Equivalence Relations and Functions

October 15, 2013
Week 13-14

1 Equivalence Relation

A relation on a set X is a subset of the Cartesian product X x X. Whenever
(x,y) € R we write xRy, and say that x is related to y by R. For (x,y) € R,
we write zRy.

Definition 1. A relation R on a set X is said to be an equivalence relation
if

(a) xRz for all z € X (reflexive).

(b) If zRy, then yRx (symmetric).

(c) If zRy and yRz, then xRz (transitive).

Let X be a set and R an equivalence relation on X. It is quite common
to denote the equivalence relation R by ~ if there is only one equivalence
relation to be considered. So xRy becomes x ~ y. For each x € X we define

2] ={y € X |y ~ z},

called an equivalence class of ~; each element of [z] is called a represen-
tative of the class [z]. The collection all equivalence classes of ~ is called
the quotient set of X modulo ~, denoted X /~.

Definition 2. A partition of set X is a collection P = {A;,..., Ay} of
disjoint nonempty subsets of X such that X = Ule A;.

Proposition 3. Let X be a set. If ~ is an equivalence relation on X, then
the collection {|x] : x € X} of equivalence classes of ~ is a partition of X.

Conversely, if P = {Ay,..., Ay} be a partition of X, then the relation
R = Ule A? is an equivalence relation on X .
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Example 1. For any positive integer m, the congruence relation modulo m
is an equivalence relation on the set Z of integers. The quotient set of Z
modulo m is

2= {0, 1], .., [ — 1]}.
Example 2. Let ~ be a relation on R?, defined by (s,t) ~ (u,v) if v —t =
2(u — s).

Example 3. Let f : X — Y be a surjective function. Define a relation ~
on X by z1 ~ x4y if f(x1) = f(z3). Then ~ is an equivalence relation on X.
Moreover, the function

[iX[~v—Y, [1] = f(2)

is a bijection. For instance, f : R? — R by f(x,y) = /22 + 2.

2 Function and Inverse Function

Definition 4. Let X and Y be sets. A function from X to Y is a rule f
that assigns each element x of X a single element y in Y. We write the rule
as f: X — Y, and say that z is sent to y; we also write x — y or y = f(x).
Functions are also known as maps or mappings.

Definition 5. Let X and Y be nonempty sets. A function f : X — Y is
said to be

e injective if distinct elements are sent to distinct elements;

e surjective if for every element y € Y, there is an element x € X such
that f(z) = y;

e bijective if f is both injective and surjective. If so it is called a one-
to-one correspondence.

Definition 6. Let X : X — Y and g: Y — Z be functions. The composi-
tion of f and ¢ is a function go f : X — Z defined by

(go f)(z)=g(f(x)) forall x e X.

Proposition 7. Let f: X —- Y, g9:Y — Z, h: Z — W be functions. Then
the composition functions ho (go f) and (hog)o f are the same.



Proof. For each z € X,
(ho(gof))(x) =h((go f)(x)) = h(g(f(x))) = (hog)(f(x)) = ((hog)o f)(x).
]

Definition 8. A function f : X — Y is said to be invertible if there is a
function g : Y — X such that

(go f)(z) =2 forall ze€ X,

(fog)y) =y forall yev.
If so, the function g is called an inverse of f, written g = f~!.
Proposition 9. Let f : X — Y be a function.
(a) If f is invertible, then its inverse is unique.
(b) The function f is invertible if and only if f is a bijection.
Proof. (a) Let g1, go be functions g : Y — X such that (g; o f)(x) = x for all
r € X and (fog)(y) =y foraly € Y,i=1,2 Since y = f(g2(y)) and
g1(f(x) = x, then

91(y) = 91(f(92(y))) = ga(y) forall yeY.

(b) Let g be the inverse of f. For zy,z9 € X, if f(z1) = f(z3), then
r1 = g(f(x1)) = g(f(x2)) = z2. So f is injective. For any y € Y, the element
g(y) is sent to y, in fact, f(g(y)) = y by definition of inverse. O

Example 4. (a) f:R — R by f(z) = 2? is neither injective nor surjective.

