Introduction to Analysis

October 25, 2013

Week 7-8

1 Upper and Lower Bounds

Definition 1. Let S be a nonempty subset of R, i.e., .S is a set consisting of some real numbers
and S # (). A real number u is called an upper bound for S if

s<u forall se& 8.
Likewise, a real number [ is called a lower bound for S if
s> forall s&&.

Example 1. (a) The set S = {% |n € N} = {1, %, %, .. } has upper bound 1. Of course, 2, 3 are
also upper bounds.

(b) The set of even integers has no upper bound.

(¢) S ={—1|n €N} has upper bounds.

(d) S = {z |z € Q,2? < 3 is the set of all rational numbers whose square is less than 3. Then
V/3 is an upper bound for S, and —v/3 is a lower bound for S.

Definition 2. Let S be a nonempty subset of R and be bounded above. A real number c is called
a least upper bound (short for LUB or supremum) for S if the following two conditions hold:

(i) ¢ is an upper bound for S.
(ii) If w is any upper bound for S then ¢ < u.

Similarly, let S be nonempty and be bounded below. A real number d is called a greatest lower
bound (short for GLB or infimum) for S if

(i) d is a lower bound for S.
(ii) If [ is any lower bound for S then [ < d.

It is clear that the supremum (least upper bound) and the infimum (greatest lower bound) are
unique if they exist for a subset of some real numbers.

Theorem 3. Let S be a nonempty subset of R. If S has an upper bound, then it has a least upper
bound (supremum). Similarly, if S has a lower bound, then it has a greatest lower bound (infimum).



Proof. Since the uniqueness is clear, we only need to show the existence. Note that S is bounded
above. For each member s € S, consider its decimal expression

S = 50.518283 -
Let Sp be the set of integer parts of all numbers in S, that is,
Sp := {80 | S = 80.515283 - € S}

Clearly, S is nonempty and bounded above (any upper bound for S is an upper bound for Sy).
Then Sy has its largest integer dy. Let S7 be the set of the 1st decimal parts of those numbers in
S having integer part dy, that is,

Sy :={s1|s=dy.s15283--- € S}.

Clearly, S; is nonempty (because dy is the integer part of a number in S) and bounded above.
Then S; has the largest digit dy. We define

Sy = {52 | s=dy.di1sgs3 - € S}
Then Sy has the largest digit do. Continue this procedure; we obtain a real number
d = dy.dydads - - -

We claim that d is the supremum (least upper bound) for S.
First, we show that d is an upper bound. Let s € S be any member with decimal express

S = 80.818283 - - -
If s # d, let k be the first decimal place where s and d disagree. Then
s =dy.dydy - di—1SkSg+1---, Sk 7 d (possibly k = 0).
By our choice of dj, we must have s; < dy, since
Sk :={sk|s=do.didy--dx_15kSk+1- -+ €S}, dr = max(5).

This means that s < d. Hence d is an upper bound for S.
Now let u be an upper bound for S with decimal expression

U = upg.u1ugusg - - .

We need to show that d < w. If d # u, let j be the first decimal place where d and u disagree.
Then
u = do.dldg e dj_1UjUj+1 ety Uy 75 dj.

By the choice of d;, there is a member s € § with decimal expression
s =dp.dida - - dj—ldj5j+1 s

Since v is an upper bound for S, we have s < u. Thus d; < u;. Since d; # u;, we must have
d; < u;. Hence d < u. By definition of least upper bound, the real number d is the least upper
bound for S. We finish the proof of the first part.



For the second part of the theorem, let S be a nonempty subset of real numbers and is bounded
below, that is, there is a real number [ such that s > [ for all s € S. Then —s < —[ for all s € S.
So the set

—S:={-s|seS}

is nonempty and bounded above. Thus —S has a supremum (least upper bound) d. We shall see
that —d is the infimum (greatest lower bound) for S. In fact, since —s < d for all s € S, then
s > —d; so —d is a lower bound for S. For any lower bound m of S, i.e., s > m for all s € S; so
—s < —m for all s € S. Thus —m is an upper bound for —S. Since d is a supremum (least upper
bound) for —S, then d < —m. Hence —d > m. This means that —d is an infinmum (greatest lower
bound) for S. O
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We shall see below that the sequence a,, = (1 + %)n is increasing and bounded above. So the
setS:{(l—F%)n

we have

n=12... } has supremum, denoted e. In fact, applying Binomial Theorem,
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2 Existence of nth Roots

Example 3. There exists a real number ¢ such that ¢ = 2.

Proof. The key idea is to define the following set of real numbers
S={r|zecR,z> <2}

It is clear that S is nonempty as 0 and 1 are contained in S. The set S also has an upper bound.
For instance, 4 is an upper bound for S. (Otherwise, if x € S and z > 4, then x3 > 43 = 64,
a contradiction.) Therefore, by Theorem 3, S has a least upper bound; say, ¢ = LUB(S). Then
¢ > 1. We claim that ¢3 = 2. We show the claim by contradiction.



Suppose ¢ # 2. Then we either have ¢ < 2 or ¢® > 2. We shall obtain a contradiction for each
of the two cases.

