
Week 1-2

1 Some Warm-up Questions

Abstraction: The process going from specific cases to general problem.

Proof: A sequence of arguments to show certain conclusion to be true.

“If ... then ...”: The part after “if” is called the hypothesis, the part after

“then” is called the conclusion of the sentence or statement.

Fact 1: If m, n are integers with m ≤ n, then there are exactly n −m + 1

integers i between m and n inclusive, i.e., m ≤ i ≤ n.

Fact 2: Let k, n be positive integers. Then the number of multiples of k

between 1 and n inclusive is ⌊n/k⌋.
Proof. The integers we want to count are the integers

1k, 2k, 3k, . . . , mk

such that mk ≤ n. Then m ≤ n/k. Since m is an integer, we have m = ⌊n/k⌋,
the largest integer less than or equal to n/k.

Theorem 1.1. Let m, n be integers with m ≤ n, and k a positive integer.

Then the number of multiples of k between m and n inclusive is
⌊
n

k

⌋

−
⌊
m− 1

k

⌋

.

Proof. The number of multiples of k between m and n inclusive are the integers

ak, (a + 1)k, (a + 2)k, . . . , (b− 1)k, bk,

where ak ≥ m and bk ≤ n. It follows that a ≥ m/k and b ≤ n/k. We then

have a = ⌈m/k⌉ and b = ⌊n/k⌋. Thus by Fact 1, the number of multiples

between m and n inclusive is

b− a + 1 =
⌊n

k

⌋

−
⌈m

k

⌉

+ 1.
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Now by definition of the ceiling function, m can be written as m = ak − r,

where 0 ≤ r < k. Then

m− 1 = (a− 1)k + (k − r − 1).

Let s = k − r − 1. Since k > r, i.e., k − 1 ≥ r, then s ≥ 0. Since r ≥ 0, then

s ≤ k − 1, i.e., s < k. So we have

m− 1 = (a− 1)k + s, 0 ≤ s < k.

By definition of the floor function, this means that
⌈
m

k

⌉

− 1 = a− 1 =

⌊
m− 1

k

⌋

.

2 Factors and Multiples

A prime is an integer that is greater than 1 and is not a product of any two

smaller positive integers.

Given two integers m and n. If there is an integer k such that n = km, we say

that n is a multiple of m or say that m is a factor or divisor of n; we also

say that m divides n or n is divisible by m, denoted

m | n.

If m does not divide n, we write m ∤∤∤ n.

Proposition 2.1. An integer p ≥ 2 is a prime if and only if its only

positive divisors are 1 and p.

Theorem 2.2 (Unique Prime Factorization). Every positive integer n can

be written as a product of primes. Moreover, there is only one way to write

n in this form except for rearranging the order of the terms.

Let m, n, q be positive integers. If m | n, then m ≤ n. If m | n and n | q,

then m | q.
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A common factor or common divisor of two positive integers m and

n is any integer that divides both m and n. The integer 1 is always a common

divisor of m and n. There are only finite number of common divisors for any

two positive integers m and n. The very largest one among all common factors

of m, n is called the greatest common divisor of m and n, denoted

gcd(m, n).

Two positive integers m, n are said to be relatively prime if 1 is the only

common factor of m and n, i.e., gcd(m, n) = 1.

Proposition 2.3. Let m, n be positive integers. A positive integer d is the

greatest common divisor of m, n, i.e., d = gcd(a, b), if and only if

(i) d | m, d | n, and

(ii) if c is a positive integer such that c | m, c | n, then c | d.
Theorem 2.4 (Division Algorithm). Let m be a positive integer. Then for

each integer n there exist unique integers q, r such that

n = qm + r with 0 ≤ r < m.

Proposition 2.5. Let m, n be positive integers. If n = qm+r with integers

q ≥ 0 and r > 0, then gcd(n, m) = gcd(m, r).

Theorem 2.6 (Euclidean Algorithm). For arbitrary integers m and n, there

exist integers s, t such that

gcd(m, n) = sm + tn.

Example 2.1. For the greatest common divisor of integers 231 and 525 is 21,

that is, gcd(231, 525) = 21. In fact,

525 = 2× 231 + 63; 231 = 3× 63 + 42; 63 = 1× 42 + 21.

Then

21 = 63− 42 = 63− (231− 3× 63)

= 4× 63− 231 = 4× (525− 2× 231)− 231

= 4× 525− 9× 231.
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A common multiple of two positive integers m and n is any integer that

is a multiple of both m and n. The product mn is one such common multiple.

There are infinite number of common multiples of m and n. The smallest

among all positive common multiples of m and n is called the least common

multiple of m and n, denoted

lcm(m, n).

Let a, b be integers. The minimum and maximum of a and b are denoted by

min{a, b} and max{a, b} respectively. We have

min{a, b} + max{a, b} = a + b.

Theorem 2.7. For positive integers m and n, we have

gcd(m, n) lcm(m, n) = mn.

Proof. (Bases on the Unique Prime Factorization) Let us write

m = pe1

1 pe2

2 · · · p
ek

k , n = qf1

1 qf2

2 · · · q
fl

l ,

where pi, qj are primes and ei, fj are nonnegative integers with 1 ≤ i ≤ k,

1 ≤ j ≤ l, and

p1 < p2 < · · · < pk, q1 < q2 < · · · < ql.

We may put the primes pi, qj together and order them as t1 < t2 < · · · < tr.

Then

m = ta1

1 ta2

2 · · · tar

r , n = tb11 tb22 · · · tbrr ,

where ai are nonnegative integers with 1 ≤ i ≤ r. Thus

gcd(m, n) = t
min{a1,b1}
1 t

min{a2,b2}
2 · · · tmin{ar,br}

r =

r∏

i=1

t
min{ai,bi}
i ,

gcd(m, n) = t
max{a1,b1}
1 t

max{a2,b2}
2 · · · tmax{ar,br}

r =
r∏

i=1

t
max{ai,bi}
i ,

mn = ta1+b1
1 ta2+b2

2 · · · tar+br
r =

r∏

i=1

tai+bi
i .
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Since min{ai, bi} + max{ai, bi} = ai + bi for all 1 ≤ i ≤ r, we have

gcd(m, n)lcm(m, n) =
r∏

i=1

t
min{ai,bi}+max{ai,bi}
i

=
r∏

i=1

tai+bi
i

= mn.

Theorem 2.8. Let m and n be positive integers.

(a) If a divides both m and n, then a divides gcd(m, n).

