stop.
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Step 4. If d > 1, check whether d | b. If d - b, there is no solution.

Stop. If d | b, do the division

a

d
x ≡ b

d

(
mod

n

d

)
.

Rewrite a/d as a, b/d as b, and n/d as n. Go to Step 1.

Proof. Since 1 = au + nv, we have au ≡ 1 (mod n). This means that a

and u are inverses of each other modulo n. So

ax ≡ b (mod n) ⇐⇒ uax ≡ ub (mod n).

Since ua = 1− vn, then uax = (1− vn)x = x− vxn. Thus

uax ≡ ub (mod n) ⇐⇒ x ≡ ub (mod n).

Example 6.4. Solve the equation 245x ≡ 49 (mod 56).

Solution. Applying the Division Algorithm,

245 = 4 · 56 + 21

56 = 2 · 21 + 14

21 = 14 + 7

Applying the Euclidean Algorithm,

7 = 21− 14 = 21− (56− 2 · 21)

= 3 · 21− 56 = 3 · (245− 4 · 56)− 56

= 3 · 245− 13 · 56

Dividing both sides by 7, we have

1 = 3 · 35− 13 · 8.
Thus 3 · 35 ≡ 1 (mod 8). Dividing the original equation by 7, we have

35x ≡ 7 (mod 8). Multiplying 3 to both sides, we obtain solutions

x ≡ 21 ≡ 5 (mod 8)
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7 Chinese Remainder Theorem

Example 7.1. Solve the system
{

x ≡ 0 (mod n1)

x ≡ 0 (mod n2)

Solution. By definition of solution, x is a common multiple of n1 and n2.

So x is a multiple of lcm(n1, n2). Thus the system is equivalent to

x ≡ 0 (mod lcm(n1, n2)).

Theorem 7.1. Let S be the solution set of the system
{

a1x ≡ b1 (mod n1)

a2x ≡ b2 (mod n2)
(4)

Let S0 be the solution set of the homogeneous system
{

a1x ≡ 0 (mod n1)

a2x ≡ 0 (mod n2)
(5)

If x = x0 is a solution of (4), then all solutions of (4) are given by

x = x0 + s, s ∈ S0. (6)

Proof. We first show that x = x0 + s, where s ∈ S0, are indeed solutions

of (4). In fact, since x0 is a solution for (4) and s is a solution for (5), we

have {
a1x0 ≡ b1 (mod n1)

a2x0 ≡ b2 (mod n2)
,

{
a1s ≡ 0 (mod n1)

a2s ≡ 0 (mod n2)
;

i.e., n1 divides (b1− a1x0) and a1s; n2 divides (b2− a2x0) and a2s. Then

n1 divides [(b1 − a1x0)− a1s], and n2 divides [(b2 − a2x0)− a2s]; i.e., n1

divides [b1−a1(x0 +s)], and n2 divides [b2−a2(x0 +s)]. This means that

x = x0 + s is a solution of (4).

Conversely, let x = t be any solution of (4). We will see that s0 = t−x0

is a solution of (5). Hence the solution t = x0+s0 is of the form in (6).
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Algorithm for solving the system
{

a1x ≡ b1 (mod n1)

a2x ≡ b2 (mod n2)
(7)

Step 1. Reduce the system to the form
{

x ≡ c1 (mod m1)

x ≡ c2 (mod m2)
(8)

Step 2. Set x = c1+ym1 = c2+zm2, where y, z ∈ Z. Find a solution

(y, z) = (y0, z0) for the equation

m1y −m2z = c2 − c1.

Consequently, x0 = c1 + m1y0 = c2 + m2z0.

Step 3. Set m = lcm(m1,m2). The system (7) becomes

x ≡ x0 (mod m).

Proof. It follows from Theorem 7.1.

Example 7.2. Solve the system
{

10x ≡ 6 (mod 4)

12x ≡ 30 (mod 21)

Solution. Applying the Division Algorithm,

gcd(10, 4) = 2, gcd(12, 21) = 3.

Dividing the 1st equation by 2 and the second equation by 3,
{

5x ≡ 3 (mod 2)

4x ≡ 10 (mod 7)
⇐⇒

{
x ≡ 1 (mod 2)

4x ≡ 3 (mod 7)

The system is equivalent to
{

x ≡ 1 (mod 2)

x ≡ 6 (mod 7)
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Set x = 1 + 2y = 6 + 7z, y, z ∈ Z. Then

2y − 7z = 5.

