Introduction to Analysis

October 25, 2013

Week 7-8

Upper and Lower Bounds 1

Definition 1. Let S be a nonempty subset of \mathbb{R} , i.e., S is a set consisting of some real numbers and $S \neq \emptyset$. A real number u is called an **upper bound** for S if

 $s \leq u$ for all $s \in S$.

Likewise, a real number l is called a **lower bound** for S if

s > l for all $s \in S$.

Example 1. (a) The set $S = \left\{\frac{1}{n} \mid n \in \mathbb{N}\right\} = \left\{1, \frac{1}{2}, \frac{1}{3}, \dots\right\}$ has upper bound 1. Of course, 2, 3 are also upper bounds.

(b) The set of even integers has no upper bound.

(c) $S = \{ -\frac{1}{n} \mid n \in \mathbb{N} \}$ has upper bounds. (d) $S = \{ x \mid x \in \mathbb{Q}, x^2 < 3 \text{ is the set of all rational numbers whose square is less than 3. Then$ $\sqrt{3}$ is an upper bound for S, and $-\sqrt{3}$ is a lower bound for S.

Definition 2. Let S be a nonempty subset of \mathbb{R} and be bounded above. A real number c is called a least upper bound (short for LUB or supremum) for S if the following two conditions hold:

- (i) c is an upper bound for S.
- (ii) If u is any upper bound for S then $c \leq u$.

Similarly, let S be nonempty and be bounded below. A real number d is called a greatest lower **bound** (short for GLB or **infimum**) for S if

- (i) d is a lower bound for S.
- (ii) If l is any lower bound for S then $l \leq d$.

It is clear that the supremum (least upper bound) and the infimum (greatest lower bound) are unique if they exist for a subset of some real numbers.

Theorem 3. Let S be a nonempty subset of \mathbb{R} . If S has an upper bound, then it has a least upper bound (supremum). Similarly, if S has a lower bound, then it has a greatest lower bound (infimum).

Proof. Since the uniqueness is clear, we only need to show the existence. Note that S is bounded above. For each member $s \in S$, consider its decimal expression

$$s = s_0 . s_1 s_2 s_3 \cdots$$

Let S_0 be the set of integer parts of all numbers in S, that is,

$$S_0 := \{ s_0 \mid s = s_0 . s_1 s_2 s_3 \dots \in S \}.$$

Clearly, S is nonempty and bounded above (any upper bound for S is an upper bound for S_0). Then S_0 has its largest integer d_0 . Let S_1 be the set of the 1st decimal parts of those numbers in S having integer part d_0 , that is,

$$S_1 := \{ s_1 \mid s = d_0 \cdot s_1 s_2 s_3 \cdots \in S \}.$$

Clearly, S_1 is nonempty (because d_0 is the integer part of a number in S) and bounded above. Then S_1 has the largest digit d_1 . We define

$$S_2 = \{s_2 \mid s = d_0.d_1s_2s_3 \dots \in S\}.$$

Then S_2 has the largest digit d_2 . Continue this procedure; we obtain a real number

$$d = d_0.d_1d_2d_3\cdots$$

We claim that d is the supremum (least upper bound) for S.

First, we show that d is an upper bound. Let $s \in S$ be any member with decimal express

$$s = s_0 . s_1 s_2 s_3 \cdots$$

If $s \neq d$, let k be the first decimal place where s and d disagree. Then

$$s = d_0 d_1 d_2 \cdots d_{k-1} s_k s_{k+1} \cdots, \quad s_k \neq d_k \text{ (possibly } k = 0).$$

By our choice of d_k , we must have $s_k < d_k$, since

$$S_k := \{ s_k \mid s = d_0 \cdot d_1 d_2 \cdots d_{k-1} s_k s_{k+1} \cdots \in S \}, \quad d_k = \max(S).$$

This means that s < d. Hence d is an upper bound for S.