(b) If b is a multiple of both m and n, then b is a multiple of lcm(m, n).

Proof. (a) Let us write m = ka and n = la. By the Euclidean Algorithm, we

have gcd(m, n) = sm + tn for some integers s, t. Then

gcd(m, n) = ska + tla = (sk + tl)a.

This means that a is a factor of gcd(m, n).

(b) Let b be a common multiple of m and n. By the Division Algorithm,

b = qlcm(m, n) + r for some integer q and r with 0 ≤ r < lcm(m, n). Now

both b and lcm(m, n) are common multiples of m and n. It follows that r =

b − qlcm(m, n) is a common multiple of m and n. Since 0 ≤ r < lcm(m, n),

we must have r = 0. This means that lcm(m, n) divides b.

3 Sets and Subsets

A set is a collection of distinct objects, called elements or members, satis-

fying certain properties. A set is considered to be a whole entity and is different

from its elements. Sets are usually denoted by uppercase letters, while elements

of a set are usually denoted by lowercase letters.

Given a set A. We write “x ∈ A” to say that x is an element of A or x

belongs to A. We write “x /∈ A” to say that x is not an element of A or x

does not belong to A.
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The collection of all integers forms a set, called the set of integers, denoted

Z := {. . . ,−2,−1, 0, 1, 2, . . .}.
The collection of all nonnegative integers is a set, called the set of natural

numbers, denoted

N := {0, 1, 2, . . .}.
The set of positive integers is denoted by

P := {1, 2, . . .}.
We have

Q : set of rational numbers;

R : set of real numbers;

C : set of complex numbers.

There are two ways to express a set. One is to list all elements of the set; the

other one is to point out the attributes of the elements of the set. For instance,

let A be the set of integers whose absolute values are less than or equal to 2.

The set A can be described in two ways:

A = {−2,−1, 0, 1, 2} and

A = {a : a ∈ Z, |a| ≤ 2}
= {a ∈ Z : |a| ≤ 2}
=

{
a ∈ Z

∣
∣ |a| ≤ 2

}
.

Two sets A and B are said to be equal, written A = B, if every element of

A is an element of B and every element of B is also an element of A. As usual,

we write “A 6= B” to say that the sets A and B are not equal. In other words,

there is at least one element of A which is not an element of B, or, there is at

least one element of B which is not an element of A.

A set A is called a subset of a set B, written A ⊆ B, if every element of A

is an element of B; if so, we say that A is contained in B or B contains A.

If A is not a subset of B, written A 6⊆ B, it means that there exists an element

x ∈ A such that x 6∈ B.
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Given two sets A and B. If A ⊆ B, it is common to say that B is a superset

of A, written B ⊇ A. If A ⊆ B and A 6= B, we abbreviate it as A ( B. The

equality A = B is equivalent to A ⊆ B and B ⊆ A.

A set is called finite if it has only finite number of elements; otherwise, it is

called infinite. For a finite set A, we denote by |A| the number of elements of

A, called an cardinality of A. The sets P, N, Z, Q, R, C are all infinite sets

and

P ( N ( Z ( Q ( R ( C.

Let a, b be real numbers with a ≤ b. We define intervals:

[a, b] = {x ∈ R : a ≤ x ≤ b},
(a, b) = {x ∈ R : a < x < b},
(a, b] = {x ∈ R : a < x ≤ b},
[a, b) = {x ∈ R : a ≤ x < b}.

We define infinite intervals:

[a,∞) = {x ∈ R : a ≤ x},
(a,∞) = {x ∈ R : a < x},

(−∞, a] = {x ∈ R : x ≤ a},
(−∞, a) = {x ∈ R : x < a}.

Consider the set A of real numbers satisfying the equation x2 + 1 = 0. We

see that the set contains no elements at all; we call it empty. The set without

elements is called the empty set. There is one and only one empty set, and

is denoted by the symbol

∅.

The empty set ∅ is a subset of every set, and its cardinality |∅| is 0.

The collection of everything is not a set. Is {x : x /∈ x} a set?

Exercise 1. Let A = {1, 2, 3, 4, a, b, c, d}. Identify each of the following as

true or false:

2 ∈ A; 3 6∈ A; c ∈ A; d 6∈ A; 6 ∈ A; e ∈ A;

8 6∈ A; f 6∈ A; ∅ ∈ A; A ∈ A; } ∈ A; ,∈ A.
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Exercise 2. List all subsets of a set A with

A = ∅; A = {1}; A = {1, 2}; A = {1, 2, 3}.
A convenient way to visualize sets in a universal set U is the Venn diagram.

We usually use a rectangle to represent the universal set U , and use circles or

ovals to represent its subsets as follows:

BA

U

Exercise 3. Draw the Venn diagram that represents the following relation-

ships.

1. A ⊆ B, A ⊆ C, B 6⊆ C, and C 6⊆ B.

2. x ∈ A, x ∈ B, x 6∈ C, y ∈ B, y ∈ C, and y 6∈ A.

3. A ⊆ B, x 6∈ A, x ∈ B, A 6( C, y ∈ B, y ∈ C.

The power set of a set A, written P(A), is the set of all subsets of A.

Note that the empty set ∅ and the set A itself are two elements of P(A). For

instance, the power set of the set A = {a, b, c} is the set

P(A) =
{

∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}
}

.

Let Σ be finite nonempty set, called alphabet, whose elements are called

letters. A word of length n over Σ is a string

a1a2 · · · an

with the letters a1, a2, . . . , an from Σ. When n = 0, the word has no letters,

called the empty word (or null word), denoted λ. We denote by Σ(n) the

set of words of length n and by Σ∗ the set of all words of finite length over Σ.

Then

Σ∗ =
∞⋃

n=0

Σ(n).

8



A subset of Σ∗ is called a language over Σ.

If Σ = {a, b}, then Σ(0) = {λ}, Σ(1) = Σ, Σ(2) = {aa, ab, ba, bb}, and

Σ(3) = {aaa, aab, aba, abb, baa, bab, bba, bbb}, . . . .

If Σ = {a}, then

Σ∗ = {λ, a, aa, aaa, aaaa, aaaaa, aaaaaa, . . .}.

4 Set Operations

Let A and B be two sets. The intersection of A and B, written A ∩ B, is

the set of all elements common to the both sets A and B. In set notation,

A ∩ B = {x | x ∈ A and x ∈ B}.

The union of A and B, written A ∪ B, is the set consisting of the elements

belonging to either the set A or the set B, i.e.,

A ∪ B = {x | x ∈ A or x ∈ B}.

