Math2343: Problem Set 3
1. Let R be a binary relation from X to Y, A, B C X.

(a) If A C B, then R(A) C R(B).

(b) R(AUB) = R(A)UR(B).

(c) R(ANB) C R(A)N R(B).
Proof. (a) For each y € R(A), there is an = € A such that (z,y) € R. Clearly, z € B, since A C B.
Thus y € R(B). This means that R(A) C R(B).

(b) Since R(A) C R(AUB), R(B) C R(AUB), we have R(A)UR(B) C R(AUB). On the other hand,
for each y € R(AU B), there is an € AU B such that (x,y) € R. Then either x € A or x € B. Thus
y € R(A) ory € R(B), i.e., y € R(A) UR(B). Therefore R(A) U R(B) O R(AU B).

(¢) Tt follows from (a) that R(ANB) C R(A) and R(ANB) C R(B). Hence R(ANB) C R(ANB). O
2. Let R; and Ry be relations from X to Y. If Ri(xz) = Re(z) for all z € X, then Ry = Rs.

Proof. For each (z,y) € Ry, we have y € Ry(z). Since Ryi(z) = Ra(x), then y € Ro(x). Thus
(x,y) € Ry. Likewise, for each (x,y) € Ry, we have (z,y) € Ry. Hence Ry = Rs. O

3. Let a,b,c € R. Then

Proof. Note that the cases b < ¢ and b > ¢ are equivalent. There are three essential cases to be verified.

Case 1: a < b < c. We have

Case 2: b < a < c. We have

Case 3: b < ¢ < a. We have

4. Let R; C X x Y be a family of relations from X to Y, indexed by ¢ € I.
(a) f RC W x X, then R (U;¢; Ri) = U,e; RRi;
(b) If SCY x Z, then (U;e; Ri) S = U,e; RiS.

Proof. (a) By definition of composition of relations, (w,y) € R (U,c; Ri) is equivalent to that there
exists an € X such that (w,z) € R and (z,y) € J;c; Ri. Notice that (z,y) € U;c; R; is further
equivalent to that there is an index io € I such that (z,y) € R;,. Thus (w,y) € R(U;c; Ri) is
equivalent to that there exists an ig € I such that (w,y) € RR;, which means (w,y) € |J,.; RR; by
definition of composition.

(b) (z,2) € (U;er Ri) S < (by definition of composition) there exists y € Y such that (z,y) € U;c; Ri
and (y,z) € S < (by definition of set union) there exists ig € I such that (x,y) € R;, and (y,z) € S
< there exists ig € I such that (w,y) € RR; < (by definition of composition) (w,y) € U;c; RR;. O
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5. Let R; (1 <14 <3) be relations on A = {a, b, ¢, d, e} whose Boolean matrices are
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(a) Draw the digraphs of the relations Ry, Ro, Rs.

(b) Find the Boolean matrices for the relations

O = OO

o O o oo

R{', RyUR3, RiRy, RiR;', R{'Ry;

and verify that

RiR{* =Ry, R;'R;=Rs.

(c) Verify that Ry U R3 is an equivalence relation and find the quotient set A/(R2 U R3).
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6. Let R be a relation on Z defined by aRb if a + b is an even integer.

(a) Show that R is an equivalence relation on Z.

(b) Find all equivalence classes of the relation R.

Proof. (a) For each a € Z, a + a = 2a is clearly even, so aRa, i.e., R is reflexive. If aRb, then a + b is
even, of course b+ a = a+ b is even, so bRa, i.e., R is symmetric. If aRb and bRc, then a4+ b and b+ ¢
are even; thus a + ¢ = (a4 b) + (b + ¢) — 2b is even (sum of even numbers are even), so aRc, i.e., R is

transitive. Therefore R is an equivalence relation.

(b) Note that aRb if and only if both of a,b are odd or both are even. Thus there are exactly two
equivalence classes: one class is the set of even integers, and the other class is the set of odd integers.

