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1 Equivalence Relation

A relation on a set X is a subset of the Cartesian product X×X. Whenever
(x, y) ∈ R we write xRy, and say that x is related to y by R. For (x, y) 6∈ R,
we write x6Ry.

Definition 1. A relation R on a set X is said to be an equivalence relation
if

(a) xRx for all x ∈ X (reflexive).

(b) If xRy, then yRx (symmetric).

(c) If xRy and yRz, then xRz (transitive).

Let X be a set and R an equivalence relation on X. It is quite common
to denote the equivalence relation R by ∼ if there is only one equivalence
relation to be considered. So xRy becomes x ∼ y. For each x ∈ X we define

[x] = {y ∈ X | y ∼ x},
called an equivalence class of ∼; each element of [x] is called a represen-
tative of the class [x]. The collection all equivalence classes of ∼ is called
the quotient set of X modulo ∼, denoted X/∼.

Definition 2. A partition of set X is a collection P = {A1, . . . , Ak} of
disjoint nonempty subsets of X such that X =

⋃k
i=1 Ai.

Proposition 3. Let X be a set. If ∼ is an equivalence relation on X, then
the collection {[x] : x ∈ X} of equivalence classes of ∼ is a partition of X.

Conversely, if P = {A1, . . . , Ak} be a partition of X, then the relation
R =

⋃k
i=1 A2

i is an equivalence relation on X.
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Example 1. For any positive integer m, the congruence relation modulo m

is an equivalence relation on the set Z of integers. The quotient set of Z
modulo m is

Z/∼= {[0], [1], . . . , [m− 1]}.
Example 2. Let ∼ be a relation on R2, defined by (s, t) ∼ (u, v) if v − t =
2(u− s).

Example 3. Let f : X → Y be a surjective function. Define a relation ∼
on X by x1 ∼ x2 if f(x1) = f(x2). Then ∼ is an equivalence relation on X.
Moreover, the function

f̃ : X/∼−→ Y, [x] 7→ f(x)

is a bijection. For instance, f : R2 → R by f(x, y) =
√

x2 + y2.

2 Function and Inverse Function

Definition 4. Let X and Y be sets. A function from X to Y is a rule f

that assigns each element x of X a single element y in Y . We write the rule
as f : X → Y , and say that x is sent to y; we also write x 7→ y or y = f(x).
Functions are also known as maps or mappings.

Definition 5. Let X and Y be nonempty sets. A function f : X → Y is
said to be

• injective if distinct elements are sent to distinct elements;

• surjective if for every element y ∈ Y , there is an element x ∈ X such
that f(x) = y;

• bijective if f is both injective and surjective. If so it is called a one-
to-one correspondence.

Definition 6. Let X : X → Y and g : Y → Z be functions. The composi-
tion of f and g is a function g ◦ f : X → Z defined by

(g ◦ f)(x) = g(f(x)) for all x ∈ X.

Proposition 7. Let f : X → Y , g : Y → Z, h : Z → W be functions. Then
the composition functions h ◦ (g ◦ f) and (h ◦ g) ◦ f are the same.
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Proof. For each x ∈ X,

(h◦ (g ◦f))(x) = h((g ◦f)(x)) = h(g(f(x))) = (h◦g)(f(x)) = ((h◦g)◦f)(x).

Definition 8. A function f : X → Y is said to be invertible if there is a
function g : Y → X such that

(g ◦ f)(x) = x for all x ∈ X,

(f ◦ g)(y) = y for all y ∈ Y.

If so, the function g is called an inverse of f , written g = f−1.

Proposition 9. Let f : X → Y be a function.

(a) If f is invertible, then its inverse is unique.

(b) The function f is invertible if and only if f is a bijection.

Proof. (a) Let g1, g2 be functions g : Y → X such that (gi ◦ f)(x) = x for all
x ∈ X and (f ◦ gi)(y) = y for all y ∈ Y , i = 1, 2. Since y = f(g2(y)) and
g1(f(x) = x, then

g1(y) = g1(f(g2(y))) = g2(y) for all y ∈ Y.

(b) Let g be the inverse of f . For x1, x2 ∈ X, if f(x1) = f(x2), then
x1 = g(f(x1)) = g(f(x2)) = x2. So f is injective. For any y ∈ Y , the element
g(y) is sent to y, in fact, f(g(y)) = y by definition of inverse.

Example 4. (a) f : R→ R by f(x) = x2 is neither injective nor surjective.

(b) f : R → R by f(x) = x3 is bijective; its inverse g : R → R is given by
g(x) = 3

√
x.

(c) f : R→ R+ by f(x) = ex is bijective, where R+ = {x ∈ R | x > 0}; and
its inverse is f−1 : R+ → R is given by f−1(x) = ln x.

