Week 1-2

1 Some Warm-up Questions

Abstraction: The process going from specific cases to general problem.
Proof: A sequence of arguments to show certain conclusion to be true.

“If ... then ...”: The part after “if” is called the hypothesis, the part after
“then” is called the conclusion of the sentence or statement.

Fact 1: If m,n are integers with m < n, then there are exactly n — m + 1
integers ¢ between m and n inclusive, i.e., m <17 < n.

Fact 2: Let k,n be positive integers. Then the number of multiples of £
between 1 and n inclusive is |n/k].

Proof. The integers we want to count are the integers
1k, 2k, 3k, ... ,mk

such that mk < n. Then m < n/k. Since m is an integer, we have m = |n/k/|,
the largest integer less than or equal to n/k. ]

Theorem 1.1. Let m,n be integers with m < n, and k a positive integer.
Then the number of multiples of k between m and n inclusive 1s

nl_|m=1
k k|
Proof. The number of multiples of £ between m and n inclusive are the integers

ak, (a+ 1Dk, (a+2)k, ..., (b— 1)k, bk,

where ak > m and bk < n. It follows that a > m/k and b < n/k. We then
have a = [m/k] and b = |n/k]. Thus by Fact 1, the number of multiples
between m and n inclusive is

pmar = |2 - [2] 41



Now by definition of the ceiling function, m can be written as m = ak — r,
where 0 < r < k. Then

m—1=(a—1)k+(k—r—1).

Let s=k—r—1. Since k > r,ie, k—12>r then s > 0. Since r > 0, then
s<k—1,ie,s <k. Sowe have

m—1l=(a—1k+s, 0<s<k.

By definition of the floor function, this means that

7| -rmem= P

2 Factors and Multiples

A prime is an integer that is greater than 1 and is not a product of any two
smaller positive integers.

Given two integers m and n. If there is an integer £ such that n = km, we say
that n is a multiple of m or say that m is a factor or divisor of n; we also
say that m divides n or n is divisible by m, denoted

If m does not divide n, we write m ¢ n.

Proposition 2.1. An wnteger p > 2 is a prime if and only if its only
positive divisors are 1 and p.

Theorem 2.2 (Unique Prime Factorization). Every positive integer n can
be written as a product of primes. Moreover, there is only one way to write
n in this form except for rearranging the order of the terms.

Let m,n, q be positive integers. If m | n, then m <n. lf m | n and n | g,
then m | q.



A common factor or common divisor of two positive integers m and
n is any integer that divides both m and n. The integer 1 is always a common
divisor of m and n. There are only finite number of common divisors for any
two positive integers m and n. The very largest one among all common factors
of m,n is called the greatest common divisor of m and n, denoted

ged(m, n).

Two positive integers m,n are said to be relatively prime if 1 is the only
common factor of m and n, i.e.; ged(m,n) = 1.

Proposition 2.3. Let m,n be positive integers. A positive integer d is the
greatest common divisor of m,n, i.e., d = ged(a, b), if and only if
(i) d|m,d|n, and

(ii) if ¢ is a positive integer such that ¢ | m, ¢ | n, then c | d.

Theorem 2.4 (Division Algorithm). Let m be a positive integer. Then for
each integer n there exist unique integers q,r such that

n=qgm-+r with 0<r <m.

Proposition 2.5. Let m,n be positive integers. If n = qm-+r with integers
q >0 andr >0, then ged(n,m) = ged(m, ).

Theorem 2.6 (Euclidean Algorithm). For arbitrary integers m andn, there
exist integers s,t such that

ged(m,n) = sm + tn.

Example 2.1. For the greatest common divisor of integers 231 and 525 is 21,
that is, ged (231, 525) = 21. In fact,

520 =2 x231+63; 231=3x63+42; 63=1x42+421.
Then

21 = 63 —42 =63 — (231 — 3 X 63)
= 4x63—231=4x (525 — 2 x 231) — 231
= 4% 525 — 9 x 231.
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A common multiple of two positive integers m and n is any integer that
is a multiple of both m and n. The product mn is one such common multiple.
There are infinite number of common multiples of m and n. The smallest
among all positive common multiples of m and n is called the least common
multiple of m and n, denoted

lem(m, n).

Let a, b be integers. The minimum and maximum of a and b are denoted by
min{a, b} and max{a, b} respectively. We have

min{a, b} + max{a,b} = a + 0.
Theorem 2.7. For positive integers m and n, we have
ged(m, n) lem(m, n) = mn.

Proof. (Bases on the Unique Prime Factorization) Let us write

m=pi'pi-pt, n=ql'ef g,

where p;, ¢; are primes and e;, f; are nonnegative integers with 1 < ¢ < k,
1 <5<, and

P1<pP2<-" <Pk @ <qG<--<q.

We may put the primes p;, g; together and order them as ¢t} < o < --- < ¢,.
Then

__ 401402 a _ 4b14bo b
m—t1t2"'t,’,r, n—tthtTT,

where a; are nonnegative integers with 1 < ¢ < r. Thus

r
gcd(m, n) _ trlnin{m,bl}t;nin{az,bz} . t?in{ar,br} _ H tr.nin{al-,bl-}7
1=1

ecd(m,n) = tlinax{m,bl}t;nax{a%bﬁ o t;,nax{a”’b”} _ H tlzmax{ai,bi}7
1—1

T
mrn — ta1+b1ta2+b2 . _tar+br _ t@ﬁbi_
1 2 T 7
=1
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Since min{a;, b;} + max{a;, b;} = a; + b; for all 1 < i < r, we have

ged(m, n)lem(m,n) =

T
H tmin{ai,bi}+max{aiabi}
1

=1
T
_ a;+b;
it
=1

= mn.