Applying the Division Algorithm, 7 = 3 · 2 + 1. Applying the Euclidean

Algorithm, 1 = −3 · 2 + 7. Then 5 = −15 · 2 + 5 · 7. We obtain a solution

(y0, z0) = (−15,−5). Thus

x0 = 1 + 2y0 = 6 + 7z0 = −29

is a special solution. The general solution for
{

x ≡ 0 (mod 2)

x ≡ 0 (mod 7)

is x ≡ 0 (mod 14). Hence the solution is given by

x ≡ −29 ≡ −1 ≡ 13 (mod 14)

Example 7.3. Solve the system
{

12x ≡ 96 (mod 20)

20x ≡ 70 (mod 30)

Solution. Applying the Division Algorithm to find,

gcd(12, 20) = 4, gcd(20, 30) = 10.

Then {
3x ≡ 24 (mod 5)

2x ≡ 7 (mod 3)

Applying the Euclidean Algorithm,

gcd(3, 5) = 1 = 2 · 3− 1 · 5.
Then 2 · 3 ≡ 1 (mod 5). Similarly,

gcd(2, 3) = 1 = −1 · 2 + 1 · 3
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and −1 · 2 = 1 (mod 3). (Equivalently, 2 · 2 ≡ 1 (mod 3).) Then, 2 is the

inverse of 3 modulo 5; −1 or 2 is the inverse of 2 modulo 3. Thus{
2 · 3x ≡ 2 · 24 (mod 5)

−1 · 2x ≡ −1 · 7 (mod 3)
{

x ≡ 48 ≡ 3 (mod 5)

x ≡ −7 ≡ 2 (mod 3)

Set x = 3 + 5y = 2 + 3z, where y, z ∈ Z. That is,

5y − 3z = −1.

We find a special solution (y0, z0) = (1, 2). So x0 = 3+5y0 = 2+3z0 = 8.

Thus the original system is equivalent to

x ≡ 8 (mod 15)

and all solutions are given by

x = 8 + 15k, k ∈ Z.

Example 7.4. Find all integer solutions for the system{
x ≡ 486 (mod 186)

x ≡ 386 (mod 286)

Solution. The system can be reduced to{
x ≡ 114 (mod 186)

x ≡ 100 (mod 286)

Set x = 114 + 186y = 100 + 286z, i.e.,

186y − 286z = −14.

Applying the Division Algorithm,

286 = 186 + 100,

186 = 100 + 86,

100 = 86 + 14,

86 = 6 · 14 + 2.
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Then gcd(186, 286) = 2. Applying the Euclidean Algorithm,

2 = 86− 6 · 14

= 86− 6(100− 86) = 7 · 86− 6 · 100

= 7(186− 100)− 6 · 100 = 7 · 186− 13 · 100

= 7 · 186− 13(286− 186) = 20 · 186− 13 · 286.

Note that −14
2 = −7. So we get a special solution

(y0, z0) = −7(20, 13) = (−140,−91).

Thus x0 = 114+186y0 = 100+286z0 = −25926. Note that lcm(186, 286) =

26598. The general solutions are given by

x ≡ −25926 ≡ 672 (mod 26598).

Theorem 7.2 (Chinese Remainder Theorem). Let n1, n2, . . . , nk ∈ P.
If gcd(ni, nj) = 1 for all i 6= j, then the system of congruence equations

x ≡ b1 (mod n1)

x ≡ b2 (mod n2)
...

x ≡ bk (mod nk).

has a unique solution modulo n1n2 · · ·nk.

Thinking Problem. In the Chinese Remainder Theorem, if

gcd(ni, nj) = 1,

is not satisfied, does the system have solutions? Assuming it has solutions,

are the solutions unique modulo some integers?

8 Important Facts

1. a ≡ b (mod n) ⇐⇒ a + kn ≡ b + ln (mod n) for all k, l ∈ Z.
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2. If c | a, c | b, c | n, then

a ≡ b (mod n) ⇐⇒ a/c ≡ b/c (mod n/c).

3. An integer a is called invertible modulo n if there exists an integer

b such that

ab ≡ 1 (mod n).

If so, b is called the inverse of a modulo n.

4. An integer a is invertible modulo n ⇐⇒ gcd(a, n) = 1.

5. If gcd(c, n) = 1, then

a ≡ b (mod n) ⇐⇒ ca ≡ cb (mod n).

6. Equation ax ≡ b (mod n) has solution ⇐⇒ gcd(a, n) | b.
7. For all k, l ∈ Z,

ax ≡ b (mod n) ⇐⇒ (a + kn)x ≡ b + ln (mod n).

9 Final Review

1. Set System,

2. Propositional Logic System

3. Counting

4. Binary Relations

5. Recurrence Relations

6. Graph Theory

7. Elementary Probability

8. Integers and Modulo Integers (Number Theory)
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