(d) f : R→ R≥0 by f(x) = x2 is surjective, where R≥0 = {x ∈ R | x ≥ 0}.
(e) f1 : R≥0 → R≥0 by f(x) = x2 is bijective; its inverse f−1 : R+ → R is

given by f−1(x) =
√

x.

(f) f : R≤0 → R≥0 by f(x) = x2 bijective, where R≤0 = {x ∈ R | x ≤ 0}; its
inverse f−1 : R+ → R is given by f−1(x) = −√x.
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Example 5. (a) The function f : R→ R by f(θ) = sin θ is neither injective
nor surjective. However, the function g : [−π

2 ,
π
2 ] → [−1, 1] is bijective;

its inverse g−1 : [−1, 1] → [−π
2 ,

π
2 ] is denoted by g−1(x) = arcsin x.

(b) The function f : R→ R by f(θ) = cos θ is neither injective nor surjective.
However, the function g : [0, π] → [−1, 1] is bijective; its inverse g−1 :
[−1, 1] → [0, π] is denoted by g−1(x) = arccos x.

(c) The function f : [π2 ,
3π
2 ] → [−1, 1] by f(θ) = sin θ is bijective. Its inverse

f−1 : [−1, 1] → [π2 ,
3π
2 ] is given by f−1(x) = π

2 + arccos x.

(d) The function f :
⋃∞

n=−∞(−π
2 ,

π
2 ) → R by f(θ) = tan θ is neither injective

nor surjective.

(e) The function f : (−π
2 ,

π
2 ) → R by f(θ) = tan θ is bijective; its inverse

f−1 : R → (−π
2 ,

π
2 ) is denoted by f−1(x) = arctan x. The function f1 :

(π
2 ,

3π
2 ) → R by f(θ) = tan θ is also bijective; its inverse f−1

1 : R→ (π
2 ,

3π
2 )

is given by f−1
1 (x) = π + arctan x.

Example 6. The complex exponential function f : C → C is defined by
f(z) = ez, where if z is written as z = x + iy then

ez = ex+iy := exeiy = ex(cos y + i sin y).

The function f is injective but not surjective.

Example 7. Hyperbolic functions
(a) The hyperbolic sine function is defined as

sinh : R→ R, sinh(x) =
ex − e−x

2

is bijective. Its inverse is the function

arsinh : R→ R, arsinh(x) = ln(x +
√

x2 + 1).

Let y = 1
2(e

x−e−x). Then e2x−2yex−1 = 0. Thus ex = 1
2(2y±

√
4y2 + 4) =

y±
√

y2 + 1. Since
√

y2 + 1 > y and ex > 0, we must have ex = y+
√

y2 + 1.
Hence

x = ln(y +
√

y2 + 1).

(b) The hyperbolic cosine function

cosh : R→ R, cosh(x) =
ex + e−x

2
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is neither injective nor surjective. It has no inverse function! However, the
restriction

f : R≥0 → [1,∞), f(x) = cosh(x)

is bijective and its inverse function is given by

f−1 : [1,∞) → R, f−1(x) = arcosh(x) = ln(x +
√

x2 − 1).

Let y = 1
2(e

x +e−x). Then e2x−2yex +1 = 0. Thus ex = 1
2(2y±

√
4y2 − 4) =

y ±
√

y2 − 1. Since ex goes to ∞ when y goes to ∞ and
√

y + 1 >
√

y − 1,
then 0 < y −

√
y2 − 1 = y −

√
(y + 1)(y − 1) < y − (y − 1) = 1, we must

have ex = y +
√

y2 − 1. Hence

x = ln(y +
√

y2 − 1).

The function g : R≤0 → [1,∞) by g(x) = cosh(x) is also bijective. Its inverse
function is given by

g−1 : [1,∞) → R≤0, g−1(x) = − ln(x +
√

x2 − 1).

(c) The hyperbolic tangent function

tanh : R→ (−1, 1), tanh =
sinh x

cosh x
=

ex − e−x

ex + e−x
=

e2x − 1

e2x + 1

is bijective. Its inverse function is

artanh : (−1, 1) → R, artanh(x) =
1

2
ln

1 + x

1− x
.

Let y = e2x−1
e2x+1 . Then (1− y)e2x = 1 + y, i.e., e2x = 1+y

1−y . Thus x = 1
2 ln 1+y

1−y .
(d) The hyperbolic cotangent function

coth : (−∞, 0) ∪ (0,∞) → (−∞,−1) ∪ (1,∞),

coth(x) =
cosh x

sinh x
=

ex + e−x

ex − e−x
=

e2x + 1

e2x − 1

is bijective. Its inverse function is

artanh : {x ∈ R : |x| > 1} → {x ∈ R : |x| > 0}, arcoth(x) =
1

2
ln

x + 1

x− 1
.