The relative complement of A in B is the set consisting of the elements of

B that is not in A, i.e.,

B r A = {x | x ∈ B, x 6∈ A}.

When we only consider subsets of a fixed set U , this fixed set U is sometimes

called a universal set. Note that a universal set is not universal; it does not

mean that it contains everything. For a universal set U and a subset A ⊆ U ,

the relative complement U r A is just called the complement of A, written

A = U r A.

Since we always consider the elements in U , so, when x ∈ A, it is equivalent to

saying x ∈ U and x 6∈ A (in practice no need to mention x ∈ U). Similarly,

x ∈ A is equivalent to x 6∈ A. Another way to say about “equivalence” is the

phrase “if and only if.” For instance, x ∈ A if and only if x 6∈ A. To save space

in writing or to make writing succinct, we sometimes use the symbol “⇐⇒”
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instead of writing “is (are) equivalent to” and “if and only if.” For example, we

may write “x ∈ A if and only x 6∈ A” as “x ∈ A⇐⇒ x 6∈ A.”

Let A1, A2, . . . , An be a family of sets. The intersection of A1, A2, . . . , An

is the set consisting of elements common to all A1, A2, . . . , An, i.e.,

n⋂

i=1

Ai = A1 ∩A2 ∩ · · · ∩ An =
{

x : x ∈ A1, x ∈ A2, . . . , x ∈ An

}

.

Similarly, the union of A1, A2, . . . , An is the set, each of its element is contained

in at least one Ai, i.e.,

n⋃

i=1

Ai = A1 ∪A2 ∪ · · · ∪ An

=
{

x : there exists at least one Ai such that x ∈ Ai

}

.

We define the intersection and union of infinitely many set A1, A2, . . . as

follows: ∞⋂

i=1

Ai = A1 ∩A2 ∩ · · · =
{

x : x ∈ Ai, i = 1, 2, . . .
}

;

∞⋃

i=1

Ai = A1 ∪ A2 ∪ · · · =
{

x : there exists one i such that x ∈ Ai

}

.

In general, let Ai with i ∈ I be a family of sets. We can also define the

intersection and union
⋂

i∈I
Ai =

{

x : x ∈ Ai for all i ∈ I
}

⋃

i∈I
Ai =

{

x : x ∈ Ai for at least one i ∈ I
}

.

Theorem 4.1 (DeMorgan Law). Let A and B be subsets of a universal set

U . Then

(1) A = A, (2) A ∩B = A ∪ B, (3) A ∪ B = A ∩B.
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Proof. (1) By definition of complement, x ∈ A is equivalent to x 6∈ A. Again

by definition of complement, x 6∈ A is equivalent to x ∈ A.

(2) By definition of complement, x ∈ A ∩ B is equivalent to x 6∈ A∩B. By

definition of intersection, x 6∈ A ∩ B is equivalent to either x 6∈ A or x 6∈ B.

Again by definition of complement, x 6∈ A or x 6∈ B can be written as x ∈ A

or x ∈ B. Now by definition of union, this is equivalent to x ∈ A ∪ B.

(3) To show that A ∪B = A∩B, it suffices to show that their complements

are the same. In fact, applying parts (1) and (2) we have

A ∪ B = A ∪B, A ∩ B = A ∪B = A ∪ B.

Their complements are indeed the same.

The Cartesian product (or product) of two sets A and B, written

A×B, is the set consisting of all ordered pairs (a, b), where a ∈ A and b ∈ B,

i.e.,

A× B = {(a, b) : a ∈ A and b ∈ B}.
The product of a finite family of sets A1, A2, . . . , An is the set

n∏

i=1

Ai = A1 ×A2 × · · · × An

=
{

(a1, a2, . . . , an) : a1 ∈ A1, a2 ∈ A2, . . . , an ∈ An

}

,

the element (a1, a2, . . . , an) is called an ordered n-tuple. The product of an

infinite family A1, A2, . . . of sets is the set
∞∏

i=1

Ai = A1 ×A2 × · · · =
{

(a1, a2, . . .) : a1 ∈ A1, a2 ∈ A2, . . .
}

.

Each element of
∏∞

i=1 Ai can be considered as an infinite sequence. If A =

A1 = A2 = · · · , we write

An = A× · · · × A
︸ ︷︷ ︸

n

,

A∞ = A×A× · · ·
︸ ︷︷ ︸

∞
.
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Example 4.1. For sets A = {0, 1}, B = {a, b, c}, the product A and B is

the set

A×B = {(0, a), (0, b), (0, c), (1, a), (1, b), (1, c)};
and the product A3 = A× A× A is the set

A3 = {(0, 0, 0), (0, 0, 1), (0, 1, 1), (1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1)}.
For the set R of real numbers, the product R2 is the 2-dimensional coordinate

plane, and R3 is the 3-dimensional coordinate space.

A sequence of a nonempty set A is a list (elements can repeat) of finite or

infinite number of objects of A in order:

a1, a2, . . . , an (finite sequence)

a1, a2, a3, . . . (infinite sequence)

where ai ∈ A. The sequence is called finite in the former case and infinite

in the latter case.

Exercise 4. Let A be a set, and let Ai, i ∈ I , be a family of sets. Show that
⋃

i∈I
Ai =

⋂

i∈I
Ai;

⋂

i∈I
Ai =

⋃

i∈I
Ai;

A ∩
⋃

i∈I
Ai =

⋃

i∈I
(A ∩ Ai);

A ∪
⋂

i∈I
Ai =

⋂

i∈I
(A ∪ Ai).

Exercise 5. Let A, B, C be finite sets. Use Venn diagram to show that

|A ∪B ∪ C| = |A| + |B| + |C|
−|A ∩ B| − |A ∩ C| − |B ∩ C| + |A ∩B ∩ C|.

5 Functions

The elements of any set are distinct. For instance, the collection

A = {a, d, c, d, 1, 2, 3, 4, 5, 6}
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is a set. However, the collection

B = {a, b, c, c, d, d, d, 1, 2, 2, 2}

is not a set.

Definition 5.1. Let X and Y be nonempty sets. A function f of (from) X

to Y is a rule such that every element x of X is assigned (or sent to) a unique

element y in Y . The function f is denoted by

f : X → Y.

If an element x of X is sent to an element y in Y , we write

y = f(x);

we call y the image (or value) of x under f , and x the inverse image of

y. The set X is called the domain and Y the codomain of f . The image

of f is the set

Im(f) = f(X) = {f(x) : x ∈ X}.

