Week 4-5: Binary Relations

1 Binary Relations

The concept of relation is common in daily life and seems intuitively clear. For
instance, let X denote the set of all females and Y the set of all males. The
wife-husband relation R can be thought as a relation from X to Y. For a lady
xr € X and a gentleman y € Y, we say that x is related to y by R if x is a wife
of y, written as xRy. To describe the relation R, we may list the collection of
all ordered pairs (z,y) such that x is related to y by R. The collection of all
such related ordered pairs is simply a subset of the Cartesian product X x Y.
This motivates the following definition of binary relations.

Definition 1.1. Let X and Y be nonempty sets. A binary relation from
X to Y is a subset
RC X xY.

If (x,y) € R, we say that x is related to y by R, denoted xRy. If (x,y) € R,
we say that z is not related to vy, denoted xRy. For each element z € X, we
denote by R(x) the subset of elements of Y that are related to x, that is,

R(x)={yeY 2Ry} ={y €Y :(z,y) € R}.
For each subset A C X, we define

R(A)={y €Y :dx € Asuch that xRy} = U R(x).

z€A

When X =Y, we say that R is a binary relation on X.

Since binary relations from X to Y are subsets of X XY, we can define inter-
section, union, and complement for binary relations. The complementary
relation of a binary relation R C X x Y is the binary relation R C X x Y
defined by

vRy < (z,y) € R.
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The converse relation (or reverse relation) of R is the binary relation
R CY x X defined by

yR 'z < (z,y) € R.

Example 1.1. Consider a family A with five children, Amy, Bob, Charlie,
Debbie, and Eric. We abbreviate the names to their first letters so that

A=H{a,b,c,d e}

(a) The brother-sister relation Ry is the set

Rys = {(b,a), (b,d), (¢,a),(c,d), (e, a), (e,d)}.
(b) The sister-brother relation Ry, is the set

Ry = {(a,b),(a,c),(a,¢€),(d,b),(d,c),(d,e)}.
(¢) The brother relation R is the set

1(0,0), (b, ¢), (b,e), (c,b), (¢, c), (¢, e), (e, D), (e, ¢), (e, €)}.
(d) The sister relation R is the set
{(a,a),(a,d),(d,a),(d,d)}.

The brother-sister relation Ry, is the inverse of the sister-brother relation R,
le.,

Ry, = Rs_bl.
The brother or sister relation is the union of the brother relation and the sister
relation, i.e.,

Ry, U R,.

The complementary relation of the brother or sister relation is the brother-sister
or sister-brother relation, i.e.,

RyUR, = Ry; U Rg.



Example 1.2. (a) The graph of equation

2 2
S+l
is a binary relation on R. The graph is an ellipse.
(b) The relation less than, denoted by <, is a binary relation on R defined by
a < b if aisless than b.
As a subset of R? = R x R, the relation is given by the set

{(a,b) € R?*: a is less than b}.

(¢c) The relation greater than or equal to is a binary relation > on R defined by
a > b if a is greater than or equal to b.
As a subset of R?, the relation is given by the set

{(a,b) € R?: a is greater than or equal to b}.

(d) The divisibility relation | about integers, defined by
a|b if a divides b,

is a binary relation on the set Z of integers. As a subset of Z?, the relation
is given by
{(a,b) € Z* : a is a factor of b}.

Example 1.3. Any function f : X — Y can be viewed as a binary relation
from X to Y. The binary relation is just its graph

G(f)={(z, f(z)):z € X} C X xY.

Proposition 1.2. Let R C X XY be a binary relation from X toY . Let
A, B C X be subsets.

(a) If A C B, then R(A) C R(B).
(b) RCAU B) = R(A) U R(B).



(¢) RLAN B) C R(A) N R(B).

(
Proof. (a) For any y € R(A), there is an x € A such that xRy. Since A C B,
then x € B. Thus y € R(B). This means that R(A) C R(B).

(b) For any y € R(AU B), there is an x € AU B such that zRy. If x € A,
then y € R(A). If x € B, then y € R(B). In either case, y € R(A) U R(B).
Thus

R(AU B) C R(A)U R(B).
On the other hand, it follows from (a) that
R(A) C R(AUB) and R(B)C R(AUB).

Thus R(A)U R(B) C R(AU B).
(¢) It follows from (a) that

R(ANB) C R(A) and R(ANB)C R(B).
Thus R(AN B) C R(A) N R(B). O

Proposition 1.3. Let R, Ry C X x Y be relations from X to Y. If
Ry(x) = Ry(x) for all x € X, then Ry = Rs.

Proof. If xRyy, then y € Ry(x). Since Ry(z) = Rs(x), we have y € Ry(x).
Thus xRoy. A similar argument shows that if xRy then xR;y. Therefore
Ry = R;. O

2 Representation of Relations

Binary relations are the most important relations among all relations. Ternary
relations, quaternary relations, and multi-factor relations can be studied by
binary relations. There are two ways to represent a binary relation, one by a
directed graph and the other by a matrix.

Let R be a binary relation on a finite set V' = {vy,v9,...,v,}. We may
describe the relation R by drawing a directed graph as follows: For each element
v; € V, we draw a solid dot and name it by v;; the dot is called a vertex.
For two vertices v; and v, if v;Rv;, we draw an arrow from v; to v;, called a
directed edge. When v; = v;, the directed edge becomes a directed loop.
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The resulted graph is a directed graph, called the digraph of R, and is denoted
by D(R). Sometimes the directed edges of a digraph may have to cross each
other when drawing the digraph on a plane. However, the intersection points
of directed edges are not considered to be vertices of the digraph.
The in-degree of a vertex v € V' is the number of vertices u such that uRwv,

and is denoted by

indeg (v).
The out-degree of v is the number of vertices w such that vRw, and is
denoted by

outdeg (v).