Proposition 10. Let f : X → Y be a function from a finite set X to a finite
set Y .
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(a) If f is injective, then |X| ≤ |Y |.
(b) If f is surjective, then |X| ≥ |Y |.
(c) If f is bijective, then |X| = |Y |.
Proposition 11. Let f : X → Y and g : Y → Z be functions.

(a) If f and g are both injective, so is g ◦ f .

(b) If f and g are both surjective, so is g ◦ f .

(c) If f and g are both bijective, so is g ◦ f .

Proposition 12. Let f : X → Y and g : Y → Z be functions.

(a) If g ◦ f is injective, then f must be injective.

(b) If g ◦ f is surjective, then g must be surjective.

(c) If g ◦ f is bijective, then f is injective and g is surjective.

Proposition 13. Let X be a finite set and f : X → X be a function.

(a) If f is injective, then f must be surjective.

(b) If f is surjective, then f must be injective.

Example 8. For each a ∈ Zn, define fa : Zn → Zn by fa(x) = ax mod n.
Then fa is invertible if and only if gcd(a, n) = 1.

3 Infinity

Definition 14. Two sets X and Y are said to be equivalent if there is
a one-to-one correspondence f : X → Y ; written X ∼ Y . Then ∼ is an
equivalence relation. When X and Y are finite and equivalent, we say that
X and Y have the same cardinality.

Definition 15. A set A is said to be countable if it is equivalent to the set
Z+ = {1, 2, . . .} of positive integers. In other words, A is countable if it is an
infinite set, all whose elements can be listed as {a1, a2, a3, . . .}. An infinite
set that is not countable is said to be uncountable.

Proposition 16. Every infinite set contains a countable subset.
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Proof. Let A be an infinite set. Select an element from A, say a1. Since A is
infinite, one can select an element from A other than a1, say a2. Similarly, one
can select an element a3 from A other than both a1 and a2. Since the infinity
of A, one can continue this procedure by selecting a sequence of elements one
after the other to get an infinite countable subset {a1, a2, a3, . . .}.
Theorem 17. If A and B are countable subsets, then A ∪B is countable.

Proof. It is obviously true when one of A and B is a finite set. Let A =
{a1, a2, . . .} and B = {b1, b2, . . .} be countable infinite sets. If A ∩ B = ∅,
then A ∪B = {a1, b1, a2, b2, . . .} is countable as demonstrated. If A ∩B 6= ∅,
we just need to delete the elements that appeared more than once in the
sequence a1, b1, a2, b2, . . .. Then the leftover is the set A ∪B.

Theorem 18. Let Ai (i = 1, 2, · · · ) be countable sets and Ai∩Aj = ∅ (i 6= j).
Then

⋃∞
i=1 Ai is countable.

Proof. We assume that Ai = {ai1, ai2, ai3, · · · } (i = 1, 2, . . .). Then the count-
ability of

⋃∞
i=1 Ai can be demonstrated as

a11 → a12 a13 → a14 · · ·
↙ ↗ ↙

a21 a22 a23 a24 · · ·
↓ ↗ ↙ ↗

a31 a32 a23 a34 · · ·
↙ ↗ ↙

a41 a42 a23 a44 · · ·
...

...
...

...

The condition of disjointness in Theorem 18 can be omitted.

Exercise 1. If A and B are countable, then A×B is countable.

Theorem 19. The interval [0, 1] of real numbers is uncountable.

Proof. Suppose the set [0, 1] is countable; that is, the numbers in [0, 1] can
be listed as an infinite sequence {αi}∞i=1. Write all real numbers αi in infinite
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decimal forms, say in base 10, as follows:

α1 = 0.a11a12a13a14a15 · · · ,

α2 = 0.a21a22a23a24a25 · · · ,

α3 = 0.a31c32a33a34a35 · · · ,

· · ·
Then we can construct a number β = 0.b1b2b3 · · · , defined by

b1 =

{
1 if a11 = 0
0 if a11 6= 0,

b2 =

{
1 if a22 = 0
0 if a22 6= 0,

b3 =

{
1 if a33 = 0
0 if a33 6= 0,

· · ·
The number x is an infinite decimal of 1s and 2s and is a real number between
0 and 1. Since b1 6= a11, b2 6= b22, b3 6= a33, and so on, it follows that β 6= α1,
β 6= α2, β 6= α3, etc. Thus β is not in the list α1, α2, α3, . . .; that is, β is not
a real number between 0 and 1, a contradiction.