(b) f: R — R by f(z) = 2? is bijective; its inverse g : R — R is given by
g(x) = V.

(¢) f:R —= R, by f(z) = e" is bijective, where Ry = {x € R|x > 0}; and
its inverse is f~! : R, — R is given by f~!(z) = Inz.

(d) f:R — Rxq by f(x) = 22 is surjective, where Rg = {x € R |z > 0},

(e) f1 : Rsg — Rsq by f(z) = 2? is bijective; its inverse f~! : R, — R is
given by f(z) = /7.

(f) f:Reg — Rxg by f(z) = 22 bijective, where Ry = {z € R |z < 0}; its
inverse f~1: R, — R is given by f~1(z) = —/z.
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Example 5. (a) The function f: R — R by f(0) = sin @ is neither injective

nor surjective. However, the function g : [-F,5] — [—1,1] is bijective;
its inverse g~ : [—1,1] — [—%, 5] is denoted by g~'(z) = arcsin z.
(b) The function f : R — R by f(0) = cos 6 is neither injective nor surjective.

However, the function g : [0,71] — [—1,1] is bijective; its inverse g~
[—1,1] — [0, ] is denoted by g~*(z) = arccos .

(c) The function f : [% ] — [-1,1] by f( ) = sin @ is bijective. Its inverse
:[=1,1] — [£, 2] is given by f~!(z) = Z + arccos z.

2
(d) The function f: |J,~_(=5,%) — R by f() = tan 6 is neither injective
nor surjective.
(e) The functlo

n 272
— (= is denoted by f~!(x) = arctanz. The function f; :

(%, 37”) — R by f(6) = tan@ is also bijective; its inverse f; ' : R — (Z, 2I)

is given by fl_l(x) = 7 + arctan x.

f:(=5,%2) — R by f(f) = tanf is bijective; its inverse
33)

Example 6. The complex exponential function f : C — C is defined by
f(z) = €%, where if z is written as z = = + iy then

=" = % = e”(cosy + isiny).

e
The function f is injective but not surjective.

Example 7. Hyperbolic functions
(a) The hyperbolic sine function is defined as

sinh : R — R, sinh(z) = ‘

—e
2
is bijective. Its inverse is the function

arsinh : R — R, arsinh(z) = In(x + V22 + 1).
Let y = £(e” —e ). Then e* —2ye” —1 = 0. Thus e” = §(2y++/4y*> + 4) =

yt/y?+1 .Smce VY2 +1>yande” >O,Wemusthaveex:y-l—\/yZ—l—l.
Hence
r=In(y++y>+1).

(b) The hyperbolic cosine function

cosh: R — R, cosh(x) = cre

4



is neither injective nor surjective. It has no inverse function! However, the
restriction

f : RZO - [17 OO), f($> - COSh(Z’)
is bijective and its inverse function is given by
fri1,00) =R, f'(z)=arcosh(z) =In(z+ Vz

Let y = 2(e”+e"). Then e** —2ye”+1 = 0. Thus e* (2y:t\/4y2—4):
y + \/y? — 1. Since e* goes to oo when y goes to oo and vy + 1 > /y — 1,
then 0 <y —vy?—1=y—/(y+1)(y—1) <y—(y—1) =1, we must

have e* = y + \/y?> — 1. Hence
=In(y+Vy*>—1).

The function g : R<g — [1,00) by g(x) = cosh(z) is also bijective. Its inverse
function is given by

g~ :[1,00) = Reg, g7 (2) = —In(z + Va2 — 1).