If RC X XY is arelation from X to Y, we define
outdeg () = |R(z)] for x e X,
indeg (y) = |R Yy)| for yeyY.

The digraphs of the brother-sister relation R and the brother or sister rela-
tion R, U R, are demonstrated in the following.

Definition 2.1. Let R C X X Y be a binary relation from X to Y, where
X:{xlax%"-axm}a Y:{y17y27°'°7yn}'

The matrix of the relation R is an m xn matrix M = [a;;], whose (4, j)-entry
is given by

0 if ZUZRyJ
The matrix Mp is called the Boolean matrix of R. If X =Y, then m =n,
and the matrix Mg is a square matrix.
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Let A = [a;;] and B = [b;;] be m x n Boolean matrices. If a;; < b;; for all
(7, j )-entries, we write A < B.

The matrix of the brother-sister relation Rps on the set A = {a,b,c,d, e} is
the square matrix

00000
10010
10010
00000
10010

and the matrix of the brother or sister relation is the square matrix

O = O O =
_— O~ ~ O
—_ O = = O
O = O O =
_ O = = O

Proposition 2.2. For any digraph D(R) of a binary relation R CV x V
onV,

> indeg (v) =) outdeg (v) = |R].
veV veV
If R is a binary relation from X to'Y, then

Z outdeg (x) = Z indeg (y) = |R|.

reX yey

Proof. Trivial. O

Let R be a relation on a set X. A directed path of length £k from x to
y is a finite sequence xg, o1, ..., T} (not necessarily distinct), beginning with
xro = x and ending with z; = y, such that

xoRx1, ©1Rxo, ..., x_1Rxy.

A path that begins and ends at the same vertex is called a directed cycle.



For any fixed positive integer k, let R¥ C X x X denote the relation on X
given by
tR*y < 3 a path of length k from z to y.

Let R C X x X denote the relation on X given by
xRy < da directed path from z to y.

The relation R™ is called the connectivity relation for R. Clearly, we have
R*=RURUR'U-- = JR".
k=1

The reachability relation of R is the binary relation R* C X x X on X
defined by

tR'y & =y or zR™y.
Obviously,

R*:[URURQUR?’U---:URk,
k=0

where [ is the identity relation on X defined by
xly & x=uy.
We always assume that R = I for any relation R on a set X.

Example 2.1. Let X ={xy,...,z,} and R ={(z;,x41) :i=1,...,n—1}.
Then

Rf=2, k>(n+1)/2
R = {(z,2;) 1 i < j}.
If R={(z;,xiy1):i=1,...,n} with z,,1 = 21, then R® = X x X = X2

3 Composition of Relations

Definition 3.1. Let R C X x Y and S C Y X Z binary relations. The
composition of R and S is a binary relation So R C X X Z from X to Z
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defined by
r(SoR)z <& Jy €Y such that xRy and ySz.
When X =Y, the relation R is a binary relation on X. We have
RF=R'"'oR, k>2.

Remark. Given relations R C X xY and S C Y x Z, the composition So R
of R and S is backward. However, some people use the notation R o .S instead
of our notation S o R. But this usage is inconsistent with the composition of
functions. To avoid confusion and for aesthetic reason, we write S o R as

RS ={(x,2) e X x Z:3y €Y, xRy, ySz}.
Example 3.1. Let RC X XY, SCY x Z, where

X = {$1,x2,$3,$4}, Y = {y17y27y3}7 Z = {21722723724755’5}.

%
z

X
Z

X
RS %

Example 3.2. For the brother-sister relation, sister-brother relation, brother
relation, and sister relation on A = {a,b, ¢, d, e}, we have

RbsRsb - Rb, RsbRbs — R37 RbsRs - Rbs;
RysRys = O, RyRpy = Ry, RR, = &.

Let X1, Xo, ..., X,,, X,,11 be nonempty sets. Given relations
R, € X; xX;p1, 1<i<n.
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We define a relation R1Ry--- R, € X7 X X411 from X; to X,, .1 by

TR Ry -+ Ryy,
if and only if there exists a sequence x4, o, ..., T, T, 1 With 1 =2, 2,11 = ¥y
such that
SL’1R1£U2, CL’QRgxg, c ooy SUan$n+1.

Theorem 3.2. Given relations
R C Xy xXy, RyCXyxXs, R3CX3xXy
We have
RiRyR3 = R1(R2R3) = (R1R2) Rs.
as relations from Xy to Xjy.

Proof. For x € X1, y € X4, we have
rRi(RoR3)y < dxs € Xy, xR179, xR R3y
& drg € X9, xRyxo;
drg € X3, xoRoxs, x3R3y
& dry € Xy, x3 € X3,
r Ry, xoRox3, x3R3y
& xRiRyR3y.
Similarly, (R R2)Rsy < xR1RyR3y. O]
Proposition 3.3. Let R, C X x Y be relations, 1 = 1, 2.
(a) If RCW x X, then R(R1 U Ry) = RRy U RRs.
(b) If SCY x Z, then (R U R3)S = R1.S U R,S.