Two functions f : X → Y and g : X → Y are said to be equal, written as

f = g, if

f(x) = g(x) for all x ∈ X.

Example 5.1. Let X = {a, b, c, d}, Y = {1, 2, 3, 4, 5}. Let

f(a) = 3, f(b) = 2, f(c) = 5, f(d) = 3.

Then the function f : X → Y can be demonstrated by the figure

1

2

3

4

5

b

c

d

a

However, the following assignments are not functions
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d

1

2

3

4

5

a

b

c

d

1

2

3

4

5

a

b

c

In calculus, for a function y = f(x), the variable x is usually called an

independent variable and y the dependent variable of f .

Example 5.2. Some ordinary functions.

1. The usual function y = x2 is considered as the function

f : R→ R, f(x) = x2.

Its domain and codomain are R. The function y = x2 can be also considered

as a function

g : R→ R≥0, g(x) = x2.

2. The exponential function y = ex is considered as the function

f : R→ R+, f(x) = ex.

The domain of f is R and the codomain of f is R+. The function y = ex

can be also considered as a function

g : R→ R, g(x) = ex.

3. The logarithmic function y = log x is the function

log : R+ → R, log(x) = log x.

Its domain is R+ and codomain is R.

4. The formal rule

f : R→ R, f(x) =
√

x,

is not a function from R to R. However,

g : R≥0 → R, g(x) =
√

x

is a function from R≥0 to R.

14



5. The following rule

f : R→ R, f(x) = 1
x−1,

is not a function from R to R. However,

g : R r {1} → R, g(x) = 1
x−1

is a function from the set R r {1} = {x ∈ R : x 6= 1} to R.

6. The absolute value function y = |x| is a function from R to R≥0. It can

be also considered as a function from R to R.

7. The sine function y = sin x is a function sin : R→ [−1, 1]. It can be also

considered as a function from R to R.

Let f : X → Y be a function. For each subset A ⊆ X , the set

f(A) = {f(a) ∈ Y : a ∈ A},

is called the image of A. For each subset B ⊆ Y , the set

f−1(B) = {x ∈ X : f(x) ∈ B}

is called the inverse image (or pre-image) of B under f . For each y ∈ Y ,

the set of all inverse images of y under f is the set

f−1(y) := {x ∈ X : f(x) = y}.

Clearly,

f−1(B) =
⋃

y∈B
f−1(y).

The graph of a function f : X → Y is the set

G(f) = Graph(f) := {(x, y) ∈ X × Y | f(x) = y}.

Example 5.3. Let X = {a, b, c, d}, Y = {1, 2, 3, 4, 5}. Let f : X → Y be a

function given by the figure
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1

2

3

4

5

b

c

d

a

Then
f({b, d}) = {2, 3},
f({a, b, c} = {2, 3, 5},
f({a, b, c, d}) = {2, 3, 5};
f−1({1, 2}) = {b},
f−1({2, 3, 4}) = {a, b, d},
f−1({1, 4}) = ∅,

f−1({2, 3, 5}) = {a, b, c, d}.
The graph of the function f is the product set

G(f) = {(a, 3), (b, 2), (c, 5), (d, 3)}.
Example 5.4. Some functions to appear in the coming lectures.

1. A finite sequence

s1, s2, . . . , sn

of a set A can be viewed as a function

s : {1, 2, . . . , n} → A,

defined by

s(k) = sk, k = 1, 2, . . . , n.

2. An infinite sequence s1, s2, . . . of A can be viewed as a function

s : P→ A, s(k) = sk, k ∈ P.

3. The factorial is a function f : N→ P defined by

f(0) = 0! = 1,

f(n) = n! = n(n− 1) · · · 3 · 2 · 1, n ≥ 1.
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4. The floor function is the function ⌊ ⌋ : R→ Z, defined by

⌊x⌋ = greatest integer ≤ x.

5. The ceiling function is the function ⌈ ⌉ : R→ Z, defined by

⌈x⌉ = smallest integer ≥ x.

6. Given a universal set X . The characteristic function of a subset A ⊆
X is the function

1A : X → {0, 1}
defined by

1A(x) =

{
1 if x ∈ A

0 if x 6∈ A.

The function 1A can be also viewed as a function from X to Z, and from

X to R.

1
0

A

X

A

If X = {1, 2, . . . , n}, then the subsets can be identified as sequences of 0

and 1 of length n. For instance, let

X = {1, 2, 3, 4, 5, 6, 7, 8}, A = {2, 4, 5, 7, 8}.
The characteristic function of A corresponds to the sequence

0 1 0 1 1 0 1 1

1 2 3 4 5 6 7 8

7. Let a be a positive integer. Then for each integer b there exist unique

integers q and r such that

b = qa + r, 0 ≤ r < a.
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We then have the function Quoa : Z→ Z, defined by

Quoa(b) = q, b ∈ Z;

and the function Rema : Z→ {0, 1, 2, . . . , a− 1}, defined by

Rema(b) = r, b ∈ Z.

8. Let a be a positive real number. Then for each real number x there exist

unique integers q and r such that

x = qa + r, 0 ≤ r < a.

We then have the function Quoa : R→ Z, defined by

Quoa(x) = q, x ∈ R;

and the function Rema : R→ [0, a), defined by

Rema(x) = r, x ∈ R.

Let f : X → R and g : X → R be two functions. The addition of f and

g is a function f + g : X → R defined by

(f + g)(x) = f(x) + g(x), x ∈ X.

The subtraction of f and g is a function f − g : X → R defined by

(f − g)(x) = f(x)− g(x), x ∈ X.

The scalar multiplication of f by a constant c is a function cf : X → R

defined by

(cf)(x) = cf(x), x ∈ X.

The multiplication of f and g is a function f · g : X → R defined by

(f · g)(x) = f(x)g(x), x ∈ X.

Usually, we simply write f · g as fg.

Example 5.5. Given a universal set X and subsets A ⊆ X , B ⊆ X . Find the

characteristic function 1A of A in terms of 1A and the characteristic function

1A∪B in terms of 1A, 1B, and 1A∩B.

18



By definition of characteristic function, we have

1A(x) =

{
1 if x ∈ A

0 if x 6∈ A
=

{
1 if x 6∈ A

0 if x ∈ A
.

Note that

(1X − 1A)(x) = 1X(x)− 1A(x)

=

{
1− 0 if x 6∈ A

1− 1 if x ∈ A

=

{
1 if x 6∈ A

0 if x ∈ A.

Then

(1X − 1A)(x) = 1A(x) for all x ∈ X.