Theorem 2.8. Let m and n be positive integers.
(a) If a divides both m and n, then a divides ged(m,n).
(b) If b is a multiple of both m and n, then b is a multiple of lem(m,n).

Proof. (a) Let us write m = ka and n = la. By the Euclidean Algorithm, we
have ged(m, n) = sm + tn for some integers s,t. Then

ged(m, n) = ska + tla = (sk + tl)a.

This means that a is a factor of ged(m,n).

(b) Let b be a common multiple of m and n. By the Division Algorithm,
b = qlem(m,n) + r for some integer ¢ and r with 0 < r < lem(m,n). Now
both b and lem(m,n) are common multiples of m and n. It follows that r =
b — glem(m, n) is a common multiple of m and n. Since 0 < r < lem(m, n),
we must have 7 = 0. This means that lem(m, n) divides b. [

3 Sets and Subsets

A set is a collection of distinct objects, called elements or members, satis-
fying certain properties. A set is considered to be a whole entity and is different
from its elements. Sets are usually denoted by uppercase letters, while elements
of a set are usually denoted by lowercase letters.

Given a set A. We write “z € A” to say that x is an element of A or x
belongs to A. We write “x ¢ A” to say that x is not an element of A or x
does not belong to A.



The collection of all integers forms a set, called the set of integers, denoted
Z=A...,-2,—1,0,1,2,...}.

The collection of all nonnegative integers is a set, called the set of natural
numbers, denoted

N:={0,1,2,...}.
The set of positive integers is denoted by
P.={1,2,...}.

We have

Q : set of rational numbers;
R : set of real numbers;

C: set of complex numbers.

There are two ways to express a set. One is to list all elements of the set; the
other one is to point out the attributes of the elements of the set. For instance,
let A be the set of integers whose absolute values are less than or equal to 2.
The set A can be described in two ways:

A={-2,-1,0,1,2} and

A={a:a€Zal <2}
= {a€Z:|al <2}
= {a€Z||a| <2}.

Two sets A and B are said to be equal, written A = B, if every element of
A is an element of B and every element of B is also an element of A. As usual,
we write “A # B” to say that the sets A and B are not equal. In other words,
there is at least one element of A which is not an element of B, or, there is at
least one element of B which is not an element of A.

A set A is called a subset of a set B, written A C B, if every element of A
is an element of B; if so, we say that A is contained in B or B contains A.
If A is not a subset of B, written A € B, it means that there exists an element

x € A such that ¢ ¢ B.



Given two sets A and B. If A C B, it is common to say that B is a superset
of A, written B O A. If A C B and A # B, we abbreviate it as A C B. The
equality A = B is equivalent to A C B and B C A.

A set is called finite if it has only finite number of elements; otherwise, it is
called infinite. For a finite set A, we denote by |A| the number of elements of

A, called an cardinality of A. The sets P,N,Z,Q, R, C are all infinite sets
and

PCNCZCQCRCC.

Let a, b be real numbers with a < b. We define intervals:

|
(a,0) ={z e R:a <z < b},
(a,b] ={zr e R:a < x < b},
la,b) ={r e R:a <z < b}
We define infinite intervals:
la,00) ={x € R:a <z},
(a,00) ={r e R:a <z},
(—o0,a] ={r eR:z <a}l,
(—o0,a)={reR:x <a}.
Consider the set A of real numbers satisfying the equation 2 + 1 = 0. We
see that the set contains no elements at all; we call it empty. The set without

elements is called the empty set. There is one and only one empty set, and
is denoted by the symbol

.
The empty set @ is a subset of every set, and its cardinality || is 0.

The collection of everything is not a set. Is {x : x ¢ x} a set?

Exercise 1. Let A = {1,2,3,4,a,b,c,d}. Identify each of the following as
true or false:

2€¢A;, 3€A, ceA, d&A 6€A ee€eA

8¢ A, fE&A €A AcA }eA €A
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Exercise 2. List all subsets of a set A with
A=o; A={1};, A={1,2}; A={1,23}.

A convenient way to visualize sets in a universal set U is the Venn diagram.
We usually use a rectangle to represent the universal set U, and use circles or

ovals to represent its subsets as follows:
U

Q)

Exercise 3. Draw the Venn diagram that represents the following relation-

ships.

1. ACB,ACC, BZC,and C € B.
2xeAreB g C ye B yeC andy & A.
3. ACB,xgA xeB AZLC,ye B,yeC.

The power set of a set A, written P(A), is the set of all subsets of A.
Note that the empty set @ and the set A itself are two elements of P(A). For
instance, the power set of the set A = {a, b, c} is the set

P(4) = {@, {a}, {0}, {c}, {a. b}, {a. ¢}, {b. ¢}, {a,b, c}}.

Let X be finite nonempty set, called alphabet, whose elements are called
letters. A word of length n over X is a string

0/10/2' . -a/n

with the letters aq, as, ..., a, from 2. When n = 0, the word has no letters,
called the empty word (or null word), denoted A\. We denote by 3 the
set of words of length n and by X* the set of all words of finite length over .