Proof. (a) For each wR(Ry U Ry)y, dx € X such that wRx and x(R; U Ry)y.
Then xRy or x Ryy. Thus wRRy or wRRyy. Namely, w(RR; U RRs)y.

Conversely, for each (w,y) € RRy U RRy, we have either (w,y) € RR; or
(w,y) € RRy. Then there exist x1,xo € X such that either (w,z1) € R,
(:Ul,y) € R € Ri{URy or (w,l’g) c R, (Ig,y) € Ry C Ry U Ry. This
means that there exists € X such that (w,z) € R, (z,y) € Ry U Ry. Thus
(w, y) € R(Rl U RQ)

The proof for (b) is similar. (]



Exercise 1. Let R; C X x Y be relations, 1 = 1,2, .. ..
(a) f RCW x X, then R(U;2, Ri) = U;-; RR:.
(b) If S CY x Z, then (U2 Ri)S = U2 RiS.

For the convenience of representing composition of relations, we introduce
the Boolean operations A and V on real numbers. For a,b € R, define

a Ab=min{a,b}, aVb=max{a,b}.
Exercise 2. For a,b,c € R,
alN(bVe)=(anb)V(aAc),
aV(bAc)=(aVb)A(aVc).
Proof. We only prove the first formula. The second one is similar.

Case 1: b < c. If a > ¢, then the left sideisa A (bV ¢) =a A c = c The
right side is (a AD)V (aAc) =bVe=c Ifb< a < e then the left side
isaAN(bVe)=aANc=a. Therightsideis (a Ab)V (aAc)=bVa=a.
If a < b < ¢ then the left sideisa A (bV ¢) = a A c = a. The right side is
(aANb)V(aNc)=aVa=na.

Case2: b > c. Ifa < ¢, thenaA(bVc) =aNc=aand (aAb)V(aNc)=aV
a=a. lfb>a>c thenaN(bVc)=aNc=aand (aAb)V(aAc)=aVe = a.
Ifa>bthenaA(bVec)=aANb=band (aAb)V(aANc)=bVec=b [

Sometimes it is more convenient to write the Boolean operations as
a ®b=min{a, b}, a®b=max{a,b}.

For real numbers aq, ao, ..., a,, we define

n n
\/ai = @ai = max{ay, az, ..., a,}.
i=1 i=1

For an m x n matrix A = [a;;] and an n x p matrix B = [bj;], the Boolean
multiplication of A and B is an m X p matrix AxB = [¢;x], whose (i, k)-entry
is defined by

n n

Cil, = \/(aij Abjg) = EB(@M © bjik ).

j=1 J=1
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Theorem 3.4. Let RC X XY, S CY X Z be relations, where

X=Ax,...;zn}, Y={y,....un}, Z={z,...,2}
Let M, Mg, Mgrs be matrices of R, S, RS respectively. Then
MRS = MR * MS.
Proof. We write Mp = [a;;], Mg = [b;i], and
Mpg* Mg = |ci], Mpgs = |di].

It suffices to show that ¢;z = dji, for any (i, k)-entry.

Case I: ¢, = 1.

Since ¢ = \/?Zl(aij A bji) = 1, there exists jo such that a;;, A bjr = 1.
Then a;j, = bj,x = 1. In other words, x;Ry;, and y;,Sz;. Thus z; RSz by

definition of composition. Therefore d;; = 1 by definition of Boolean matrix of

RS.

Case II: ¢;;, = 0.

Since cjr = \/?:1(5%' A bji) = 0, we have a;; A b, = 0 for all j. Then there
is no j such that a;; = 1 and b;; = 1. In other words, there is no y; € Y such
that both x;Ry; and y;Sz,. Thus x; is not related to z; by definition of RS.
Therefore d;;, = 0. ]

4 Special Relations

We are interested in some special relations satisfying certain properties. For
instance, the “less than” relation on the set of real numbers satisfies the so-
called transitive property: if a < b and b < ¢, then a < c.

Definition 4.1. A binary relation R on a set X is said to be
(a) reflexive if zRx for all x in X;

(b) symmetric if x Ry implies y Rx;

(c) transitive if xRy and yRz imply xRz.
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A relation R is called an equivalence relation if it is reflexive, symmetric,
and transitive. And in this case, if xRy, we say that = and y are equivalent.

The relation Iy = {(z,z) : € X} is called the identity relation. The
relation X? is called the complete relation.

Example 4.1. Many family relations are binary relations on the set of human
beings.

(a) The strict brother relation Ry: xRpy < z and y are both males and have
the same parents. (symmetric and transitive)

(b) The strict sister relation Rs: xRsy < x and y are both females and have
the same parents. (symmetric and transitive)

(¢) The strict brother-sister relation Rys: xRy < x is male, y is female, x
and y have the same parents.

(d) The strict sister-brother relation Rg: xRy, < x is female, y is male, and
x and y have the same parents.

(e) The generalized brother relation R;: xRjy < x and y are both males and
have the same father or the same mother. (symmetric, not transitive)

(f) The generalized sister relation R.: xRy < z and y are both females and
have the same father or the same mother. (symmetric, not transitive)

(g) The relation R: xRy < x and y have the same parents. (reflexive, sym-
metric, and transitive; equivalence relation)

(h) The relation R": xR'y < z and y have the same father or the same mother.
(reflexive and symmetric)

Example 4.2. (a) The less than relation < on the set of real numbers is a
transitive relation.

(b) The less than or equal to relation < on the set of real numbers is a reflexive
and transitive relation.