This means that

1A = 1X − 1A.

(1A · 1B)(x) = 1A(x) · 1B(x)

=







1 · 1 if x ∈ A ∩ B

1 · 0 if x ∈ A r B

0 · 1 if x ∈ B r A

=

{
1 if x ∈ A ∩ B

0 if x 6∈ A ∩ B

= 1A∩B(x) for all x ∈ X.

Thus

1A · 1B = 1A∩B.

6 Injection, Surjection, and Bijection

Definition 6.1. A function f : X → Y is said to be

1. injective (or one-to-one) if distinct elements of X are mapped to dis-

tinct elements in Y . That is, for x1, x2 ∈ X ,

if x1 6= x2, then f(x1) 6= f(x2).
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An injective function is also called an injection (or one-to-one map-

ping).

2. surjective (or onto) if every element in Y is an image of some elements

of X ; that is, for each y ∈ Y , there exist x ∈ X such that f(x) = y. In

other words, f(X) = Y . A surjective function is also called a surjection

(or onto mapping).

3. bijective if it is both injective and surjective. A bijective function is also

called a bijection (or one-to-one correspondence).

Example 6.1. Let X = {a, b, c, d}, Y = {1, 2, 3, 4, 5}. The function given

by the figure

5

a

b

c

d

1

2

3

4

is injective, but not surjective. The function given by the figure

d

1

2

3

4

5

a

b

c

is neither injective nor surjective.

Example 6.2. Let X = {a, b, c, d}, Y = {1, 2, 3}. The function given by the

figure
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3

a

b

c

d

1

2

is surjective, but not injective.

Example 6.3. Let X = {a, b, c, d}, Y = {1, 2, 3, 4}. The function given by

the figure

d

1

2

3

4

a

b

c

is bijective.

Example 6.4. 1. The function f : R → R, f(x) = ex, is injective, but not

surjective.

2. The function f : R → R≥0 defined by f(x) = x2 is surjective, but not

injective.

3. The function f : R→ R defined by f(x) = x3 is bijective.

4. The function f : R+ → R defined by f(x) = log x is bijective.

Definition 6.2. The composition of functions

f : X → Y and g : Y → Z

is a function g ◦ f : X → Z, defined by

(g ◦ f)(x) = g(f(x)), x ∈ X.
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Example 6.5. Let X = {a, b, c, d}, Y = {1, 2, 3, 4, 5}, Z = {α, β, γ}. Let

f : X → Y and g : Y → Z be given by

3

α

γ

β

1

2

4

5

a

b

c

d

ZYX
f g

The composition g ◦ f : X → Z is given by

Z

γ

β

α

b

a

c

d

X
gof

Theorem 6.3 (Associativity of Composition). Given functions

f : X → Y, g : Y → Z, h : Z →W.

Then

h ◦ (g ◦ f) = (h ◦ g) ◦ f,

as functions from X to W . We write

h ◦ g ◦ f = h ◦ (g ◦ f) = (h ◦ g) ◦ f.

Proof. For any x ∈ X , we have
(
h ◦ (g ◦ f)

)
(x) = h

(
(g ◦ f)(x)

)

= h
((

g(f(x)
))

= (h ◦ g)
(
f(x)

)

=
(
(h ◦ g) ◦ f

)
(x).
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Example 6.6. Let f : R → R, f(x) = 2x + 1 and g : R → R, g(x) = x
x2+2

.

Then both g ◦ f and f ◦ g are functions from R to R, and for x ∈ R,

(g ◦ f)(x) = g(f(x)) = g(2x + 1)

=
2x + 1

(2x + 1)2 + 2

=
2x + 1

4x2 + 4x + 3
;

(f ◦ g)(x) = f(g(x)) = f

(
x

x2 + 2

)

=
2x

x2 + 2
+ 1

=
x2 + 2x + 2

x2 + 2
.

Obviously,

f ◦ g 6= g ◦ f.

The identity function of a set X is the function

idX : X → X, idX(x) = x for all x ∈ X.

Definition 6.4. A function f : X → Y is said to be invertible if there

exists a function g : Y → X such that

g(f(x)) = x for x ∈ X,

f(g(y)) = y for y ∈ Y.
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In other words,

g ◦ f = idX , f ◦ g = idY .

The function g is called the inverse of f , written as g = f−1.

−1

x y

fX Y

f

Remark. Given a function f : X → Y . For each element y ∈ Y and each

subset B ⊆ Y , we define their inverse images

f−1(y) = {x ∈ X : f(x) = y}
f−1(B) = {x ∈ X : f(x) ∈ B}.

Here f−1(y) and f−1(B) are just notations for the above sets; it does not mean

that f is invertible. So f−1(y) and f−1(B) are meaningful for every function

f . However, f−1 alone is meaningful only if f is invertible.

If f : X → Y is invertible, then the inverse of f is unique. In fact, let g

and h be inverse functions of f , i.e.,

g(f(x)) = h(f(x)) = x for x ∈ X ;

f(g(y)) = f(h(y)) = y for y ∈ Y.

For each fixed y ∈ Y , write x1 = g(y), x2 = h(y). Apply f to x1, x2, we have

f(x1) = f(g(y)) = y = f(h(y)) = f(x2).

Apply g to f(x1), f(x2), we obtain

x1 = g(f(x1)) = g(f(x2)) = x2.

This means that g(y) = h(y) for all y ∈ Y . Hence, g = h.

The inverse function f−1 of any invertible function f is invertible, and the

inverse of f−1 is the function f , i.e., (f−1)−1 = f .

Theorem 6.5. A function f : X → Y is invertible if and only if f is

one-to-one and onto.
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Proof. Necessity (“⇒ ”): Since f is invertible, there is a function g : Y → X

such that

g ◦ f = idX , f ◦ g = idY .

For any x1, x2 ∈ X , if f(x1) = f(x2), then

x1 = g(f(x1)) = g(f(x2)) = x2.

This means that f is one-to-one. On the other hand, for each y ∈ Y we have

g(y) ∈ X and f(g(y)) = y. This means that f is onto.

Sufficiency (“ ⇐ ”): Since f is one-to-one and onto, then for each y ∈ Y

there is one and only one element x ∈ X such that f(x) = y. We define a

function

g : Y → X, g(y) = x,

where x is the unique element in X such that f(x) = y. Then

(g ◦ f)(x) = g(f(x)) = g(y) = x, x ∈ X,

(f ◦ g)(y) = f(g(y)) = f(x) = y, y ∈ Y.