(¢) The hyperbolic tangent function

inh r __ 233_1
tanh: R — (—1,1), tanh = T _f me
coshex et+4e T e2v 41

is bijective. Its inverse function is

1. 1
artanh : (—1,1) — R, artanh(z) = =1In v
2 1—=x
Let y = %H Then (1 — y)e*® =1+ y, i.e., 2 = %Z Thus z = %1 i—g
(d) The hyperbolic cotangent function
coth : (—00,0) U (0,00) — (—o0,—1) U (1, 00),
coshr e*+e® €241
th = = =
coth(z) sinhz e*—e™ 2 —1
is bijective. Its inverse function is
1. z+1
artanh : {z e R: |z| > 1} - {x € R:|z| > 0}, arcoth(x) = §ln T
:E‘ JE—

Proposition 10. Let f : X — Y be a function from a finite set X to a finite
set'Y.



(a) If f is injective, then | X| < Y.

(b) If f is surjective, then | X| > |Y|.

(c) If f is bijective, then | X| = |Y].

Proposition 11. Let f: X — Y and g:Y — Z be functions.

(a) If f and g are both injective, so is go f.

(b) If f and g are both surjective, so is go f.

(¢) If f and g are both bijective, so is go f.

Proposition 12. Let f: X — Y and g: Y — Z be functions.

(a) If go f is injective, then f must be injective.

(b) If g o f is surjective, then g must be surjective.

(c) If go f is bijective, then f is injective and g is surjective.
Proposition 13. Let X be a finite set and f : X — X be a function.
(a) If f is injective, then f must be surjective.

(b) If f is surjective, then f must be injective.

Example 8. For each a € Z,, define f, : Z,, — Z, by f.(z) = ax mod n.
Then f, is invertible if and only if ged(a,n) = 1.

3 Infinity

Definition 14. Two sets X and Y are said to be equivalent if there is
a one-to-one correspondence f : X — Y written X ~ Y. Then ~ is an
equivalence relation. When X and Y are finite and equivalent, we say that
X and Y have the same cardinality.

Definition 15. A set A is said to be countable if it is equivalent to the set
Zy ={1,2,...} of positive integers. In other words, A is countable if it is an
infinite set, all whose elements can be listed as {ai, as,as,...}. An infinite
set that is not countable is said to be uncountable.

Proposition 16. Every infinite set contains a countable subset.



Proof. Let A be an infinite set. Select an element from A, say ay. Since A is
infinite, one can select an element from A other than aq, say as. Similarly, one
can select an element as from A other than both a; and as. Since the infinity
of A, one can continue this procedure by selecting a sequence of elements one
after the other to get an infinite countable subset {a1,as,as,...}. ]

Theorem 17. If A and B are countable subsets, then AU B 1is countable.

Proof. 1t is obviously true when one of A and B is a finite set. Let A =
{ai,as,...} and B = {by,bs,...} be countable infinite sets. If AN B = ),
then AU B = {ay, by, a9, by, ...} is countable as demonstrated. If AN B # (),
we just need to delete the elements that appeared more than once in the
sequence ap, by, as, b, .... Then the leftover is the set AU B. ]

Theorem 18. Let A; (i = 1,2,---) be countable sets and A;NA; =0 (i # j).
Then U;=; Ai is countable.

Proof. We assume that A; = {a;1, a;0,a;3,---} (i =1,2,...). Then the count-
ability of (J;-; A; can be demonstrated as

ayjp — a2 a1z — Q14
/ / /

az1 a22 a23 24
L/ / /

asi a32 a23 a34
/ / /

aq1 a49 as3 44

The condition of disjointness in Theorem 18 can be omitted.
Exercise 1. If A and B are countable, then A x B is countable.
Theorem 19. The interval [0, 1] of real numbers is uncountable.