(c) The divisibility relation on the set of positive integers is a reflexive and
transitive relation.
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(d) Given a positive integer n. The congruence modulo n is a relation =,
on 7Z defined by

a =, b< b— ais a multiple of n.

The standard notation for @ =,, b is a = b mod n. The relation =,, is an
equivalence relation on Z.

Theorem 4.2. Let R be a relation on a set X with matrix Mgr. Then
(a) R is reflexive < I C R < all diagonal entries of Mp are 1.

(b) R is symmetric & R = R~ & My is a symmetric matriz.

(¢) R is transitive < R* C R & M3 < Mp.

Proof. (a) and (b) are trivial.

(¢) “R is transitive = R* C R.”

For any (z,y) € R?, there exists 2 € X such that (z,2) € R, (2,y) € R.
Since R is transitive, then (x,y) € R. Thus R? C R.

“R?2 C R = R is transitive.”

For (z,2) € R and (z,y) € R, we have (z,y) € R* C R. Then (x,y) € R.
Thus R is transitive.

Note that for any relations R and .S on X, we have

RCS & Mp < Ms.

Since Mp is the matrix of R, then M3 = MrMp = Mpp = Mp: is the matrix
of R?. Thus R2§R<:>M]2%§MR. ]

5 Equivalence Relations and Partitions

The most important binary relations are equivalence relations. We will see that
an equivalence relation on a set X will partition X into disjoint equivalence
classes.

Example 5.1. Consider the congruence relation =3 on Z. For each a € Z,
define
la]={beZ a=3b}={be€Z:a=0bmod3}.
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[t is clear that Z is partitioned into three disjoint subsets

0] = {0,43,+6,+9,...} = {3k: ke 7},
1] = {1,14+3,1+6,1+9,...} = {3k+1:keZ},
2] = {2,243,2+6,2+9,...} = {3k+2:k € Z}.

Moreover, for all k € Z,
0] = [3k], [1]=[3k+1], [2]=[3k+2].

Theorem 5.1. Let ~ be an equivalence relation on a set X. For each x
of X, let [x] denote the set of members equivalent to x, i.e.,

2] ={y e X : z~y},
called the equivalence class of x under ~. Then
(a) x € [x] for any z € X,

(b) [z] = [y] if x ~y,
() [z Nyl =@ if x oy,
(d) X = Uexle].

The member x is called a representative of the equivalence class [x]. The
set of all equivalence classes

X/~ Alz] 2z e X}

15 called the quotient set of X under the equivalence relation ~ or modulo

Y,

Proof. (a) It is trivial because ~ is reflexive.

(b) For any z € [z], we have & ~ z by definition of [x]. Since x ~ y, we have
y ~ x by the symmetric property of ~. Then y ~ x and = ~ z imply that
y ~ z by transitivity of ~. Thus z € [y] by definition of [y]; that is, [z] C [y].
Since ~ is symmetric, we have [y| C [z]. Therefore [z] = [y].

(¢c) Suppose [x] N [y] is not empty, say z € [z] N [y]. Then x ~ z and
y ~ z. By symmetry of ~, we have z ~ y. Thus x ~ y by transitivity of ~, a
contradiction.

(d) This is obvious because « € [z] for any x € X. (]
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Definition 5.2. A partition of a nonempty set X is a collection
N={A4,:j€J}
of subsets of X such that
(a) A; # @ for all i;
(b) AinA; =0 if i # j;
(¢) X = UjeJAj-
Each subset A; is called a block of the partition II.

Theorem 5.3. Let II be a partition of a set X. Let Ry denote the relation
on X defined by

rRny < 3 a block A; € 11 such that z,y € Aj;.

Then Ry is an equivalence relation on X, called the equivalence relation
induced by II.

Proof. (a) For each x € X, there exits one A; such that x € A;. Then by
definition of Ry, x Rpx. Hence Ry is reflexive.

(b) If zRmy, then there is one A; such that z,y € A;. By definition of Ry,
yRpx. Thus Ry is symmetric.

(¢) If xRpy and yRyz, then there exist A; and A, such that x,y € A; and
y,z € A;. Sincey € A; N A; and II is a partition, it forces A; = A;. Thus
rRpz. Therefore Ry is transitive. N

Given an equivalence relation R on a set X. The collection
Mg ={[z] : z € X}

of equivalence classes of R is a partition of X, called the quotient set of X
modulo R. Let E(X) denote the set of all equivalence relations on X and
IT(X) the set of all partitions of X. Then we have two functions

fEX) = II(X), f(R)=Ig;
g:II(X) — E(X), g¢(II) = R.
The functions f and g satisfy the following properties.
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Theorem 5.4. Let X be a nonempty set. Then for any equivalence rela-
tion R on X, and any partition 11 of X, we have

(go /)R =R, (fog)I)=TL
In other words, f and g are inverse of each other.

Proof. Recall (g o f)(R) = g(f(R)), (f o g)(1I) = f(g(1I)). Then

zlg(llg)ly < JAe€llgst. x,y € A <& zRy;
A€ f(Rn) & Jre Xst. A=Rp(x) & Aell

Thus g(f(R)) = R and f(g(I1)) = IL. (]

Example 5.2. Let Z. be the set of positive integers. Define a relation ~
on 4 X Ziy by
(a,b) ~ (¢,d) < ad = bc.

Is ~ an equivalence relation? If Yes, what are the equivalence classes?