Then -
5= .
n=0
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A subset of X* is called a language over .
If ¥ = {a,b}, then 20 = {A\}, =) =¥, ¥® = {aa, ab, ba, bb}, and

»®) = {aaa, aab, aba, abb, baa, bab, bba, bbb},
If ¥ = {a}, then

¥ =AM\, a, aa, aaa, acaa, acaaa, aaaaaq, . . . }.

4 Set Operations

Let A and B be two sets. The intersection of A and B, written AN B, is
the set of all elements common to the both sets A and B. In set notation,

ANB = {z|z € Aand z € B}.

The union of A and B, written A U B, is the set consisting of the elements
belonging to either the set A or the set B, i.e.,

AUB = {z|z € Aorzx € B}.

The relative complement of A in B is the set consisting of the elements of
B that is not in A, i.e.,

BNA = {z|z e B,x & A}

When we only consider subsets of a fixed set U, this fixed set U is sometimes
called a universal set. Note that a universal set is not universal; it does not
mean that it contains everything. For a universal set U and a subset A C U,
the relative complement U ~\. A is just called the complement of A, written

A = U\ A

Since we always consider the elements in U, so, when o € A, it is equivalent to
saying * € U and x ¢€ A (in practice no need to mention x € U). Similarly,
r € A is equivalent to x € A. Another way to say about “equivalence” is the
phrase “if and only if.” For instance, z € A if and only if z & A. To save space
in writing or to make writing succinct, we sometimes use the symbol “<="

9



instead of writing “is (are) equivalent to” and “if and only if.” For example, we
may write “z € Aifandonlyzr € A" as ‘e € A<=z & A

Let Ay, Ao, ..., A, be afamily of sets. The intersection of Ay, As,..., A,
is the set consisting of elements common to all A;, Ao, ..., A,, ie.,

ﬁAZ':AlﬂAQﬂ“'ﬂAn:{x:xGAl,CEGAQ,...,CEEAn}.
i=1

Similarly, the union of Aq, Ao, ..., A, is the set, each of its element is contained
in at least one A;, i.e.,

n
JAa=auvau---uA4,
i=1
= {a: . there exists at least one A; such that x € AZ} :

We define the intersection and union of infinitely many set Ay, Ao, ... as
follows:

ﬁAi:AlﬂAgﬂ---:{x:ajeAi,izl,Q,...};

1=1

o0

UAZ- = A UA U = {x - there exists one 7 such that = € Al} .

i=1
In general, let A; with ¢ € I be a family of sets. We can also define the
intersection and union

ﬂAi = {x:ajeAiforalliEI}

UAZ» = {33:336 A; for at least one i € ]}.

i€l
Theorem 4.1 (DeMorgan Law). Let A and B be subsets of a universal set
U. Then

(1)

||

=A, (2) AnB=AUB, (3) AUB=ANB.



Proof. (1) By definition of complement, x € A is equivalent to z ¢ A. Again
by definition of complement, x & A is equivalent to = € A.

(2) By definition of complement, x € AN B is equivalent to z ¢ AN B. By
definition of intersection, x ¢ A N B is equivalent to either x € A or x € B.
Again by definition of complement, x & A or z € B can be written as z € A
or x € B. Now by definition of union, this is equivalent to x € AU B.

(3) To show that AU B = AN B, it suffices to show that their complements
are the same. In fact, applying parts (1) and (2) we have

AUB=AUB, ANB=AUB=AUB.

Their complements are indeed the same. ]

The Cartesian product (or product) of two sets A and B, written
A x B, is the set consisting of all ordered pairs (a, b), where a € A and b € B,
lLe.,

Ax B = {(a,b):a € Aand b € B}.
The product of a finite family of sets A;, Ao, ..., A, is the set

HAZ = A1><A2><---><An

= {(al,ag,...,an):al EAl,aQEAQ,...,anEAn},

the element (ay, as, ..., a,) is called an ordered n-tuple. The product of an
infinite family A;, Ao, ... of sets is the set

ﬁAZ':AlXAQX"':{(al,ag,...)ICL1€A1,CL2€A2,...}.

i=1
Each element of [];-; A; can be considered as an infinite sequence. If A =
A=Ay =--- we write

A" = x A

2

.
7

A X
A = AxAx.
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Example 4.1. For sets A = {0,1}, B = {a, b, ¢}, the product A and B is
the set
A x B={(0,a),(0,0),(0,¢),(1,a),(1,b),(1,¢)};
and the product A% = A x A x A is the set
A% ={(0,0,0),(0,0,1),(0,1,1),(1,0,0),(1,0,1),(1,1,0), (1,1, 1)}.

For the set R of real numbers, the product R? is the 2-dimensional coordinate
plane, and R? is the 3-dimensional coordinate space.

A sequence of a nonempty set A is a list (elements can repeat) of finite or
infinite number of objects of A in order:

ai, as, . ..,a, (finite sequence)
ai, as, ag, ... (infinite sequence)

where a; € A. The sequence is called finite in the former case and infinite
in the latter case.

Exercise 4. Let A be a set, and let A;, 2 € I, be a family of sets. Show that

UAz' = mE;
el el
m _.
A = A
el el
el el
Au(4 = (AU 4).
el el

Exercise 5. Let A, B, C' be finite sets. Use Venn diagram to show that
|JAUBUC| = |A|+ |B|+|C|
—|ANB|—-|ANC|—-|BNnC|+|AnBNC].

5 Functions

The elements of any set are distinct. For instance, the collection
A=Ha,d, c,d 1,2,3,4,56}
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is a set. However, the collection
B ={a,b,c,c,d,d,d,1,2,2 2}
1s not a set.

