
Introduction to Analysis

October 25, 2013

Week 7-8

1 Upper and Lower Bounds

Definition 1. Let S be a nonempty subset of R, i.e., S is a set consisting of some real numbers
and S 6= ∅. A real number u is called an upper bound for S if

s ≤ u for all s ∈ S.

Likewise, a real number l is called a lower bound for S if

s ≥ l for all s ∈ S.

Example 1. (a) The set S =
{

1
n | n ∈ N

}
=

{
1, 1

2 , 1
3 , . . .

}
has upper bound 1. Of course, 2, 3 are

also upper bounds.
(b) The set of even integers has no upper bound.
(c) S =

{− 1
n | n ∈ N

}
has upper bounds.

(d) S = {x | x ∈ Q, x2 < 3 is the set of all rational numbers whose square is less than 3. Then√
3 is an upper bound for S, and −√3 is a lower bound for S.

Definition 2. Let S be a nonempty subset of R and be bounded above. A real number c is called
a least upper bound (short for LUB or supremum) for S if the following two conditions hold:

(i) c is an upper bound for S.

(ii) If u is any upper bound for S then c ≤ u.

Similarly, let S be nonempty and be bounded below. A real number d is called a greatest lower
bound (short for GLB or infimum) for S if

(i) d is a lower bound for S.

(ii) If l is any lower bound for S then l ≤ d.

It is clear that the supremum (least upper bound) and the infimum (greatest lower bound) are
unique if they exist for a subset of some real numbers.

Theorem 3. Let S be a nonempty subset of R. If S has an upper bound, then it has a least upper
bound (supremum). Similarly, if S has a lower bound, then it has a greatest lower bound (infimum).
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Proof. Since the uniqueness is clear, we only need to show the existence. Note that S is bounded
above. For each member s ∈ S, consider its decimal expression

s = s0.s1s2s3 · · ·

Let S0 be the set of integer parts of all numbers in S, that is,

S0 := {s0 | s = s0.s1s2s3 · · · ∈ S}.

Clearly, S is nonempty and bounded above (any upper bound for S is an upper bound for S0).
Then S0 has its largest integer d0. Let S1 be the set of the 1st decimal parts of those numbers in
S having integer part d0, that is,

S1 := {s1 | s = d0.s1s2s3 · · · ∈ S}.

Clearly, S1 is nonempty (because d0 is the integer part of a number in S) and bounded above.
Then S1 has the largest digit d1. We define

S2 = {s2 | s = d0.d1s2s3 · · · ∈ S}.

Then S2 has the largest digit d2. Continue this procedure; we obtain a real number

d = d0.d1d2d3 · · ·

We claim that d is the supremum (least upper bound) for S.
First, we show that d is an upper bound. Let s ∈ S be any member with decimal express

s = s0.s1s2s3 · · ·

If s 6= d, let k be the first decimal place where s and d disagree. Then

s = d0.d1d2 · · · dk−1sksk+1 · · · , sk 6= dk (possibly k = 0).

By our choice of dk, we must have sk < dk, since

Sk := {sk | s = d0.d1d2 · · · dk−1sksk+1 · · · ∈ S}, dk = max(S).

This means that s < d. Hence d is an upper bound for S.
Now let u be an upper bound for S with decimal expression

u = u0.u1u2u3 · · · .

We need to show that d ≤ u. If d 6= u, let j be the first decimal place where d and u disagree.
Then

u = d0.d1d2 · · · dj−1ujuj+1 · · · , uj 6= dj .

By the choice of dj , there is a member s ∈ S with decimal expression

s = d0.d1d2 · · · dj−1djsj+1 · · ·

Since u is an upper bound for S, we have s ≤ u. Thus dj ≤ uj . Since dj 6= uj , we must have
dj < uj . Hence d < u. By definition of least upper bound, the real number d is the least upper
bound for S. We finish the proof of the first part.
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For the second part of the theorem, let S be a nonempty subset of real numbers and is bounded
below, that is, there is a real number l such that s ≥ l for all s ∈ S. Then −s ≤ −l for all s ∈ S.
So the set

−S := {−s | s ∈ S}
is nonempty and bounded above. Thus −S has a supremum (least upper bound) d. We shall see
that −d is the infimum (greatest lower bound) for S. In fact, since −s ≤ d for all s ∈ S, then
s ≥ −d; so −d is a lower bound for S. For any lower bound m of S, i.e., s ≥ m for all s ∈ S; so
−s ≤ −m for all s ∈ S. Thus −m is an upper bound for −S. Since d is a supremum (least upper
bound) for −S, then d ≤ −m. Hence −d ≥ m. This means that −d is an infinmum (greatest lower
bound) for S.