Let R be a relation on a set X. The reflexive closure of R is the smallest
reflexive relation r(R) on X that contains R; that is,

a) R Cr(R),
b) if R is a reflexive relation on X and R C R’ then r(R) C R'.

The symmetric closure of R is the smallest symmetric relation s(R) on X
such that R C s(R); that is,

a) R C s(R),
b) if R’ is a symmetric relation on X and R C R’ then s(R) C R'.

The transitive closure of R is the smallest transitive relation ¢(R) on X
such that R C t(R); that is,

a) R CU(R),
b) if R’ is a transitive relation on X and R C R’ then t(R) C R'.

Obviously, the reflexive, symmetric, and transitive closures of R must be unique
respectively.
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Theorem 5.5. Let R be a relation R on a set X. Then
a)r(R)=RUI;
b) s(R)= RUR™!;
) H(R) = U, B,

Proof. (a) and (b) are obvious.
(c) Note that R C ;- R* and

(QR?(QR) LJHW ijﬂ Lﬁ#cURk

1,7=1 1,7=1

This shows that [ J;~; R" is a transitive relation, and R C (J;~; R*. Since each
transitive relation that contains R must contain R* for all integers & > 1, we
see that (J;; R is the transitive closure of R. O

Example 5.3. Let X ={a,b,c,d, e, f, g} and consider the relation
R ={(a,0),(b,b), (b, c),(d,e), (e, [),(f,9)}
Then the reflexive closure of R is

T(R) = {(aaa)7(a7b)7(b7 b) (b C) ( )7(d d)v
(d.e), (e, €), (e, ), (f, [),(f,9),(9.9)}

The symmetric closure is

s(R) = {((a,b),(b,a),(b,0), (b, c),(c,b), (de),
(e,d), (e, f),(f.€),(f,9) (g, f)} -

The transitive closure is

t(R) = {(a,b),(a,c),(b,b), (b, ), (d,e),
(d, f),(d, g), (e, f),(e,9),(f,9)} -
R’ ={(a,b), (a,c), (bb),(b,c), (d, ), (e, 9)}
R’ ={(a,b), (a,c), (b,b),(b,c), (d, g)},
R" = {(a,0), (a,c), (,), (b,c)}, k=4,

17
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Theorem 5.6. Let R be a relation on a set X with | X| =n > 2. Then
t(R)= RUR*U---UR" .
In particular, if R is reflerive, then t(R) = R"L.
Proof. 1t is enough to show that for all £ > n,
n—1
RFC| R
i=1
This is equivalent to showing that R* C Uf:ll R! for all k > n.
Let (z,y) € R*. There exist elements 1, ..., 2,_; € X such that
(x, 1), (x1,29), ..., (Tr_1,y) € R.
Since | X| =mn > 2 and k > n, the following sequence

r =Ty, 1y T2y «v.y Thk—-1, T =Y

has k + 1 terms, which is at least n 4+ 1. Then two of them must be equal, say,
x, = x, with p < ¢q. Thus ¢ —p > 1 and

('CUO) xl)a SRR (xp—h xp)a ('xfp xq—l—l)) ) (xk‘—h CE'k) € R.
Therefore
k=1
(z,y) = (z0, z3) € RF17P) C U R
i=1
That is
k=1
RFC| R
i=1
If R is reflexive, then R¥ C R**! for all k > 1. Hence
t(R) = R"

Proposition 5.7. Let R be a relation on a set X. Then
TUt(RUR™)

15 an equivalence relation. In particular, if R is reflexive and symmetric,
then t(R) is an equivalence relation.
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Proof. Since I Ut(RU R™!) is reflexive and transitive, we only need to show
that T Ut(RU R™1) is symmetric.
Let (z,y) € TUt(RU R™1). If x = y, then obviously

(y,z) € TUt(RUR™).

If 2 # y, then (z,y) € t(RUR™). Thus (x,y) € (RURY)* for some k > 1.
Hence there is a sequence

L =T, L1y -y Tp =Y

such that
(zi,2i41) ERUR™!, 0<i<k—1.

Since R U R~ is symmetric, we have
(i1, z) ERUR™, 0<i<k-—1.

This means that (y, z) € (RUR™1)*. Hence (y,z) € TUt(RUR™!). Therefore
TUt(RU R™) is symmetric.
In particular, if R is reflexive and symmetric, then obviously

TUt(RUR™) =t(R).

This means that ¢(R) is reflexive and symmetric. Since ¢(R) is automatically
transitive, so t(R) is an equivalence relation. (]

Let R be a relation on a set X. The reachability relation of R is a
relation R* on X defined by

rR'y < x=vy or dfinite 21,29, ..., 7}

such that
(x, 1), (x1,22), ..., (z,y) € R.
That is, R* = T Ut(R).

Theorem 5.8. Let R be a relation on a set X. Let M and M™ be the
Boolean matrices of R and R* respectively. If | X| =n, then

M =IVMVM>V--.\v M
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Moreover, if R is reflexive, then
RFc RM k> 1;
M* =M1,
Proof. 1t follows from Theorem 5.6. O]

6 Washall’s Algorithm

Let R be a relation on X = {z1,...,x,}. Let yo,y1,...,yn be a path in R.
The vertices 41, ..., yn_1 are called interior vertices of the path. For each
k with 0 < k < n, we define the Boolean matrix

Wi = |wij],

where w;; = 1 if there is a path in R from z; to x; whose interior vertices are
contained in

Xy ={x1,..., 21},
otherwise w;; = 0, where X = &.