Definition 5.1. Let X and Y be nonempty sets. A function f of (from) X
to Y is a rule such that every element x of X is assigned (or sent to) a unique
element y in Y. The function f is denoted by

f: X=Y.

If an element x of X is sent to an element y in Y, we write

y = f(x);

we call y the image (or value) of z under f, and x the inverse image of
y. The set X is called the domain and Y the codomain of f. The image
of f is the set

m(f) = f(X) ={f(z) : v € X}.

Two functions f: X — Y and g : X — Y are said to be equal, written as
f=g i
f(z)=g(x) foral xe€ X.

Example 5.1. Let X ={a,b,c,d}, Y ={1,2,3,4,5}. Let
fla)=3, fb)=2, flc)=5 f(d) =3
Then the function f : X — Y can be demonstrated by the figure

a o]
b 2
C 3
d o 4

5

However, the following assignments are not functions
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C 3 C 3
d 4 .4
5 5

In calculus, for a function y = f(x), the variable z is usually called an
independent variable and y the dependent variable of f.

Example 5.2. Some ordinary functions.

2 is considered as the function

f R—=R, f(z)=2"

Its domain and codomain are R. The function y = 2% can be also considered
as a function

1. The usual function y = x

g:R — Ry, gla)=2"

2. The exponential function y = e* is considered as the function
fTR—=Ry, f(z)=e¢".

The domain of f is R and the codomain of f is R, . The function y = e”
can be also considered as a function

g:R—=R, g(r)=e¢"
3. The logarithmic function y = log x is the function
log: R, — R, log(x)=logx.
Its domain is R, and codomain is R.

4. The formal rule
fTR—=R, f(z)=+z,

is not a function from R to R. However,

g:Rsg— R, g(z)=+x

is a function from R>( to R.

14



5. The following rule
fTR=R, flz)=

is not a function from R to R. However,

1
rz—17

g RNA{1} =R, g(2) =5
is a function from the set R\ {1} = {r e R:x # 1} to R.

6. The absolute value function y = |x| is a function from R to R>(. It can
be also considered as a function from R to R.

7. The sine function y = sinx is a function sin : R — [—1,1]. It can be also
considered as a function from R to R.

Let f: X — Y be a function. For each subset A C X, the set
f(A)={fla) €Y ra € A},
is called the image of A. For each subset B C Y, the set
f7(B)={r€ X : f(z) € B}

is called the inverse image (or pre-image) of B under f. For each y € Y,
the set of all inverse images of y under f is the set

fHy) ={z e X: f(z) =y}
Clearly,

B =Ur'w.

yeB
The graph of a function f: X — Y is the set

G(f) = Graph(f) = {(z,y) € X x Y| f(z) = y}.

Example 5.3. Let X ={a,b,c,d}, Y ={1,2,3,4,5}. Let f: X — Y be a
function given by the figure

15



b 2
c 3
d 4

5

Then

f({b,d}) = {2,3],
f({a>b7 C} - {29375}7
f({a,b,c,d}) = {2,3,5};
f{L2h) = {b},
f_l({27374}> = {CL, b, d}a
f—l({174}> = O,
1{2,3,5}) = {a,b,c,d}.

The graph of the function f is the product set
G(f) ={(a,3),(b,2),(c,5),(d,3)}.
Example 5.4. Some functions to appear in the coming lectures.

1. A finite sequence
81,52y -+, Sn

of a set A can be viewed as a function
s:{1,2,...,n} — A,

defined by
s(tk)=sr, k=1,2,...,n.

2. An infinite sequence s1, So, ... of A can be viewed as a function
s:P— A sk)=s; kel
3. The factorial is a function f : N — P defined by

f0) = 0'=1,
f(n) = nl=nmn-1)---3-2-1, n>1.
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4. The floor function is the function | | : R — Z, defined by
| x| = greatest integer < .
5. The ceiling function is the function [ | : R — Z, defined by

[x] = smallest integer > .

6. Given a universal set X. The characteristic function of a subset A C
X 1s the function

ly: X —{0,1}
defined by
lifzeA
Lale) = { 0 ifz ¢ A.

The function 14 can be also viewed as a function from X to Z, and from

X to R.

X

If X ={1,2,...,n}, then the subsets can be identified as sequences of 0
and 1 of length n. For instance, let

X ={1,2,3,4,5,6,7,8}, A={2,4,5"7,8}.
The characteristic function of A corresponds to the sequence

O[1/0]1]110]1|1
123456738

7. Let a be a positive integer. Then for each integer b there exist unique
integers q and r such that

b=qga+r, 0<r<a.

17



We then have the function Quo, : Z — 7Z, defined by

Quo,(b) =¢q, beZ
and the function Rem, : Z — {0,1,2,...,a — 1}, defined by

Rem,(b) =1, b€ Z.

8. Let a be a positive real number. Then for each real number x there exist
unique integers ¢ and r such that
r=qa+7r, 0<7r<a.

We then have the function Quo, : R — Z, defined by

Quoy(r) =¢q, z€R;
and the function Rem, : R — [0, a), defined by

Rem,(z)=7r, x€R.

Let f: X — Rand g : X — R be two functions. The addition of f and
g is a function f + g : X — R defined by
(f +9)@) = f(z) +g(x), zeX
The subtraction of f and g is a function f — g : X — R defined by

(f—9)(z)=f(z) —g(z), zeX.