Example 2. e = lim
n→∞

(
1 +

1
n

)n
.

We shall see below that the sequence an =
(
1 + 1

n

)n is increasing and bounded above. So the

set S =
{(

1 + 1
n

)n
∣∣∣ n = 1, 2, . . .

}
has supremum, denoted e. In fact, applying Binomial Theorem,

we have

an = 1 +
n

1!
· 1
n

+
n(n− 1)

2!

( 1
n

)2
+ · · ·+ n(n− 1) · · · 2 · 1

n!

( 1
n

)n

= 1 + 1 +
1
2!

(
1− 1

n

)
+ · · ·+ 1

n!

(
1− 1

n

)
· · ·

(
1− n− 1

n

)

< 1 + 1 +
1
2!

(
1− 1

n + 1

)
+ · · ·+ 1

n!

(
1− 1

n + 1

)
· · ·

(
1− n− 1

n + 1

)

< 1 + 1 +
1
2!

(
1− 1

n + 1

)
+ · · ·+ 1

n!

(
1− 1

n + 1

)
· · ·

(
1− n− 1

n + 1

)

+
1

(n + 1)!

(
1− 1

n + 1

)
· · ·

(
1− n

n + 1

)
= an+1.

Moreover, we see that

an = 1 + 1 +
1
2!

(
1− 1

n

)
+ · · ·+ 1

n!

(
1− 1

n

)
· · ·

(
1− n− 1

n

)

< 2 +
1
2!

+
1
3!

+ · · ·+ 1
n!

(notice 2n−1 ≤ n! for n ≥ 2)

≤ 2 +
1
2

+
1
22

+ · · ·+ 1
2n−1

= 1 +
1− (1/2)n

1− 1/2
< 3.

2 Existence of nth Roots

Example 3. There exists a real number c such that c3 = 2.

Proof. The key idea is to define the following set of real numbers

S = {x | x ∈ R, x3 < 2}.

It is clear that S is nonempty as 0 and 1 are contained in S. The set S also has an upper bound.
For instance, 4 is an upper bound for S. (Otherwise, if x ∈ S and x > 4, then x3 > 43 = 64,
a contradiction.) Therefore, by Theorem 3, S has a least upper bound; say, c = LUB(S). Then
c ≥ 1. We claim that c3 = 2. We show the claim by contradiction.
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Suppose c3 6= 2. Then we either have c3 < 2 or c3 > 2. We shall obtain a contradiction for each
of the two cases.

Case 1. Assume c3 < 2. Our strategy is to find a real number α > 0 such that (c + α)3 < 2.
If so we have c + α ∈ S. This contradicts to that c is an upper bound for S. To find such an α,
consider the following argument

(c + α)3 < 2 ⇐ c3 + 3c2α + 3cα2 + α3 < 2
⇐ 3c2α + 3cα2 + α3 < 2− c3

⇐ 3c2α + 3cα + α < 2− c3 and 0 < α < 1
⇐ α(3c2 + 3c + 1) < 2− c3 and 0 < α < 1.

[Since 0 < α < 1, then α2 < α and α3 < α.] Since 2− c3 > 0, we may choose α such that

0 < α < 1 and α <
2− c3

3c2 + 3c + 1
.

With such chosen α we have (c + α)3 < 2, which leads to a contradiction as explained above.
Case 2. Assume c3 > 2. The strategy is to find a real number β > 0 such that (c − β)3 > 2.

If so then x3 < 2 < (c− β)3 for all x ∈ S. Subsequently, x < c− β for all x ∈ S. This means that
c − β is an upper bound for S, contradicting to that c is the least upper bound. To find such β,
consider the following argument

(c− β)3 > 2 ⇐ c3 − 3c2β + 3cβ2 − β3 > 2
⇐ 3c2β − 3cβ2 + β3 < c3 − 2
⇐ 3c2β + 3cβ + β < c3 − 2 and 0 < β < 1
⇐ β(3c2 + 3c + 1) < 2− c3 and 0 < β < 1.