Since the interior vertices of any path in R is obviously contained in the
whole set X = X,, = {x1,...,x,}, the (i, j)-entry of W, is equal to 1 if there
is a path in R from z; to x;. Then W), is the matrix of the transitive closure
t(R) of R, that is,

W, = Mt(R)-

Clearly, Wy = Mp. We have a sequence of Boolean matrices
MR - WO) Wl) WQ) SR Wn

The so-called Warshall’s algorithm is to compute Wj. from Wjy_1, k > 1.
Let Wiy = [si;] and Wy, = [t;5]. If t;; = 1, there must be a path

Li = Yo, Y1, -5 Yn = X5
from x; to x; whose interior vertices yi, . . ., Ym—1 are contained in {xq, ..., 3 }.
We may assume that y1,...,y,_1 are distinct. If zj is not an interior vertex
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of this path, that is, all interior vertices are contained in {x1,...,z;_1}, then
si; = 1. If a3 is an interior vertex of the path, say xj = y,, then there two

sub-paths
Zi = Yo, Y, -5 Yp = Tk,
Tk =Ypy Yp+1, -+ Yn = Ty
whose interior vertices y1, . .., Yp—1, Yp+1, - - - » Ym—1 are contained in {1, ..., rx_1}

obviously. It follows that
sik =1, sp; =1

We conclude that

si; =1 or
ti=1&<¢
ij { sip =1, sp;=1 forsome &.

Theorem 6.1 (Warshall’s Algorithm for Transitive Closure). Working on
the Boolean matrix Wi._1 to produce Wi.

(a) If the (i,7)-entry of Wi_1 is 1, so is the entry in Wy. Keep 1 there.

(b) If the (i, 7)-entry of Wi_1 is 0, then check the entries of Wy_1 at (i, k)
and (k,j). If both entries are 1, then change the (i, j)-entry in Wj_4
to 1. Otherwise, keep O there.

Example 6.1. Consider the relation R on A = {1,2,3,4,5} given by the
Boolean matrix

(0000 1]
01100
Mp=110000
00010
00110
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—
LO
-
N—
P
—
37
SN—
1 1
/N
— O — O O
N—
o O O -
o 4 O O
o - O O O
O O A O O

(no change)

00001
01100
10001
000120
00110

(no change)

00001
11101
10001
00010
10111

TN T N TN N N N

— ——r — T

= W)=

00001
01100
10000
000120
00110

Wy =

By Warshall’s algorithm, we have

= Wy =

= Wy =
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The binary relation for the Boolean matrix Wj is the transitive closure of R.

Definition 6.2. A binary relation R on a set X is called
a) asymmetric if xRy implies yRx;

b) antisymmetric if xRy and yRx imply = = y.

7 Modular Integers

For an equivalence relation ~ on a set X, the set of equivalence classes is usually
denoted by X/ ~ called the quotient set of X modulo ~. Given a positive
integer n > 2. The relation modulo n, denoted =,,, is a binary relation on
7., defined as a =, b if b — a = kn for an integer k € Z. Traditionally, a =,, b
is written as a = b (mod n). We denote the quotient set Z/ =,, by

Zn =A[0],[1], ..., [n — 1]}.
There addition and multiplication on Z,, defined as
la] + [b] = [a+ 0], [a][b] = [ab].
The two operations are well defined since

la+kn]+[b+In]=[(a+0b)+ (k+1)n]] = |a+ 1],
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la+ kn][b+ In] = [[(a + kn)(b+ In)] = [ab + (al + bk + kl)n]| = [ab].

A modular integer [a] is said to be invertible if there exists an modular integer
b] such that [a][b] = [1]. If so, [b] is called the inverse of |a], written

b = [a] .

If an inverse exists, it must be unique. If [b] is an inverse of |a], then [a] is an
inverse of [b].

A modular integer |a] is said to be invertible if there exists an modular
integer [c] such that [a][b] = [1]. If so, [b] is called the inverse of [a], written
0] = [a]™t. If [a4], [ao] are invertible, then [a;][as] = [ayas] is invertible. Let
1], [b2] be inverses of [a4], [as] respectively. Then [bybs] is the inverse of |[ajas].

In fact, |aras][b1bs] = |a]|as[bo][b1] = |aa][1][b1] = |aa][br] = [1].

Example 7.1. What modular integers |a] are invertible in Z,,?

When [a] has an inverse [b], we have [a][b] = 1, i.e., [ab] = [1]. This means
that ab and 1 are different by a multiple of n, say, ab + kn = 1 for an integer
k. Let d = ged(a,n). Then d | (ab+ kn), since d | a and d | n. Thus d | 1. Tt
forces d = 1. So ged(a,n) = 1.

If ged(a,n) = 1, by Euclidean Algorithm, there are integers x,y such that
ax+ny = 1. Then [ax+ny| = |az| = [1], i.e., [a][z] = [1]. So |z] is the inverse
of [al.

Example 7.2. Given an integer a. Consider the function
fo: 2y — Ly, fo(lz]) = |ax].
Find a condition for a so that f, is an invertible function.