The scalar multiplication of f by a constant c is a function ¢f : X — R
defined by

(cf)(x) =cfx), zelX
The multiplication of f and ¢ is a function f - ¢ : X — R defined by
(f-9)z) = fz)g(z), =elX
Usually, we simply write f - g as fg.
Example 5.5. Given a universal set X and subsets A C X, B C X. Find the

characteristic function 15 of A in terms of 14 and the characteristic function
14up in terms of 14, 15, and 14n5B.

18



By definition of characteristic function, we have

() = 1if zeA  [1if z¢gA
A=V 00 2¢gd "\ 0if €A

Note that
(Ix — 1a)(z) = 1x(z) — 1a(z)
B 1—0if z€ A
ol 1—-11if z€ A
_J 1t xg A
- 0if ze€A.
Then

(1x —1a)(z) = 14(x) forall ze X.
This means that
15 =1y — 14

(1a-1p)(z) = la(z)-1p(z)
1-1if re ANB
= 1-0if re A\B
0-1if zreB~NA

1 z€eANB
- loif x€ANB
= lunp(z) forall z e X.

Thus
lg-1p = 1408

6 Injection, Surjection, and Bijection

Definition 6.1. A function f : X — Y is said to be

1. injective (or one-to-one) if distinct elements of X are mapped to dis-
tinct elements in Y. That is, for 1,29 € X,

if @ #xo, then f(z1) # f(za).
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An injective function is also called an injection (or one-to-one map-
ping).

2. surjective (or onto) if every element in Y is an image of some elements
of X; that is, for each y € Y, there exist € X such that f(z) = y. In

other words, f(X) =Y. A surjective function is also called a surjection
(or onto mapping).

3. bijective if it is both injective and surjective. A bijective function is also
called a bijection (or one-to-one correspondence).

Example 6.1. Let X = {a,b,c,d}, Y = {1,2,3,4,5}. The function given
by the figure

a 1
b 2
C 3
d o 4

)

is injective, but not surjective. The function given by the figure

a 1
b o2
Cc 3
d o 4

5

is neither injective nor surjective.

Example 6.2. Let X = {a,b,c,d}, Y ={1,2,3}. The function given by the
figure

20



b 2
C 3
d

is surjective, but not injective.

Example 6.3. Let X = {a,b,¢,d}, Y = {1,2,3,4}. The function given by

the figure
a 1
b 2
C 3
d 4

is bijective.

Example 6.4. 1. The function f : R — R, f(z) = e*, is injective, but not
surjective.

2. The function f : R — Rsq defined by f(z) = z? is surjective, but not
injective.

3. The function f : R — R defined by f(z) = z* is bijective.
4. The function f : R, — R defined by f(x) = log x is bijective.

Definition 6.2. The composition of functions

f: X—=Y and ¢g:Y =7
is a function go f : X — Z, defined by

(go f)lz)=g(f(z)), z€X.
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Example 6.5. Let X = {a,b,¢,d}, Y = {1,2,3,4,5}, Z = {a, 3,7}. Let
f: X —=Yand g:Y — Z be given by

f
X%Y%gz
1
a o
b 2 B
C Y
q 4

5

The composition go f : X — Z is given by

X Z
a a
b B
C CIY
d

Theorem 6.3 (Associativity of Composition). Given functions
f-X=Y g9g.Y—>Z h:Z—->W
Then
ho(gof)=(hog)of,
as functions from X to W. We write
hogof=ho(gof)=(hog)of.
Proof. For any x € X, we have

(holgof))(x) = h((go f)lx



ho(Qof)

(h-g)

%

Example 6.6. Let [ : R — R, f(z) =2r+1land g: R =R, g(z) = 5.
Then both g o f and f o g are functions from R to R, and for z € R,

(go filx) = g(f(z)) =g(2x +1)
20+ 1

2z +1)2+2
2x +1 .
Ax? + 4 + 3’

(fog)a) = f(g(x))=f( : )

x2 + 2
2x
- +1
)
22 4+ 21 + 2
x24+2

[]

Obviously,
fog#golf

The identity function of a set X is the function

idy : X — X, idyx(x)==x forall z e X.
Definition 6.4. A function f : X — Y is said to be invertible if there

exists a function ¢ : Y — X such that
g(f(x)) = x for ze€ X,
flgly)) =y for yev
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In other words,
gof=idx, fog=idy.

The function g is called the inverse of f, written as g = f~1.

Remark. Given a function f : X — Y. For each element y € Y and each
subset B C Y, we define their inverse images

Hy) = {z€X: flz) =y}

fHB) = {z € X: f(x) € B}.
Here f~1(y) and f~1(B) are just notations for the above sets; it does not mean
that f is invertible. So f~1(y) and f~!(B) are meaningful for every function
f. However, f—! alone is meaningful only if f is invertible.

If f:X — Y isinvertible, then the inverse of f is unique. In fact, let g
and h be inverse functions of f, i.e.,

g(f(x)) = h(f(x) =2 for ze€ X;
flaly) = f(hy)) =y for yeY.

For each fixed y € Y, write 21 = g(y), 22 = h(y). Apply f to 21, 22, we have
flx) = fl9(y)) =y = f(h(y)) = f(a2).
Apply g to f(z1), f(x2), we obtain
z1 = g(f(z1)) = g(f(22)) = 22.

This means that g(y) = h(y) for all y € Y. Hence, g = h.
The inverse function f~! of any invertible function f is invertible, and the
inverse of f~1 is the function f,ie., (f~1)~!t = f.