Now let u be an upper bound for S with decimal expression

$$u = u_0 . u_1 u_2 u_3 \cdots$$

We need to show that $d \leq u$. If $d \neq u$, let j be the first decimal place where d and u disagree. Then

$$u = d_0 \cdot d_1 d_2 \cdots d_{j-1} u_j u_{j+1} \cdots, \quad u_j \neq d_j.$$

By the choice of d_j , there is a member $s \in S$ with decimal expression

$$s = d_0 \cdot d_1 d_2 \cdots d_{j-1} d_j s_{j+1} \cdots$$

Since u is an upper bound for S, we have $s \leq u$. Thus $d_j \leq u_j$. Since $d_j \neq u_j$, we must have $d_j < u_j$. Hence d < u. By definition of least upper bound, the real number d is the least upper bound for S. We finish the proof of the first part.

For the second part of the theorem, let S be a nonempty subset of real numbers and is bounded below, that is, there is a real number l such that $s \ge l$ for all $s \in S$. Then $-s \le -l$ for all $s \in S$. So the set

$$-S := \{-s \mid s \in S\}$$

is nonempty and bounded above. Thus -S has a supremum (least upper bound) d. We shall see that -d is the infimum (greatest lower bound) for S. In fact, since $-s \leq d$ for all $s \in S$, then $s \geq -d$; so -d is a lower bound for S. For any lower bound m of S, i.e., $s \geq m$ for all $s \in S$; so $-s \leq -m$ for all $s \in S$. Thus -m is an upper bound for -S. Since d is a supremum (least upper bound) for -S, then $d \leq -m$. Hence $-d \geq m$. This means that -d is an infimum (greatest lower bound) for S.

Example 2. $e = \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n$.

We shall see below that the sequence $a_n = (1 + \frac{1}{n})^n$ is increasing and bounded above. So the set $S = \left\{ \left(1 + \frac{1}{n}\right)^n \mid n = 1, 2, \ldots \right\}$ has supremum, denoted *e*. In fact, applying Binomial Theorem, we have

$$a_{n} = 1 + \frac{n}{1!} \cdot \frac{1}{n} + \frac{n(n-1)}{2!} \left(\frac{1}{n}\right)^{2} + \dots + \frac{n(n-1)\cdots 2\cdot 1}{n!} \left(\frac{1}{n}\right)^{n}$$

$$= 1 + 1 + \frac{1}{2!} \left(1 - \frac{1}{n}\right) + \dots + \frac{1}{n!} \left(1 - \frac{1}{n}\right) \cdots \left(1 - \frac{n-1}{n}\right)$$

$$< 1 + 1 + \frac{1}{2!} \left(1 - \frac{1}{n+1}\right) + \dots + \frac{1}{n!} \left(1 - \frac{1}{n+1}\right) \cdots \left(1 - \frac{n-1}{n+1}\right)$$

$$< 1 + 1 + \frac{1}{2!} \left(1 - \frac{1}{n+1}\right) + \dots + \frac{1}{n!} \left(1 - \frac{1}{n+1}\right) \cdots \left(1 - \frac{n-1}{n+1}\right)$$

$$+ \frac{1}{(n+1)!} \left(1 - \frac{1}{n+1}\right) \cdots \left(1 - \frac{n}{n+1}\right) = a_{n+1}.$$

Moreover, we see that

$$a_n = 1 + 1 + \frac{1}{2!} \left(1 - \frac{1}{n} \right) + \dots + \frac{1}{n!} \left(1 - \frac{1}{n} \right) \dots \left(1 - \frac{n-1}{n} \right)$$

$$< 2 + \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{1}{n!} \quad \text{(notice } 2^{n-1} \le n! \text{ for } n \ge 2\text{)}$$

$$\le 2 + \frac{1}{2} + \frac{1}{2^2} + \dots + \frac{1}{2^{n-1}} = 1 + \frac{1 - (1/2)^n}{1 - 1/2} < 3.$$

2 Existence of *n*th Roots

Example 3. There exists a real number c such that $c^3 = 2$.

Proof. The key idea is to define the following set of real numbers

$$S = \{ x \mid x \in \mathbb{R}, x^3 < 2 \}.$$

It is clear that S is nonempty as 0 and 1 are contained in S. The set S also has an upper bound. For instance, 4 is an upper bound for S. (Otherwise, if $x \in S$ and x > 4, then $x^3 > 4^3 = 64$, a contradiction.) Therefore, by Theorem 3, S has a least upper bound; say, c = LUB(S). Then $c \ge 1$. We claim that $c^3 = 2$. We show the claim by contradiction. Suppose $c^3 \neq 2$. Then we either have $c^3 < 2$ or $c^3 > 2$. We shall obtain a contradiction for each of the two cases.