The quotient set Z/R is the set Zy of integers modulo 2.

7. Let X ={1,2,...,10} and let R be a relation on X such that aRb if and only if |a —b| < 2. Determine
whether R is an equivalence relation. Let Mg be the matrix of R. Compute MIS%.

Solution: The following is the graph of the relation.
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Then M15;z is a Boolean matrix all whose entries are 1. Thus MI% is the same as M}%.

8. A relation R on a set X is called a preference relation if R is reflexive and transitive. Show that

RN R~!is an equivalence relation.
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10.

Proof. Since I C R, wehave = "' C R™' so I C RNR™!, ie., RN R™! is reflexive.

If z(RN R~ 1Y)y, then 2Ry and xR~'y; by definition of converse, yR~ 'z and yRx; thus y(RN R~ 1)x.
This means that R N R~! is symmetric.

If 2(RN R~ 1Y)y and y(RN R™1)z, then 2Ry, yRz and yRx, zRy by converse; thus xRz and zRx by
transitivity; therefore xRz and xR~ 'z by converse again; finally we have z(R N R~1)z. This means
that RN R™! is transitive. O

Let n be a positive integer. The congruence relation ~ of modulo n is an equivalence relation on Z. Let
Z,, denote the quotient set Z/~ = {[0],[1],...,[n — 1]}. Given an integer a € Z, we define a function

fo1Zn —Zn by fa(lz]) = [aa].
(a) Find the cardinality of the set f,(Z,).
(b) Find all integers a such that f, is invertible.

Solution: (a) Let d = ged(a,n), a = kd, n = ld. Fix an integer x € Z, we write x = ¢l + r by division
algorithm, where 0 < r < [. Then

ax = kd(ql + r) = kdql + kdr = kqn + ar = ar (mod n).

For two integers rq,7ro with 1 < r; < ro < I, we claim ar; # are (mod n). In fact, suppose ar; =
ary (mod n), then n | a(re — ry). It follows that I | k(ro — 1), since a = kd and n = ld. Note that
ged(k,1) = 1. Tt forces I | (ro — r1). Thus r; = 7o, which is a contradiction. Thus |f(Z,)| =1 =n/d
and

faZy) ={lar]: 7 € Z,0 <r <1}

(b) Since Z,, is finite, then f, is a bijection if and only if f, is onto. However, f, is onto if and only if
|fa(Zn)| = n, ie., ged(a,n) = 1.

For a positive integer n, let ¢(n) denote the number of positive integers a < n such that ged(a,n) =1,
called Euler’s function. Let R be the relation on X = {1,2,...,n} defined by aRbif a < b, b | n,
and ged(a, b) = 1.

(a) Find the cardinality |[R~1(b)| for each b € X.

(b) Show that
Rl =" é(a).
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(¢) Prove |R| = n by showing that the function f: R — X, defined by f(a,b) = an/b, is a bijection.
Solution: (a) For each b € X, if bt n, then R71(b) = @. If b | n, we have

|R71(b)| = {a € X : a < b,ged(a,b) = 1} = ¢(b).

(b) Tt follows that

[Rl=) IRT'®)= > [RT'®) =) ¢

beX b>1,bln b|n

(¢) The function f is clearly well-defined. We first to show that f is injective. For (ay, b1), (a2, b2) € R,
if f(a1,b1) = f(az2,b2), i.e., ayn/by = asn /by, then a1 /by = as /by, which is a rational number in reduced
form, since ged(a1,b1) = 1 and ged(ag, by) = 1; it follows that (aq,b1) = (ag,b2). Thus f is injective.
To see that f is surjective, for each b € X, let d = ged(b,n). Then f(b/n,n/b) = (b/d)n/(n/d) = b.
This means that f is surjective. So f is a bijection. We have obtained the following formula

n="> ¢(b).
b|n