CASE 1. Assume ¢ < 2. Our strategy is to find a real number o > 0 such that (c + a)® < 2.
If so we have ¢ + a € S. This contradicts to that ¢ is an upper bound for S. To find such an «,
consider the following argument

(ct+a)P <2 = A+32a+3ca’+a®<2
= 3fa+3c’+ad<2-¢3
< 3Pa+3ca+a<2—¢ and 0<a<l
< a3 +3c+1)<2-¢ and 0<a<l.

[Since 0 < @ < 1, then a? < a and o < «a.] Since 2 — ¢* > 0, we may choose « such that

2—¢3

O<axl d < =
@ and « 3c24+3c+1

With such chosen o we have (¢ + )3 < 2, which leads to a contradiction as explained above.

CASE 2. Assume ¢ > 2. The strategy is to find a real number 3 > 0 such that (c — 3)% > 2.
If so then 23 < 2 < (¢ — 3)3 for all z € S. Subsequently, x* < ¢ — 3 for all z € S. This means that
¢ — 3 is an upper bound for S, contradicting to that c is the least upper bound. To find such 3,
consider the following argument

(C—B)3>2 <= S -320+3e8> -3 >2
< 33-3c+ 62 <P -2
< 326+3cf+p<P -2 and 0<fB<1
< BB +3c¢+1)<2-¢ and 0<f< 1.

Since ¢® — 2 > 0, we may choose 3 such that

3 -2
0<fB <1 and ﬁ<m.
With such chosen o we have (¢ — 3)% < 2, which leads to a contradiction as explained above. [
Lemma 4. If0 < g < %, then for all integers n > 1
(a) (1—q)" =1—ng;
(b)) (L+q)" <1+2%.

Proof. (a) We have seen by induction on n that (14 p)” > 1+ np when p > —1. The inequality
follows immediately since —q > —% > —1.

(b) We prove the inequality by induction on n. For n = 1 it is true as we trivially have the
inequality 1 + ¢ < 1+ 2q. Suppose it is true for the case n. Consider the case n 4+ 1; we have

149" < 1+2")(1+q) =1+2"¢+q+2"¢
< 142%+2"g=1+2"Tq.



Lemma 5. Let y > 0 and 0 < a < 4. Then for all integers n > 1,
(a) (y— )" > y" —ny"ta;
b +C¥n§ n o oon nfla.
(b)) (y+a)" <y y

Proof. (a) Since § < 3, it follows from Lemma 4(a) that

n
(y—a)" =y" <1— Z) > y" (1 — T;Oz) :yn—nynfla.

(b) Since ¢ < 3. it follows from Lemma 4(b) that

n
(y+a)" =y" <1 + Z) <y" (1 + 2”3) — " 4+ 2y L,
]

Proposition 6. Let n be an integer such that n > 2. If b is a positive real number, then there
exists exactly one positive real number ¢ such that

" =b.
That 1is, the equation x™ = b has a unique positive real solution.

Proof. Consider the set S = {s € R|s"™ < b}. It is clear that S is nonempty because 0 € S and S

contains a positive real number. In fact, if b < 1, then b" < b; thus b € S. If b > 1, then b% <1
thus (Hil)" < Hil < b; so b% es.

The set S is bounded above. In fact, if b > 1, then b™ > x; thus s < b < b"™ for all s € 5; so
s < bforall be S, ie., bisan upper bound for S. If x < 1, then s < b < 1™ for all s € S; thus
s < 1forall s €S, ie., 1isan upper bound for S.

Now by Theorem 3, the set S has a least upper bound. Let ¢ = LUB(S). Since S contains
positive real numbers, it follows that ¢ > 0, for y is an upper bound of S. We claim that ¢"* = b.
Suppose ¢ # b, then either ¢ < b or ¢ > b.

CASE 1: " < b.

We shall see that there exists a real number a > 0 such that (¢ + «)™ < b. If so, we have
c+ a € 5. Since ¢ is an upper bound for S, then ¢+ a < ¢, a contradiction. To find such «, notice

the following argument by Lemma 5(b):

(c+a)"<b <= "+2"" la<b and 0<a<c/2
< 2" la<b—c" and 0<a<c/2

Since b — ¢" > 0, we may choose « such that

c b—c"
O<Oé<§ and OK<W

CASE 2: c" > b.

We shall find a real number a > 0 such that (¢ — «)” > b. Then s" < b < (¢ — )" for all
s € S. It follows that s < ¢ — « for all s € S. This means that ¢ — « is an upper bound of S, a
contradiction. To find such «, notice the following argument by Lemma 5(a):

(c—a)">b <« "—nc"tla>b and 0<a<c/2
= nd"la<c®—b and 0<a<c/2.



Since y™ — z > 0, we may choose « such that

A" —x

c
O<a< - and a< .
2 neh—1
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Exercise 1. Use GLB to show that for any two real numbers a,b € R, the addition a + b, multi-
plication ab, and % (if b # 0) exist. (Hint: Write a,b in decimal expressions, say, a = ag.ajas - - -

and b = bg.b1bs - - - . For the addition, one may consider the set
a1 + by ag + bk
_ —1,2 }
5 {a0+b°+ 0 Tt T [FEL2