By definition, f is invertible, and g = f−1.

Example 6.7. Let 2Z denote the set of even integers. The function

f : Z→ 2Z, f(n) = 2n,

is invertible. Its inverse is the function

f−1 : 2Z→ Z, f−1(n) = n
2 .

Check: For each n ∈ Z,

(f−1 ◦ f)(n) = f−1(f(n)) = f−1(2n) = 2n
2 = n.

For each m = 2k ∈ 2Z,

(f ◦ f−1)(m) = f
(

m
2

)
= 2 · m

2 = m.

However, the function

f1 : Z→ Z, f1(n) = 2n

is not invertible; and the function

f2 : Z→ 2Z, f2(n) = n(n− 1)

is also not invertible.
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Example 6.8. The function

f : R→ R, f(x) = x3

is invertible. Its inverse is the function

f−1 : R→ R, f−1(x) = 3
√

x.

Check: For each x ∈ R,

(f−1 ◦ f)(x) = f−1(f(x)) = f−1(x3) =
3
√

x3 = x,

(f ◦ f−1)(x) = f(f−1(x)) = f( 3
√

x) = ( 3
√

x)3 = x.

Example 6.9. The function

f : R→ R+, g(x) = ex

is invertible. Its inverse is the function

g : R+ → R, g−1(x) = log x.

Check:
g ◦ f(x) = g(ex) = log(ex) = x, x ∈ R;

f ◦ g(y) = f(log y) = elog y = y, y ∈ R+.

Example 6.10.

The function

f : R→ R, f(x) = x2,

is not invertible. However, the function

f1 : R≥0 → R≥0, f1(x) = x2,

is invertible; its inverse is the function

f−1
1 : R≥0 → R≥0, f−1

1 (x) =
√

x.

Likewise the function

f2 : R≤0 → R≥0, f2(x) = x2,

is invertible; its inverse is the function

f−1
2 : R≥0 → R≤0, f−1

2 (x) = −
√

x.
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The function f : R → [−1, 1], f(x) = sin x, is not invertible. However, the

function

f1 :
[

−π

2
,
π

2

]

→ [−1, 1], f1(x) = sinx,

is invertible (which is the restriction of f to
[
−π

2
, π

2

]
) and has the inverse

f−1
1 : [−1, 1]→

[

−π

2
,
π

2

]

, f−1
1 (x) = arcsin x.

Exercise 6. Let f : X → Y be a function.

1. For subsets A1, A2 ⊆ X , show that

f (A1 ∩ A2) ⊆ f (A1) ∩ f(A2) ,

f (A1 ∪A2) = f (A1) ∪ f(A2) ;

2. For subsets B1, B2 ⊆ Y , show that

f−1 (B1 ∩B2) = f−1
(
B1) ∩ f−1(B2

)
,

f−1 (B1 ∪B2) = f−1
(
B1) ∪ f−1(B2

)
.

Example 6.11. Let f : X → X be a function. If X is a finite set, then the

following statements are equivalent.

(1) f is bijective.

(2) f is one-to-one.

(3) f is onto.

Exercise 7. Let f : X → X be a function. Let

f 0 = idX ,

fn = f ◦ · · · ◦ f
︸ ︷︷ ︸

n

= fn−1 ◦ f, n ∈ Z+.

It is easy to see that for nonnegative integers m, n ∈ N,

fm ◦ fn = fm+n.
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Exercise 8. Let f : X → X be an invertible function. Let f−n = (f−1)n for

n ∈ Z+. Then

fm ◦ fn = fm+n for all m, n ∈ Z.

Proof. Note that f 0 is the identity function idX . We see that for each function

g : X → X ,

f 0 ◦ g = g ◦ f 0 = g.

For each positive integer k,

fk ◦ f−k = f ◦ · · · ◦ f
︸ ︷︷ ︸

k

◦ f−1 ◦ · · · ◦ f−1

︸ ︷︷ ︸
k

= f ◦ · · · ◦ f
︸ ︷︷ ︸

k−1

◦(f ◦ f−1) ◦ f−1 ◦ · · · ◦ f−1

︸ ︷︷ ︸
k−1

= f ◦ · · · ◦ f
︸ ︷︷ ︸

k−1

◦f 0 ◦ f−1 ◦ · · · ◦ f−1

︸ ︷︷ ︸
k−1

= f ◦ · · · ◦ f
︸ ︷︷ ︸

k−1

◦ f−1 ◦ · · · ◦ f−1

︸ ︷︷ ︸
k−1

= · · · = f ◦ f−1 = f 0.

Likewise, f−k ◦ fk = f−1 ◦ · · · ◦ f−1

︸ ︷︷ ︸
k

◦ f ◦ · · · ◦ f
︸ ︷︷ ︸

k

= f 0. Thus for all k ∈ Z,

fk ◦ f−k = f 0 = idX, i.e., (fk)−1 = (f−1)k.

Now we divide the situation into four cases: (i) m ≥ 0, n ≥ 0; (ii) m ≤
0, n ≤ 0; (iii) m > 0, n < 0; and (iv) m < 0, n > 0. The cases (i) and (ii) are

trivial.

Case (iii). We have two subcases: (a) m ≥ −n, and (b) m ≤ −n. For the

subcase (a), we write k = −n and m = k +a, where a is a nonnegative integer.

Then a = m + n, and

fm ◦ fn = fa ◦ fk ◦ f−k = fa ◦ f 0 = fa = fm+n.

For the subcase (b), we write n = −m − a, where a is a nonnegative integer.

Then −a = m + n, and

fm ◦ fn = fm ◦ f−m ◦ f−a = f 0 ◦ f−a = f−a = fm+n.
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Case (iv). There are also two subcases: (a) −m ≥ n, and (b) −m ≤ n. For

the subcase (a), let m = −n− a. Then

fm ◦ fn = f−a ◦ f−n ◦ fn = f−a ◦ f 0 = f−a = fm+n

For the subcase (b), let k = −m and write n = k + a. Then

fm ◦ fn = f−k ◦ fk ◦ fa = f 0 ◦ fa = fa = fm+n.

Example 6.12. Let f : X → X be an invertible function. For each x ∈ X ,

the orbit of x under f is the set

Orb(f, x) = {fn(x) : n ∈ Z}.

Show that if Orb(f, x1) ∩ Orb(f, x2) 6= ∅ then Orb(f, x1) = Orb(f, x2).