Note that any finite set cannot be equivalent to a proper subset of itself.
However, an infinite set can be equivalent to a proper subset of itself. For
instance, Z+ ∼ 2Z+, n 7→ 2n for n ∈ Z. So 2Z+ is countable.

Theorem 20 (Cantor-Bernstein Theorem). Given sets X and Y . If
there exist subsets X0 ⊆ X, Y0 ⊆ Y such that X0 ∼ Y , X ∼ Y0, then X ∼ Y .

First Proof. Let φ : X → Y0, ψ : Y → X0 be bijections. If there exist subsets
S ⊂ X, T ⊂ Y such that the restrictions φ : S → T , ψ : Y − T → X − S are
bijections, then it is clear that there is a bijection between X and Y .

In fact, for each subset A ⊆ X, we have φ(A) ⊆ Y0. For the subset
Y − φ(A), we have ψ(Y − φ(A)) ⊆ X0. Now we define

Â = X − ψ(Y − φ(A)).

Note that
if A ⊆ B in P(X), then Â ⊆ B̂.
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In fact, if A ⊆ B, then it is clear that φ(A) ⊆ φ(B); subsequently,

Y − φ(A) ⊇ Y − φ(B) and ψ(Y − φ(A)) ⊇ ψ(Y − φ(B));

thus X − ψ(Y − φ(A)) ⊆ X − ψ(Y − φ(B)), i.e., . Â ⊆ B̂.
We want to find a subset S ⊆ X such that Ŝ = S. If so, we have

X − S = X − Ŝ = X − (X − ψ(Y − φ(S))) = ψ(Y − φ(S)).

Then f : X → Y , defined by f(x) = φ(x) for x ∈ S and f(x) = ψ−1(x) for
x ∈ X − S, is a bijection.

We call a subset A of X closed if A ⊆ Â. Clearly, ∅ is closed. Let H be
the union of all closed subsets of X, i.e.,

H =
⋃

A⊆X,A⊆Â

A.

We claim that Ĥ = H.
For each element x ∈ H, there is a closed subset D of X such that x ∈

D ⊆ D̂. Then D ⊆ H by definition of H; subsequently, D̂ ⊆ Ĥ. Hence

x ∈ D ⊆ D̂ ⊆ Ĥ, i.e., H ⊆ Ĥ. Now the inclusion further implies Ĥ ⊆ ˆ̂
H.

This means that Ĥ is closed. Therefore Ĥ ⊆ H by definition of H.

Second Proof. Let φ : X → Y0, ψ : Y → X0 be bijections. Since X ∼ Y0, we
only need to show that Y0 ∼ Y . Let

X1 = ψ(Y0), Y1 = φ(X0).

Then X ⊇ X0 ⊇ X1 and Y ⊇ Y0 ⊇ Y1. Assume that

X ⊇ X0 ⊇ · · · ⊇ Xn, Y ⊇ Y0 ⊇ · · · ⊇ Yn,

where Xi = ψ(Xi−1) and Yi = φ(Yi−1), i = 1, . . . , n. Now we define

Xn+1 = ψ(Yn), Yn+1 = φ(Xn).

Since Yn−1 ⊇ Yn and Xn−1 ⊇ Xn, it follows that ψ(Yn−1) ⊇ ψ(Yn) and
φ(Xn−1) ⊇ φ(Xn), i.e., Xn ⊇ Xn+1, Yn ⊇ Yn+1. We thus have two sequences
of sets

X ⊇ X0 ⊇ X1 ⊇ · · · , Y ⊇ Y0 ⊇ Y1 ⊇ · · · ,

and bijections

(Yi−1 − Yi)
ψ∼ (Xi −Xi+1)

φ∼ (Yi+1 − Yi+2), i ≥ 0,
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where Y−1 = Y . Consider the set

Y∞ =
∞⋂
i=0

Yi ⊆ Y.

Then (Y2i−1 − Y2i)
φψ∼ (Y2i+1 − Y2i+2) for i ≥ 0 and

Y = Y∞ ∪ (Y − Y0) ∪ (Y0 − Y1) ∪ (Y1 − Y2) ∪ · · · (disjoint),

Y0 = Y∞ ∪ (Y0 − Y1) ∪ (Y1 − Y2) ∪ (Y2 − Y3) ∪ · · · (disjoint).

Now the function F : Y → Y0, defined by

f(y) =

{
φψ(y) if y ∈ ⋃∞

i=0(Y2i−1 − Y2i)
y otherwise

is a bijection.

Example 9. Since [1, 2] ∼ [1, 2] ⊂ (0, 3) and (0, 3) ∼ (1, 2) ⊂ [1, 2] as
intervals of real numbers, then [1, 2] ∼ (0, 3).
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