Example 7.3. Is the function fy5 : Z119 — Z119 by fis([z]) = [452] invertible?
[f yes, find its inverse function.
We need to find ged(119,45) first. Applying the Division Algorithm,

119 =2-45+29

45 =29+ 16
29 =164 13
16 =134+3

13 =4-3+1
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So ged(119,45) = 1. The function fy5 is invertible. To find the inverse of fys,
we apply the Euclidean Algorithm:
| =13—4-3=13—4(16 — 13)
—5.13—4-16=5(20 — 16) — 4 16
—5.29—9-16="5-29 — 9(45 — 29)
=14-29—-9-45=14(119—-2-45) — 9 -45
= 14119 + (=37) - 45

The inverse of fy5 is f_37, 1.e., fgo.

Theorem 7.1 (Fermat’s Little Theorem). Let p be a prime number and a
an integer. If pta, then a?~!' =1 (mod p).

Proof. The function f, : Z, — Z, is invertible, since ged(a,p) = 1. So f, is a
bijection and f,(Z,) = Z,. Since f,([0]) = [0], we must have

foZy = {[0}) = {lal, 2a], ..., [(p — Dal} = {{1],..., [p — 1]}.
Thus

[[kal = 11K, ie. [P " ][Ik =]]lKllal = [ [1K).

Since the product of invertible elements are still invertible, so [[?_}[k] is invert-
ible. Thus [a?~1] = [a]?~! = [1]. This means that a?~! = 1 (mod p). O

Let ¢o(n) denote the number of positive integers coprime to n, i.e.,
e(n) =1[{a € [n] : ged(a,n) = 1}.
For example, p =5, a = 6 and a 5. Then 6 = 1296 = 1 (mod 5).

Theorem 7.2 (Euler’s Theorem). For integer n > 2 and integer a such
that ged(a,n) =1,
a?™ =1 (mod n).

Proof. Let S denote the set of invertible elements of Z,. Then [S| = p(n).
The elements [a][s], [s] € S, are all distinct and invertible, i.e., [a][s1] # [a][s2]
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for [s1], [s2] € S with [s1] # [so]. In fact, [a][s1] = [a][s2] implies [s1] = [s9].

Consider the product
al® H = ] 1 lalls] = [ ls!
[s]eS

It follows that [a]lSl = [1]. []

For example, n = 12, a = 35, ged(35,12) = 1, and ¢(12) = {1,5,7,11},
35¢ = 1500625 = 1 (mod 12).

Problem Set 3
1. Let R be a binary relation from X toY, A, B C X.

(a) If A C B, then R(A) C R(B).
(b) R(AU B) = R(A) U R(B).
(¢) R(ANB) € R(A)N R(B).
Proof. (a) For each y € R(A), there is an x € A such that (x,y) € R.
Clearly, z € B, since A C B. Thus y € R(B). This means that R(A) C
R(B).

(b) Since R(A) C R(AU B), R(B) C R(AU B), we have

R(A)U R(B) C R(AU B).

On the other hand, for each y € R(AU B), there is an x € AU B such that
(z,y) € R. Then either z € Aorx € B. Thus y € R(A) or y € R(B),
ie,y € R(A)U R(B). Therefore R(A) U R(B) 2 R(AU B).

(c) It follows from (a) that R(AN B) C R(A) and R(AN B) C R(B).
Hence R(AN B) C R(AN B). (]

2. Let Ry and Ry be relations from X to Y. If Ry(x) = Ry(x) forall z € X,
then R; = R».

Proof. For each (z,y) € Ry, we have y € Ry(x). Since Ri(x) = Ry(x),
then y € Ry(x). Thus (x,y) € Ry. Likewise, for each (x,y) € Rs, we have
(x,y) € Ry. Hence Ry = Ry. O]

26



3. Let a,b,c € R. Then

Proof. Note that the cases b < c and b > c are equivalent. There are three
essential cases to be verified.

Case 1: a < b < c. We have
aN(bVe)=a=(aAb)V(aAc),
aV(bAc)=b=(aVb) A(aVc).
Case 2: b < a < c. We have
aN(bVe)=a=(aNb)V(aAc),
aV(bAc)=a=(aVb) AaVc).
Case 3: b < c < a. We have
aN(bVe)=c=(aNb)V(aAc),
aV(bAc)=a=(aVb) AaVc).
]
4. Let R; € X XY be a family of relations from X to Y, indexed by 7 € [I.

(a) If RC W x X, then R (U;c; Ri) = U;e; RR:;
(b) If S CY x Z, then (U;e; Ri) S = U,e; RiS-

Proof. (a) By definition of composition of relations, (w,y) € R (U,c; ;)
is equivalent to that there exists an x € X such that (w,xz) € R and
(z,y) € U,y Ri. Notice that (z,y) € |J,.; R; is further equivalent to that
there is an index iy € I such that (z,y) € R;,. Thus (w,y) € R (U,; Ri)
is equivalent to that there exists an ¢y € I such that (w,y) € RR;, which
means (w,y) € J,.; RR; by definition of composition.
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(b) (z,2) € (Uie; Ri) S < (by definition of composition) there exists

y € Y such that (z,y) €

el

R; and (y,z) € S < (by definition of set

union) there exists igp € I such that (x,y) € R;, and (y,2) € S < there
exists i9 € I such that (w,y) € RR; < (by definition of composition)

(w7 y) S Uie[ RRZ

[]

5. Let R; (1 < i < 3) be relations on A = {a,b,c,d, e} whose Boolean

matrices are

|
S OO O D
O = O O =
O = O O =
O O O O O

M; =

o O O O O
_ O = = O
—_ O =) —~ O

e RS e i e
=
|

o O O o O

_ O = = O g

O = O O =
O O OO O O
o OO O O O
S = O O =

(a) Draw the digraphs of the relations Ry, Ry, R3.