Proof. Let x0 ∈ Orb(f, x1) ∩ Orb(f, x2). There exist integers m and n such

that x0 = fm(x1) and x0 = fn(x2), that is, fm(x1) = fn(x2). Applying the

function f−m to both sides, we have

x1 = f 0(x1) = (f−m ◦ fm)(x1) = f−m(fm(x1))

= f−m(fn(x2)) = (f−m ◦ fn)(x2) = fn−m(x2).

Thus for each fk(x1) ∈ Orb(f, x1) with k ∈ Z, we have

fk(x1) = fk(fn−m(x2)) = fk+n−m(x2) ∈ Orb(f, x2).

This means that Orb(f, x1) ⊂ Orb(f, x2). Likewise, Orb(f, x2) ⊂ Orb(f, x1).

Hence Orb(f, x1) = Orb(f, x2).

Example 6.13. Let X be a finite set. A bijection f : X → X is called a

permutation of X . A permutation f of X = {1, 2, . . . , 8} can be stated as

follows:
(

1 2 · · · 8

f(1) f(2) · · · f(8)

)

=

(
1 2 3 4 5 6 7 8

6 7 5 4 3 8 2 1

)

.

Then

Orb(f, 1) = Orb(f, 6) = Orb(f, 8) = {1, 6, 8};
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Orb(f, 2) = Orb(f, 7) = {2, 7};
Orb(f, 3) = Orb(f, 5) = {3, 5};

Orb(f, 4) = {4}.
Exercise 9. Let f : R r Q→ R r Q be defined by

f(x) = 1
x−1

, x ∈ R r Q.

(a) Show that f is invertible.

(b) List all elements of the set {fk : k ∈ Z}.

7 Infinite Sets

Let A be a finite set of m elements. When we count the elements of A, we have

the 1st element a1, the 2nd element a2, the 3rd element a3, and so on. The

result is to have listed the elements of A as follows

a1, a2, . . . , am.

Then a bijection f : {1, 2, . . . , m} → A is automatically given by

f(i) = ai, i = 1, 2, . . . , m.

To compare the number of elements of A with another finite B of n elements.

We do the same thing by listing the elements of B as follows

b1, b2, . . . , bn.

If m = n, we automatically have a bijection g : A→ B, given by

g(ai) = bi, i = 1, 2, . . . , m.

If m 6= n, there is no bijection from A to B.

Theorem 7.1. Two finite sets A and B have the same number of elements

if and only if there is a bijection f : A → B, i.e., they are in one-to-one

correspondent.
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Definition 7.2. A set A is said to be equivalent to a set B, written as

A ∼ B, if there is a bijection f : A→ B.

If A ∼ B, i.e., there is a bijection f : A→ B, then f has the inverse function

f−1 : B → A. Of course, f−1 is a bijection. Thus B is equivalent to A, i.e.,

B ∼ A.

If A ∼ B and B ∼ C, there are bijections f : A → B and g : B → C.

Obviously, the composition g ◦ f : A→ C is a bijection. Thus A ∼ C.

For infinite sets, to compare the “number” of elements of one set with another,

the right method is to use one-to-one correspondence. We say that two sets A

and B have the same cardinality if A ∼ B, written as

|A| = |B|.

The symbol |A| is called the cardinality of A, meaning the size of A. If A is

finite, we have

|A| = number of elements of A.

Example 7.1. The set Z of integers is equivalent to the set N of nonnegative

integers, i.e., Z ∼ N.

The function f : Z→ N, defined by

f(n) =

{
2n if n ≥ 0

−2n− 1 if n < 0,

is a bijection. Its inverse function f−1 : N→ Z is given by

f−1(n) =

{
n/2 if n = even

−(n + 1)/2 if n = odd.

We can say that Z and N have the same cardinality, i.e.,

|Z| = |N|.

Example 7.2. For any real numbers a < b, the closed interval [a, b] is the set

[a, b] = {x ∈ R : a ≤ x ≤ b}.

Then [a, b] is equivalent to [0, 1], i.e., [a, b] ∼ [0, 1].
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The function f : [a, b]→ [0, 1], defined by

f(x) =
x− a

b− a
,

is a bijection. Its inverse f−1 : [0, 1]→ [a, b] is given by

f−1(x) = (b− a)x + a, x ∈ [0, 1].

Definition 7.3. A set A is called countable if,

• A is either finite, or

• there is bijection from A to the set P of positive integers.

In other words, the elements of A can be listed as either a finite sequence

a1, a2, . . . , an;

or an infinite sequence

a1, a2, a3, . . . .

Sets that are not countable are said to be uncountable.

Proposition 7.4. Every infinite set contains an infinite countable subset.

Proof. Let A be an infinite set. Select an element a1 from A. Since A is infinite,

the set A1 = A r {a1} is still infinite. One can select an element a2 from A1.

Similarly, the set

A2 = A1 r {a2} = A r {a1, a2}
is infinite, one can select an element a3 from A2, and the set

A3 = A2 r {a3} = A r {a1, a2, a3}

is infinite. Continue this procedure, we obtain an infinite sequence

a1, a2, a3, . . .

of distinct elements from A. The set {a1, a2, a3, . . .} is an infinite countable

subset of A.

Theorem 7.5. If A and B are countable subsets, then A∪B is countable.
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Proof. It is obviously true if one of A and B is finite. Let

A = {a1, a2, . . .}, B = {b1, b2, . . .}
be countably infinite. If A ∩ B = ∅, then

A ∪ B = {a1, b1, a2, b2, . . .}
is countable as demonstrated. If A ∩ B 6= ∅, we just need to delete the

elements that appeared more than once in the sequence a1, b1, a2, b2, . . . . Then

the leftover is the set A ∪B.

Theorem 7.6. Let Ai, i = 1, 2, · · · , be countable sets. If Ai ∩ Aj = ∅ for

any i 6= j, then
⋃∞

i=1 Ai is countable.

Proof. We assume that each Ai is countably infinite. Write

Ai = {ai1, ai2, ai3, · · · }, i = 1, 2, . . .

The countability of
⋃∞

i=1 Ai can be demonstrated as

a11 → a12 a13 → a14 · · ·
ւ ր ւ

a21 a22 a23 a24 · · ·
↓ ր ւ ր

a31 a32 a23 a34 · · ·
ւ ր ւ

a41 a42 a23 a44 · · ·
... ... ... ...

a11 → a12 a13 → a14 · · ·
↓ ↑ ↓

a21 ← a22 a23 a24 · · ·
↓ ↑ ↓

a31 → a32 → a23 a34 · · ·
↓

a41 ← a42 ← a23 ← a44 · · ·
↓
... ... ... ...
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The condition of disjointness in Theorem 7.6 can be omitted.