Theorem 6.5. A function f : X — Y s wnvertible if and only iof f is
one-to-one and onto.
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Proof. Necessity (“=-"): Since f is invertible, there is a function g : ¥ — X
such that

go f=idyx, fog=idy.
For any xq, 29 € X, if f(x1) = f(29), then
z1 = g(f(z1)) = g(f(z2)) = z2.
This means that f is one-to-one. On the other hand, for each y € Y we have
g(y) € X and f(g(y)) = y. This means that f is onto.

Sufficiency (“ <= 7): Since f is one-to-one and onto, then for each y € Y
there is one and only one element z € X such that f(z) = y. We define a
function

9:Y =X, gy ==,
where x is the unique element in X such that f(z) =y. Then

(go filx) = g(f(x) = gly) =z, xeX,
(fog)ly) = fl9ly) = flz) =y, yeY

By definition, f is invertible, and g = 1. O
Example 6.7. Let 27 denote the set of even integers. The function

f:7Z—2Z, f(n)=2n,
is invertible. Its inverse is the function

122 -7, fn)=2=2
Check: For each n € Z,
(fo fin) = fTH(f(n) = f'(2n) = F =n.
For each m = 2k € 27,
(Fof)m)=f(%)=2-%=m.

However, the function

fi:Z—7Z, filn)=2n
is not invertible; and the function

fo:Z — 27, fa(n)=n(n-—1)

is also not invertible.
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Example 6.8. The function
f R=R, f(x)=2"
is invertible. Its inverse is the function
[URSR, ) =V
Check: For each x € R,
(frof)x) = [ fl2) = f(@°) = Vad = u,
(fof™) = f(f ) = fWz) = (Ja) ==
Example 6.9. The function
fTR—=Ry, g(z)=¢€
is invertible. Its inverse is the function
g: R, =R, g¢g'z)=1logz.

Check:
gof(z) = gle”) = log(e”) =z, wzeR
fogly) = fllogy) = ¢ =y, yeR,.
Example 6.10.

The function

fiRSR, flz)=2a",

is not invertible. However, the function

fi i Rsg— Rsg,  fi(z) = 22,
is invertible; its inverse is the function

fit iR = Rao,  fi'(z) = V.

Likewise the function

fo:Reg = Rsg,  folx) = 22,
is invertible; its inverse is the function

filiRsg = Rep,  fy'(z) = —V/2.
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The function f: R — [—1,1], f(x) = sinz, is not invertible. However, the

function oo
Ji: [—575] — [-1,1], fi(z) =sinz,
is invertible (which is the restriction of f to [—%, %D and has the inverse
f1_1 =11 — [—g,g] : ffl(x) = arcsin .

Exercise 6. Let f : X — Y be a function.
1. For subsets A;, Ay C X, show that

f (AN A) © f (A N f(As),
f(ATUAy) = f(A)U f(A):
2. For subsets By, By C Y, show that
FHBINBy) = (By)nf(B),
fHBIUBy) =1 (B)U f(By).

Example 6.11. Let f : X — X be a function. If X is a finite set, then the
following statements are equivalent.

(1) f is bijective.

(2) f is one-to-one.

(3) f is onto.

Exercise 7. Let f : X — X be a function. Let

fO o= idx,
f"= fo-of=f""of nez,.

n

It is easy to see that for nonnegative integers m,n € N,

fm o fn — fm+n.

27



Exercise 8. Let f : X — X be an invertible function. Let f~" = (f~1)" for
n € Z.. Then
fMo f" = M forall m,n € Z.

Proof. Note that fU is the identity function idyx. We see that for each function
g: X — X,
flog=gof'=y.

For each positive integer k.,

fkof%?: f0“°0fof_H3“°Of4

) )

_ ~1 1 1
— fo ofo(fof )of ovofj
k—1 k—1

o 0 -1 —1
= fo ofof oj ovofj
k—1 k—1
:fo---o]iof_lo of_lj
ko1 k1
= = fofl= g
Likewise,f‘kof’f:f_lo---of_iofo---oizfo.ThusforallkEZ,
) *

frof™=f=idy, ie, (/7=
Now we divide the situation into four cases: (i) m > 0,n > 0; (ii) m <
0,n < 0; (ili) m > 0,n < 0; and (iv) m < 0,n > 0. The cases (i) and (ii) are
trivial.
Case (iii). We have two subcases: (a) m > —n, and (b) m < —n. For the

subcase (a), we write k = —n and m = k+a, where a is a nonnegative integer.
Then a = m + n, and

mefn:faOkaf_k:faOfO:fa:fm_'_n.

For the subcase (b), we write n = —m — a, where a is a nonnegative integer.
Then —a = m + n, and

fmofn:fmof—mof—a :fOOf—a:f—a:fm%—n.
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Case (iv). There are also two subcases: (a) —m > n, and (b) —m < n. For
the subcase (a), let m = —n — a. Then

fmofn:f—aof—nofn:f—aofO:f—a:fm+n
For the subcase (b), let k = —m and write n = k + a. Then
mef”:f_kOkaf“:fOOf“:fa:fm+”.
[]

Example 6.12. Let f : X — X be an invertible function. For each x € X,
the orbit of x under f is the set

Orb(f,z) ={f"(z) :n € Z}.
Show that if Orb(f,z1) N Orb(f, z2) # @ then Orb(f, x1) = Orb(f, x2).