Proof. Suppose the set [0, 1] is countable; that is, the numbers in [0, 1] can
be listed as an infinite sequence {«;}3°;. Write all real numbers «; in infinite



decimal forms, say in base 10, as follows:

a; = 0.a11a12a013014075 « - - )
ay = 0.a91a92a93a94095 - - - )

ag = 0.ag1c32a33034035 " - -,

Then we can construct a number 3 = 0.b1b9b3 - - -, defined by

1 ifa11 =0
0 ifa11 7£0,

b o 1 ifa22:0
2T 0 ifa227£0,

b o 1 ifa33:0
5T 0 1fCL337£0,

by =

The number z is an infinite decimal of 1s and 2s and is a real number between
0 and 1. Since by # a1, by # boo, b3 # as3, and so on, it follows that § # aq,
B # aa, B # as, etc. Thus ( is not in the list aq, as, g, .. .; that is, § is not
a real number between 0 and 1, a contradiction. []

Note that any finite set cannot be equivalent to a proper subset of itself.
However, an infinite set can be equivalent to a proper subset of itself. For
instance, Z, ~ 2Z,, n +— 2n for n € Z. So 27 is countable.

Theorem 20 (Cantor-Bernstein Theorem). Given sets X and Y. If
there exist subsets Xo C X, Yy CY such that Xo ~Y, X ~ Y, then X ~ Y.

First Proof. Let ¢ : X — Yy, ¥ : Y — X| be bijections. If there exist subsets
S C X, T C Y such that the restrictions ¢ : S — T,y :Y —T — X — § are
bijections, then it is clear that there is a bijection between X and Y.

In fact, for each subset A C X, we have ¢(A) C Y. For the subset
Y — ¢(A), we have (Y — ¢(A)) C Xy. Now we define

A= X —y(Y —6(4)).

Note that
if AC Bin P(X), then A C B.



In fact, if A C B, then it is clear that ¢(A) C ¢(B); subsequently,

YV —¢(A) 2Y —¢(B) and ¢(Y —¢(A4)) 2¢(Y — ¢(B));
thus X — (Y — ¢(A)) C X — (Y — ¢(B)), i.e., . AC B.
We want to find a subset S C X such that S = S. If so, we have
X—=85=X-5=X— (X —9(Y = ¢(5)) = (Y —(5)).
Then f : X — Y, defined by f(z) = ¢(x) for x € S and f(x) = ¢ "1(x) for
x € X — 5, is a bijection.

We call a subset A of X closed if A C A. Clearly, 0 is closed. Let H be
the union of all closed subsets of X, i.e.,

We claim that H = H.
For each element x € H, there is a closed subset D of X such that x €
D C D. Then D C H by definition of H; subsequently, D C H. Hence

re D C D C f], ie., H C H. Now the inclusion further implies H C H.
This means that H is closed. Therefore H C H by definition of H.

Second Proof. Let ¢ : X — Yy, ¥ : Y — Xj be bijections. Since X ~ Y|, we
only need to show that Yy ~ Y. Let
X1=v(Y), Y1=9¢(Xo).
Then X O Xy 2 X; and Y DYy D Y]. Assume that
X2Xy2-DX, Y2YD- DY,
where X; = ¥(X;_1) and Y; = ¢(Y;—1), i =1,...,n. Now we define

Xn—I—l - ¢(Yn)a Yn+1 - ¢(Xn)

Since Y, 1 2 Y, and X, 1 O X,, it follows that ¥(Y,_1) 2 ¥(Y,) and

O(Xn-1) 2 0(Xy), ie., Xy, 2 Xpv1, Yo 2 Y1 We thus have two sequences
of sets

X2Xo2X12-+, Y2922

)

and bijections

(Vi = Y) 2 (X = Xip1) & (Vg1 = Yiso), 20,
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where Y_; = Y. Consider the set

1=0

Then (Yai—1 — Y;) % (Yai41 — Yai40) for i > 0 and
Y=Y, U(Y =Yy U(Yo—-Y)U (Y1 —=Y3)U--- (disjoint),
Yy = Yao U (Yo = Yi) U (Vi — ¥3) U (Yy — Y3) U - - - (disjoint).
Now the function F': Y — Yj, defined by
ifye )2 Yo, 1 — Yy
f(y) _ { GW(Q) Yy Uz_()( 2i—1 2)

Y otherwise
is a bijection. ]

Example 9. Since [1,2] ~ [1,2] C (0,3) and (0,3) ~ (1,2) C [1,2] as
intervals of real numbers, then [1,2] ~ (0, 3).
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