Theorem 7.7. The closed interval [0, 1] of real numbers is uncountable.

Proof. Suppose the set [0, 1] is countable. Then the numbers in [0, 1] can be

listed as an infinite sequence {αi}∞i=1. Write all real numbers αi in infinite

decimal forms, say in base 10, as follows:

α1 = 0.a1a2a3a4 · · ·
α2 = 0.b1b2b3b4 · · ·
α3 = 0.c1c2c3c4 · · ·
· · ·

We construct a number x = 0.x1x2x3x4 · · · , where xi are given as follows:

x1 =

{
1 if a1 = 2

2 if a1 6= 2,

x2 =

{
1 if b2 = 2

2 if b2 6= 2,

x3 =

{
1 if c3 = 2

2 if c3 6= 2,
· · ·

Obviously, x is an infinite decimal number between 0 and 1, i.e., x ∈ [0, 1].

Note that

x1 6= a1, x2 6= a2, x3 6= a3, . . . .

This means that

x 6= α1, x 6= α2, x 6= α3, . . . .

Thus x is not in the list {α1, α2, α3, . . .}. Since all real numbers of [0, 1] are

already in the list, in particular, x must be in the list. This is a contradiction.

Example 7.3. For any set Σ, either finite or infinite, recall that Σ(n) is the

set of words of length n over Σ, and Σn is the product of n copies of Σ. Then
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the function f : Σ(n) → Σn, defined by

f(a1a2 · · · an) = (a1, a2, . . . , an), a1, a2, . . . , an ∈ Σ,

is a bijection. Thus Σ(n) ∼ Σn.

Theorem 7.8 (Cantor-Bernstein-Schroeder Theorem). Given sets A and B.

If there are injections f : A → B and g : B → A, then there exists a

bijection h : A→ B.

Proof. First Proof (non-constructive). Note that f : A → f(A) and

g : B → g(B) are bijections. Our aim is to find a subset S ⊆ A such that

g(f(S)) = S. If so, the bijections f : S → f(S) and g : f(S)→ S give rise to

a bijection between A and B.

For each subset E ⊆ A, clearly, f(E) ⊆ B and g(f(E)) ⊆ A; we have

Ê := g(f(E)) ⊆ A.

If there exists a subset S ⊆ A such that Ŝ = S, i.e., S = g(f(S)), then

S = g(f(S)). We claim that such subset S with Ŝ = S does exist.

We say that a subset E ⊆ A expandable if E ⊆ Ê. Expandable subsets

of A do exist, since the empty set ∅ is expandable. Let S be the union of all

expandable subsets of A. We claim that Ŝ = S.

We first show that E1 ⊆ E2 implies Ê1 ⊆ Ê2 for subsets E1, E2 of A. In

fact, if E1 ⊆ E2, then f(E1) ⊆ f(E2); consequently, f(E1) ⊇ f(E2) by taking

complement; hence g(f(E1)) ⊇ g(f(E2)) by applying the injective map g; now

we see that g(f(E1)) ⊆ g(f(E2)) by taking complement again, i.e., Ê1 ⊆ Ê2.

Let D be an expandable subset of A, i.e., D ⊆ D̂. Clearly, D ⊆ S by

definition of S; then D̂ ⊆ Ŝ by the previous argument; thus D ⊆ Ŝ as D ⊆ D̂.

Since D is an arbitrary expandable subset, we see that S ⊆ Ŝ. Again, the

previous argument implies that Ŝ ⊆ ˆ̂
S; this means that Ŝ is an expandable

subset; hence Ŝ ⊆ S by definition of S. Therefore Ŝ = S.

Second Proof (constructive). Since A ∼ f(A), it suffices to show that

B ∼ f(A). To this end, we define sets

A1 = g(f(A)), B1 = f(g(B)).
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Then gf : A→ A1 and fg : B → B1 are bijections, and

A1 ⊆ g(f(A)) ⊆ g(B), B1 = f(g(B)) ⊆ f(A).

Set A0 := A, B0 := B, and introduce subsets

Ai := g(Bi−1), Bi := f(Ai−1), i ≥ 2.

We claim the following chains of inclusion

A = A0 ⊇ A1 ⊇ A2 ⊇ · · · , B = B0 ⊇ B1 ⊇ B2 ⊇ · · · .

In fact,

A2 = g(B1) = g(f(g(B))) ⊆ gf(A) = A1,

B2 = f(A1) = f(g(f(A))) ⊆ fg(B) = B1.

By induction, for i ≥ 2, we have

Ai+1 = g(Bi) ⊆ g(Bi−1) = Ai (∵ Bi ⊆ Bi−1);

Bi+1 = f(Ai) ⊆ f(Ai−1) = Bi (∵ Ai ⊆ Ai−1).

Now we set D :=
⋂∞

i=1 Bi. Recall B1 ⊆ f(A) ⊆ B. We have disjoint unions

B = (B − f(A)) ∪ (f(A)− B1) ∪ (B1 −D) ∪D

= D ∪ (f(A)− B1) ∪ (B − f(A)) ∪
∞⋃

i=1

(Bi −Bi+1);

f(A) = D ∪ (f(A)− B1) ∪
∞⋃

i=1

(Bi −Bi+1).

Note that fg : B → B1 is a bijection. By definition of Ai and Bi, we have

fg(B − f(A)) = fg(B)− fgf(A) = B1 − B2,

fg(Bi −Bi+1) = fg(Bi)− fg(Bi+1)

= f(Ai+1)− f(Ai+2)

= Bi+2 − Bi+3, i ≥ 1.
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We see that fg sends (B−f(A))∪
⋃∞

i=0(B2i+1−B2i+2) to
⋃∞

i=0(B2i+1−B2i+2)

bijectively. Note that both B and f(A) contain the subset

D ∪ (f(A)− B1) ∪
∞⋃

i=1

(B2i −B2i+1),

whose complement in the sets B, f(A) are respectively the subsets

(B − f(A)) ∪
∞⋃

i=0

(B2i+1 − B2i+2),

∞⋃

i=0

(B2i+1 − B2i+2).

It follows that the function φ : B → f(A), defined by

φ(x) =

{
x if x ∈ D ∪ (f(A)−B1) ∪

⋃∞
i=1(B2i − B2i+1)

fg(x) if x ∈ (B − f(A)) ∪
⋃∞

i=0(B2i+1 − B2i+2)
,

is a bijection.
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