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PROOF  In part (i), the product on the right hand side divides both
a and b, and s the largest such integer, by Propesition 12.1 ,...._5.:__
part (i), the praduat on the right hand side s a multiple-of both g ancd
_:,.. and 15 the smallest surh pasitive imteger, again by Proposition 12,1,
“inally, if we tnke the product of the right hand sides in (1) and (i), we

get
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Here s our next apphication of the

lamental Theorem of Arithmetic

PROPOSITION 12,
Lot be o posifive mteger. Then i s retional if and oly 1f m oo
___:.q.___...__;_. S __\_....._ n= .__:u L1...:. S0 tnleger.my;
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1 J.muﬁ_-. .__=. tight-to-loft impheation i obvious: if o = m? with
e Ly then ok = |m| € & is ceriainly sational

Pl Jelt- b pagelat srnpilication is much les eleag Suppose s eational,
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| r=pleaph then s P ot The same holds for the

primes i the factorization of 2. Henoe, T the Fundmnental Theo

fen, each prime Gl . it.al 2 i .

=gt _E,__ Ti _. e |:_ ..“ s __:_"_._: r_... e =
gt Thenn =, where m = q' -t &2 I

A _.:“::,,: argument appies to the rtionadiny of ¢
L :
Yol renils (see Exercise 5 at the end of the chapter)

roots, and more gener-

. Now for our final consequence of the Fundamental Iheorem 12,1 Again
:._::_E _...._:..nﬂ mnocent, but in the example follevang the proposstion we J._E__
prvew striking application of i,

Inthe statement, when we say a positive g ger bs dsduare (of anm'® power)
we mean that it is the square of an integer{or the #'% power of an integer),

PROPOSITION 12.4
Lk @ and B by positive tiltegers thatl are coprime to egck other
) If wb i o sguare, then both a and b sre aisn SGHITES
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(b) More generally, if ab s an w™ power (for some positive mieger i),
then bath o and b are also n™® powers,

PROOF  {a) Let the prime factorizations of a,b le

tlhn_:.:__wuf b=

(where gy < < ppoand gy <. < q;). Il ab is o square, then ab = i for
mThen ab = I

gome inkeger ¢ let ¢ hove prime factorization ¢ = _1“,_ sl

pives the equalion
P oo PN ool = Y A

Sanee a el o Loy sl ot b, none ol the pos aee equal to any
of the g Henee, the Fundamental Theorem 12,1 implies that each p,
1 atnl Ll conpespronding powers o o m.___.._ e egnd;
el Tikewise for he g naid thelr powers,

Wi conelinde that all the powers o, e are even nunibers
2el. This micans thal,
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The Fundamental Theorens implies Wt each powner de, b5 o

af a; and bence a b are both o™ powers, |

Exanimple 12,1
Here s onn innoeent. |

e epuestlon ot the [ntepors;
L e neml- e even sgeetre exceed o cube fry 17

[The non-eero even sguares are ol eouese Lhe integers 4, 16,04, 100, 144,
andl the cubes are ., —8, — 10, 1270
L other words, we pre asking whether the equation

s any selutions with x, I non-zero integers: This s an esample o
bz any solutions with o v both non-zero intepers: This is an esample of
an eeation

wiNophantine eguation, [ general, o Diophantine equntion
fir which the solulions are requiced Lo e datdegers. Most Diopduutine
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