Proof. Let xy € Orb(f,x1) N Orb(f, x2). There exist integers m and n such
that xg = f"(x1) and xy = f"(x9), that is, f"(z1) = f"(z2). Applying the
function f~™ to both sides, we have

z1 = foz) = ("o ™)) = (" (21))
= [T (@2) = ("o f")(x2) = [ (x2).
Thus for each f*(x) € Orb(f,z1) with k € Z, we have
Frar) = fAOf (@) = f5 " (@) € Orb(f, 22).

This means that Orb(f, z1) C Orb(f, z9). Likewise, Orb(f, z9) C Orb(f, x1).
Hence Orb(f, x1) = Orb(f, x2). ]

Example 6.13. Let X be a finite set. A bijection f : X — X is called a
permutation of X. A permutation f of X = {1,2,...,8} can be stated as

follows:
(st 1o )= (6 2 1)

Orb(f,1) = Orb(f,6) = Orb(f,8) = {1,6,8};
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Orb(f,2) = Orb(f,7) = {2,7};
Orb(f,3) = Orb(f,5) = {3,5};
Orb(f,4) = {4}.
Exercise 9. Let f: R\ Q — R~ Q be defined by
f(x)zx—il, r e R\ Q.
(a) Show that f is invertible.
(b) List all elements of the set {f* : k € Z}.

7 Infinite Sets

Let A be a finite set of m elements. When we count the elements of A, we have
the 1st element a;, the 2nd element a, the 3rd element a3, and so on. The
result is to have listed the elements of A as follows

ai,ag,y ..., y.
Then a bijection f:{1,2,...,m} — A is automatically given by
f(i):al-, i:1,2,...,m.

To compare the number of elements of A with another finite B of n elements.
We do the same thing by listing the elements of B as follows

bi,bs, ..., 0b,.
If m = n, we automatically have a bijection g : A — B, given by
gla;) =b;, 1=1,2,...,m.
If m # n, there is no bijection from A to B.

Theorem 7.1. Two finite sets A and B have the same number of elements
iof and only if there is a bijection f : A — B, i.e., they are in one-to-one
correspondent.
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Definition 7.2. A set A is said to be equivalent to a set B, written as
A ~ B, if there is a bijection f: A — B.

If A~ B,ie., thereisa bijection f : A — B, then f has the inverse function
f=1 . B — A. Of course, f~! is a bijection. Thus B is equivalent to A, i.c.,
B~ A.

If A~ B and B ~ (|, there are bijections f : A — Bandg: B — C.
Obviously, the composition go f : A — (' is a bijection. Thus A ~ C.

For infinite sets, to compare the “number” of elements of one set with another,
the right method is to use one-to-one correspondence. We say that two sets A
and B have the same cardinality if A ~ B, written as

Al =B

The symbol |A]| is called the cardinality of A, meaning the size of A. If A is
finite, we have
|A| = number of elements of A.

Example 7.1. The set Z of integers is equivalent to the set N of nonnegative
integers, i.e., Z ~ N.
The function f : Z — N, defined by

i ={

2n if n>0
—2n—11if n<O0,

is a bijection. Its inverse function f~!: N — Z is given by

_ n/2 if n =even
S ) = { —(n+1)/2 if n=odd.

We can say that Z and N have the same cardinality, i.e.,
|Z| = N].
Example 7.2. For any real numbers a < b, the closed interval |a, b] is the set
la, b ={z eR:a <z <b}.
Then |a, b] is equivalent to [0, 1], i.e., [a, b] ~ [0, 1].
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The function f : |a,b] — |0, 1], defined by

T —a

is a bijection. Its inverse f~1:[0,1] — [a, b] is given by

fHz)=(b—a)x+a, xcl01]
Definition 7.3. A set A is called countable if,
e A is either finite, or
e there is bijection from A to the set IP of positive integers.
In other words, the elements of A can be listed as either a finite sequence
1,09, ..., 0]

or an infinite sequence
ai,as,as, ... .

Sets that are not countable are said to be uncountable.
Proposition 7.4. Every infinite set contains an infinite countable subset.

Proof. Let A be an infinite set. Select an element a; from A. Since A is infinite,
the set A1 = A~ {ay} is still infinite. One can select an element as from Aj.
Similarly, the set

A2 = Al AN {ag} = A AN {al,ag}

is infinite, one can select an element ag from As, and the set
Ag = AQ AN {ag} = A AN {al, an, ag}
is infinite. Continue this procedure, we obtain an infinite sequence
ai,as,as, ...

of distinct elements from A. The set {ai,as,as, ...} is an infinite countable
subset of A. O

Theorem 7.5. If A and B are countable subsets, then AU B s countable.
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Proof. 1t is obviously true if one of A and B is finite. Let
A={ay,as, ...}, B={b,by,...}
be countably infinite. If A N B = &, then
AUB ={ay,by,as,by,...}

is countable as demonstrated. If A N B # @, we just need to delete the
elements that appeared more than once in the sequence aq, by, as, bo, . ... Then
the leftover is the set AU B. O

Theorem 7.6. Let A;, ¢ =1,2,---, be countable sets. If A;NA; = for
any i # j, then |J;°| A; is countable.

Proof. We assume that each A; is countably infinite. Write
Ai ={an, a,ai3,---}, i=12,...