CASE 1. Assume $c^3 < 2$. Our strategy is to find a real number $\alpha > 0$ such that $(c + \alpha)^3 < 2$. If so we have $c + \alpha \in S$. This contradicts to that c is an upper bound for S. To find such an α , consider the following argument

$$\begin{aligned} (c+\alpha)^3 < 2 &\Leftarrow c^3 + 3c^2\alpha + 3c\alpha^2 + \alpha^3 < 2 \\ &\Leftarrow 3c^2\alpha + 3c\alpha^2 + \alpha^3 < 2 - c^3 \\ &\Leftarrow 3c^2\alpha + 3c\alpha + \alpha < 2 - c^3 \text{ and } 0 < \alpha < 1 \\ &\Leftarrow \alpha(3c^2 + 3c + 1) < 2 - c^3 \text{ and } 0 < \alpha < 1. \end{aligned}$$

[Since $0 < \alpha < 1$, then $\alpha^2 < \alpha$ and $\alpha^3 < \alpha$.] Since $2 - c^3 > 0$, we may choose α such that

$$0 < \alpha < 1$$
 and $\alpha < \frac{2 - c^3}{3c^2 + 3c + 1}$.

With such chosen α we have $(c + \alpha)^3 < 2$, which leads to a contradiction as explained above.

CASE 2. Assume $c^3 > 2$. The strategy is to find a real number $\beta > 0$ such that $(c - \beta)^3 > 2$. If so then $x^3 < 2 < (c - \beta)^3$ for all $x \in S$. Subsequently, $x < c - \beta$ for all $x \in S$. This means that $c - \beta$ is an upper bound for S, contradicting to that c is the least upper bound. To find such β , consider the following argument

$$\begin{array}{rcl} (c-\beta)^3 > 2 & \Leftarrow & c^3 - 3c^2\beta + 3c\beta^2 - \beta^3 > 2 \\ & \Leftarrow & 3c^2\beta - 3c\beta^2 + \beta^3 < c^3 - 2 \\ & \Leftarrow & 3c^2\beta + 3c\beta + \beta < c^3 - 2 & \text{and} & 0 < \beta < 1 \\ & \Leftarrow & \beta(3c^2 + 3c + 1) < 2 - c^3 & \text{and} & 0 < \beta < 1 \end{array}$$

Since $c^3 - 2 > 0$, we may choose β such that

$$0 < \beta < 1$$
 and $\beta < \frac{c^3 - 2}{3c^2 + 3c + 1}$.

With such chosen α we have $(c - \beta)^3 < 2$, which leads to a contradiction as explained above. \Box

Lemma 4. If $0 < q < \frac{1}{2}$, then for all integers $n \ge 1$

- (a) $(1-q)^n \ge 1-nq;$ (b) $(1+q)^n < 1+2^nq.$
- *Proof.* (a) We have seen by induction on n that $(1+p)^n \ge 1+np$ when $p \ge -1$. The inequality follows immediately since $-q \ge -\frac{1}{2} > -1$.

(b) We prove the inequality by induction on n. For n = 1 it is true as we trivially have the inequality $1 + q \le 1 + 2q$. Suppose it is true for the case n. Consider the case n + 1; we have

$$(1+q)^{n+1} \leq (1+2^nq)(1+q) = 1 + 2^nq + q + 2^nq^2 \\ \leq 1 + 2^nq + 2^nq = 1 + 2^{n+1}q.$$

г		

Lemma 5. Let y > 0 and $0 < \alpha < \frac{y}{2}$. Then for all integers $n \ge 1$,

- (a) $(y-\alpha)^n \ge y^n ny^{n-1}\alpha;$
- (b) $(y+\alpha)^n \le y^n + 2^n y^{n-1} \alpha$.