Since c3 − 2 > 0, we may choose β such that

0 < β < 1 and β <
c3 − 2

3c2 + 3c + 1
.

With such chosen α we have (c− β)3 < 2, which leads to a contradiction as explained above.

Lemma 4. If 0 < q < 1
2 , then for all integers n ≥ 1

(a) (1− q)n ≥ 1− nq;

(b) (1 + q)n ≤ 1 + 2nq.

Proof. (a) We have seen by induction on n that (1 + p)n ≥ 1 + np when p ≥ −1. The inequality
follows immediately since −q ≥ −1

2 > −1.
(b) We prove the inequality by induction on n. For n = 1 it is true as we trivially have the

inequality 1 + q ≤ 1 + 2q. Suppose it is true for the case n. Consider the case n + 1; we have

(1 + q)n+1 ≤ (1 + 2nq)(1 + q) = 1 + 2nq + q + 2nq2

≤ 1 + 2nq + 2nq = 1 + 2n+1q.
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Lemma 5. Let y > 0 and 0 < α < y
2 . Then for all integers n ≥ 1,

(a) (y − α)n ≥ yn − nyn−1α;

(b) (y + α)n ≤ yn + 2nyn−1α.

Proof. (a) Since α
y < 1

2 , it follows from Lemma 4(a) that

(y − α)n = yn

(
1− α

y

)n

≥ yn

(
1− nα

y

)
= yn − nyn−1α.

(b) Since α
y < 1

2 , it follows from Lemma 4(b) that

(y + α)n = yn

(
1 +

α

y

)n

≤ yn

(
1 + 2n α

y

)
= yn + 2nyn−1α.

Proposition 6. Let n be an integer such that n ≥ 2. If b is a positive real number, then there
exists exactly one positive real number c such that

cn = b.

That is, the equation xn = b has a unique positive real solution.

Proof. Consider the set S = {s ∈ R | sn < b}. It is clear that S is nonempty because 0 ∈ S and S
contains a positive real number. In fact, if b < 1, then bn < b; thus b ∈ S. If b ≥ 1, then b

b+1 < 1;
thus ( b

b+1)n < b
b+1 < b; so b

b+1 ∈ S.
The set S is bounded above. In fact, if b ≥ 1, then bn ≥ x; thus sn < b ≤ bn for all s ∈ S; so

s < b for all b ∈ S, i.e., b is an upper bound for S. If x < 1, then sn < b < 1n for all s ∈ S; thus
s < 1 for all s ∈ S, i.e., 1 is an upper bound for S.

Now by Theorem 3, the set S has a least upper bound. Let c = LUB(S). Since S contains
positive real numbers, it follows that c > 0, for y is an upper bound of S. We claim that cn = b.
Suppose cn 6= b, then either cn < b or cn > b.

Case 1: cn < b.
We shall see that there exists a real number α > 0 such that (c + α)n < b. If so, we have

c + α ∈ S. Since c is an upper bound for S, then c + α ≤ c, a contradiction. To find such α, notice
the following argument by Lemma 5(b):

(c + α)n < b ⇐ cn + 2ncn−1α < b and 0 < α < c/2
⇐ 2ncn−1α < b− cn and 0 < α < c/2.

Since b− cn > 0, we may choose α such that

0 < α <
c

2
and α <

b− cn

2ncn−1
.

Case 2: cn > b.
We shall find a real number α > 0 such that (c − α)n > b. Then sn < b < (c − α)n for all

s ∈ S. It follows that s < c − α for all s ∈ S. This means that c − α is an upper bound of S, a
contradiction. To find such α, notice the following argument by Lemma 5(a):

(c− α)n > b ⇐ cn − ncn−1α > b and 0 < α < c/2
⇐ ncn−1α < cn − b and 0 < α < c/2.
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Since yn − x > 0, we may choose α such that

0 < α <
c

2
and α <

cn − x

ncn−1
.

Exercise 1. Use GLB to show that for any two real numbers a, b ∈ R, the addition a + b, multi-
plication ab, and 1

b (if b 6= 0) exist. (Hint: Write a, b in decimal expressions, say, a = a0.a1a2 · · ·
and b = b0.b1b2 · · · . For the addition, one may consider the set

S =
{

a0 + b0 +
a1 + b1

10
+ · · ·+ ak + bk

10k

∣∣∣ k = 1, 2, . . .
}

.
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