The countability of | J;°; A; can be demonstrated as

ajp — a2 aiz — a4 -
/ / /
a1 a22 a3 Ag4 - -
L7 / /
asi a32 a23 asq -
/ / /
41 42 a23 Q44 -
ajp — a2 a3 — Gi14
l T l
a21 < a22 a23 24
| T |
asy — azg2 — a3 a34
|
Q41 < Q42 < A23 < Q44
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The condition of disjointness in Theorem 7.6 can be omitted.
Theorem 7.7. The closed interval [0, 1] of real numbers is uncountable.

Proof. Suppose the set [0, 1] is countable. Then the numbers in [0, 1] can be
listed as an infinite sequence {c;}°,. Write all real numbers «; in infinite
decimal forms, say in base 10, as follows:

a1 = O.a1a2a3a4 s
Qo = O.blbgbgb4 s
a3 = 0.cicaczey - - -
We construct a number x = 0.x1x9x324 - - -, where x; are given as follows:

L frifar=2
LT 2 ifag £ 2

L L=
2T 2 ifby £ 2,

o [life=2
ST 2 ifey £ 2,

Obviously, x is an infinite decimal number between 0 and 1, i.e., x € [0, 1].
Note that
Ty # a1, Ty F Ay, Tz F as,
This means that
TFa, TFa, TFas,
Thus x is not in the list {aq, as, ag,...}. Since all real numbers of |0, 1] are

already in the list, in particular, x must be in the list. This is a contradiction.
[]

Example 7.3. For any set ¥, either finite or infinite, recall that £ is the
set of words of length n over X, and X" is the product of n copies of . Then
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the function f : (" — %" defined by

flaraz---a,) = (a1, a9,...,a,), ai,a,...,a, €%,
is a bijection. Thus 2™ ~ £7.

Theorem 7.8 (Cantor-Bernstein-Schroeder Theorem). Given sets A and B.
If there are injections f : A — B and g : B — A, then there exists a
bijection h : A — B,

Proof. FIRST PROOF (non-constructive). Note that f : A — f(A) and
g : B — g(B) are bijections. Our aim is to find a subset S C A such that
g(f(S)) = S. If so, the bijections f : S — f(S) and g : f(S) — S give rise to
a bijection between A and B.

For each subset E C A, clearly, f(E) C B and g(f(E)) C A; we have

E:=g(f(E)) C A.

If there exists a subset S C A such that S = S, ie., S = g(f(S)), then
S = g(f(S)). We claim that such subset S with S = S does exist.

We say that a subset £ C A expandable if £ C E. Expandable subsets
of A do exist, since the empty set & is expandable. Let S be the union of all
expandable subsets of A. We claim that S = 9.

We first show that Ey C E5 implies El C EQ for subsets Fq, Fy of A. In
fact, if By C Fs, then f(F1) C f(FE,); consequently, f(Ey) D f(Es) by taking
complement; hence g(f(E1)) 2 g(f(E2)) by applying the injective map g; now
we see that g(f(E1)) C g(f(E,)) by taking complement again, i.c. By C B,

Let D be an expandable subset of A, ie., D C D. Clearly, D Cc S by
definition of S; then DCS by the previous argument thus D C Sas D C D.
Since D is an arbitrary expandable subset, we see that S C S, Again, the

previous argument implies that ScSs ; this means that S is an expandable
subset; hence S C S by definition of S. Therefore S=29.

SECOND PROOF (constructive). Since A ~ f(A), it suffices to show that
B ~ f(A). To this end, we define sets

Ay =g(f(4), Bi=f(g(B)).
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Then gf : A — A; and fg : B — By are bijections, and
A1 € g(f(A)) S g(B), Bi= [f(g(B)) < f(A).
Set Ay := A, By := B, and introduce subsets
A :=g(Bi-1), Bi=f(Ai), ©>2.
We claim the following chains of inclusion
A=A DA DA D+, B=BODB 2By D---

In fact,
Ay = g(B1) = g(f(9(B))) € gf(A) = Ay,
By = f(A1) = f(9(f(A))) € fg(B) = B.
By induction, for ¢+ > 2, we have
Aiy1=9(B;)) Cg(Bis) =4; (B C Bj);
Biyi = f(A) C f(Ai1) =B (A CA).
Now we set D := ()2, B;. Recall By C f(A) C B. We have disjoint unions
B = (B~ [(A)U(f(A)— B) U(B,~ D)UD

= DU(f(A)— B)U (B — f(A) U J(B: — Biv);

f(4) = DU(f(4) = ByUJ(B: = Bi).

Note that fg: B — Bj is a bijection. By definition of A; and B;, we have
f9(B — f(A)) = fg(B) — fgf(A) = B1 — By,
f9(Bi — Bis1) = [f9(B;i) — fg(Bit1)
f(Airr) = f(Air2)

- Bi—i—? - Bi—l—?)a 1 > 1.
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We see that fg sends (B — f(A)) U2 (Bait1— Baita) to Ui (Bait1 — Bais2)
bijectively. Note that both B and f(A) contain the subset

DU (f(A)— By) U U(B2i — Byi11),

whose complement in the sets B, f(A) are respectively the subsets

(B — f(A) U J(Bais1 — Baiwa), | J(Baiv1 — Baisa).
=0 i=0

It follows that the function ¢ : B — f(A), defined by

¢(z) = { v if 2. € DU(f(A) = Bi) UUZ (Bai — Boisi)
~ fe(a) if @€ (B— f(A)UUS (Bt — Boiwa)

is a bijection. ]

B3

o
N
A

f(A)
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