Proof. (a) Since $\frac{\alpha}{u} < \frac{1}{2}$, it follows from Lemma 4(a) that

$$(y-\alpha)^n = y^n \left(1-\frac{\alpha}{y}\right)^n \ge y^n \left(1-\frac{n\alpha}{y}\right) = y^n - ny^{n-1}\alpha.$$

(b) Since $\frac{\alpha}{u} < \frac{1}{2}$, it follows from Lemma 4(b) that

$$(y+\alpha)^n = y^n \left(1+\frac{\alpha}{y}\right)^n \le y^n \left(1+2^n \frac{\alpha}{y}\right) = y^n + 2^n y^{n-1} \alpha.$$

Proposition 6. Let n be an integer such that $n \ge 2$. If b is a positive real number, then there exists exactly one positive real number c such that

$$c^n = b.$$

That is, the equation $x^n = b$ has a unique positive real solution.

Proof. Consider the set $S = \{s \in \mathbb{R} \mid s^n < b\}$. It is clear that S is nonempty because $0 \in S$ and S contains a positive real number. In fact, if b < 1, then $b^n < b$; thus $b \in S$. If $b \ge 1$, then $\frac{b}{b+1} < 1$; thus $(\frac{b}{b+1})^n < \frac{b}{b+1} < b$; so $\frac{b}{b+1} \in S$.

thus $(\frac{b}{b+1})^n < \frac{b}{b+1} < b$; so $\frac{b}{b+1} \in S$. The set S is bounded above. In fact, if $b \ge 1$, then $b^n \ge x$; thus $s^n < b \le b^n$ for all $s \in S$; so s < b for all $b \in S$, i.e., b is an upper bound for S. If x < 1, then $s^n < b < 1^n$ for all $s \in S$; thus s < 1 for all $s \in S$, i.e., 1 is an upper bound for S.

Now by Theorem 3, the set S has a least upper bound. Let c = LUB(S). Since S contains positive real numbers, it follows that c > 0, for y is an upper bound of S. We claim that $c^n = b$. Suppose $c^n \neq b$, then either $c^n < b$ or $c^n > b$.

CASE 1: $c^n < b$.

We shall see that there exists a real number $\alpha > 0$ such that $(c + \alpha)^n < b$. If so, we have $c + \alpha \in S$. Since c is an upper bound for S, then $c + \alpha \leq c$, a contradiction. To find such α , notice the following argument by Lemma 5(b):

$$(c+\alpha)^n < b \iff c^n + 2^n c^{n-1} \alpha < b \text{ and } 0 < \alpha < c/2$$
$$\iff 2^n c^{n-1} \alpha < b - c^n \text{ and } 0 < \alpha < c/2.$$

Since $b - c^n > 0$, we may choose α such that

$$0 < \alpha < \frac{c}{2}$$
 and $\alpha < \frac{b-c^n}{2^n c^{n-1}}$.

CASE 2: $c^n > b$.

We shall find a real number $\alpha > 0$ such that $(c - \alpha)^n > b$. Then $s^n < b < (c - \alpha)^n$ for all $s \in S$. It follows that $s < c - \alpha$ for all $s \in S$. This means that $c - \alpha$ is an upper bound of S, a contradiction. To find such α , notice the following argument by Lemma 5(a):

$$(c-\alpha)^n > b \iff c^n - nc^{n-1}\alpha > b \text{ and } 0 < \alpha < c/2$$
$$\iff nc^{n-1}\alpha < c^n - b \text{ and } 0 < \alpha < c/2.$$

Since $y^n - x > 0$, we may choose α such that

$$0 < \alpha < \frac{c}{2}$$
 and $\alpha < \frac{c^n - x}{nc^{n-1}}$.

Exercise 1. Use GLB to show that for any two real numbers $a, b \in \mathbb{R}$, the addition a + b, multiplication ab, and $\frac{1}{b}$ (if $b \neq 0$) exist. (Hint: Write a, b in decimal expressions, say, $a = a_0.a_1a_2\cdots$ and $b = b_0.b_1b_2\cdots$. For the addition, one may consider the set

$$S = \left\{ a_0 + b_0 + \frac{a_1 + b_1}{10} + \dots + \frac{a_k + b_k}{10^k} \mid k = 1, 2, \dots \right\}.$$