(b) Find the Boolean matrices for the relations

R1_17 RQ U R37 Rth

and verify that
RiR' = Ry,

R1R1_17

Ri'R, = Rs.

o O O o O

Ri'Ry;

(c) Verify that Ry U Rj is an equivalence relation and find the quotient set

A/(RyU Ry3).

Solution:

MRl—l =

—_ O = = O
O O O O D
O O O O O

_ O = = O
o O O O O

) MRQUR?) —
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—_ O = = O

_ O = = O

O R O O
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o O O O O
o O O O O
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M

O R O O
o OO O O
o O O O O
O R O O
o O O O O
o O O O O
—_ O = = O
—_ O = = O
o O O O O
_ O = = O
I
=

6. Let R be a relation on Z defined by aRb if a + b is an even integer.

(a) Show that R is an equivalence relation on Z.

(b) Find all equivalence classes of the relation R.

Proof. (a) For each a € Z, a + a = 2a is clearly even, so aRa, i.e., R is
reflexive. If aRb, then a + b is even, of course b+ a = a + b is even, so
bRa, i.e., R is symmetric. If aRb and bRc, then a + b and b + ¢ are even;
thus a+c¢ = (a+b) + (b+ ¢) — 2b is even (sum of even numbers are even),
so aRc, i.e., R is transitive. Therefore R is an equivalence relation.

(b) Note that aRb if and only if both of a,b are odd or both are even.
Thus there are exactly two equivalence classes: one class is the set of even
integers, and the other class is the set of odd integers. The quotient set
Z./ R is the set Zs of integers modulo 2. (]

7. Let X ={1,2,...,10} and let R be a relation on X such that aRb if and
only if |a — b| < 2. Determine whether R is an equivalence relation. Let
Mp be the matrix of R. Compute M5,

Solution: The following is the graph of the relation.

NN NN N
(1) (2) (3) (&) () (6) (7) (8) (9) (0)
Then M]E’% 1s a Boolean matrix all whose entries are 1. Thus MJS% 1s the same
as M}, (]

8. A relation R on a set X is called a preference relation if R is reflexive
and transitive. Show that R N R~! is an equivalence relation.
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10.

Proof. Since I C R, we have | = I'' C R7'.so I C RN R ie,
RN R s reflexive.

If (RN R 1)y, then xRy and xR~'y; by definition of converse, yR ™'z
and yRz; thus y(R N R~Y)x. This means that R N R~ is symmetric.

If (RN R Yy and y(RN R 1Y)z, then xRy, yRz and yRx, 2Ry by con-
verse; thus Rz and zRx by transitivity; therefore Rz and xR~ 'z by
converse again; finally we have z(R N R~1)z. This means that RN R~ is
transitive. ]

. Let n be a positive integer. The congruence relation ~ of modulo n is

an equivalence relation on Z. Let Z, denote the quotient set Z/~ =
{10}, [1], ..., [n — 1]}. Given an integer a € Z, we define a function

fo:Zn — Zy by follz]) = [az].
(a) Find the cardinality of the set f,(Z,).
(b) Find all integers a such that f, is invertible.

Solution: (a) Let d = ged(a,n), a = kd, n = ld. Fix an integer x € Z,
we write = ql + r by division algorithm, where 0 < r < [. Then

ax = kd(ql + r) = kdql + kdr = kqn + ar = ar (mod n).

For two integers r1, 7o with 1 < r; < ry <[, we claim ary; Z ary (mod n).
In fact, suppose ary = ary (mod n), then n | a(ry — r1); since a = kd and
n = ld, it is equivalent to [ | k(ry — 7). Since ged(k,l) = 1, we have [ |
(ro —r1). Thus r1 = 79, which is a contradiction. Thus |f,(Z,)| =1 =n/d
and

foZy) ={lar] :r € Z,0 <r <1}

(b) Since Z,, is finite, then f, is a bijection if and only if f, is onto. However,
fa is onto if and only if | f,(Z,)| = n, i.e., ged(a,n) = 1.

For a positive integer n, let ¢(n) denote the number of positive integers
a < n such that ged(a,n) = 1, called Euler’s function. Let R be
the relation on X = {1,2,...,n} defined by aRb if a < b, b | n, and
ged(a, b) = 1.
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(a) Find the cardinality |R™(b)]| for each b € X.

(b) Show that
Rl =) ¢la).

aln
(c) Prove |R| = n by showing that the function f : R — X, defined by
f(a,b) = an/b, is a bijection.
Solution: (a) For each b € X, if bt n, then R™1(b) = @. If b | n, we have
[R7'(0)] = {a € X : a <b,ged(a, b) = 1}] = 6(b).

(b) It follows that

[Rl=) IR'®)= ) |[R'0)=)_ o)
bln

be X b>1,b|n

(¢) The function f is clearly well-defined. We first to show that f is in-
jective. For (aq,b1), (az,b2) € R, if f(a1,b1) = f(ag,be), ie., ayn/by =
asn /by, then ay/by = as/bs, which is a rational number in reduced form,
since ged(ag, by) = 1 and ged(asg, be) = 1; it follows that (a1, by) = (a9, bo).
Thus f is injective. To see that f is surjective, for each b € X, let
d = ged(b,n). Then f(b/n,n/b) = (b/d)n/(n/d) = b. This means that f

is surjective. So f is a bijection. We have obtained the following formula

n=> o).

bln
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