
Week 4-5: Generating Permutations and Combinations

March 1, 2018

1 Generating Permutations

We have learned that there are n! permutations of {1, 2, . . . , n}. It is important

in many instances to generate a list of such permutations. For example, for

the permutation 3142 of {1, 2, 3, 4}, we may insert 5 in 3142 to generate five

permutations of {1, 2, 3, 4, 5} as follows:

53142, 35142, 31542, 31452, 31425.

If we have a complete list of permutations for {1, 2, . . . , n − 1}, then we can

obtain a complete list of permutations for {1, 2, . . . , n} by inserting the number

n in n ways to each permutation of the list for {1, 2, . . . , n− 1}.
For n = 1, the list is just

1

For n = 2, the list is
1 2

2 1
⇒ 1 2

2 1

For n = 3, the list is

1 2 3

1 3 2

3 1 2

3 2 1

2 3 1

2 1 3

⇒

1 2 3

1 3 2

3 1 2

3 2 1

2 3 1

2 1 3

1

To generate a complete list of permutations for the set {1, 2, . . . , n}, we

assign a direction to each integer k ∈ {1, 2, . . . , n} by writing an arrow

above it pointing to the left or to the right:

←
k or

→
k .

We consider permutations of {1, 2, . . . , n} in which each integer is given a

direction; such permutations are called directed permutations. An integer

k in a directed permutation is called mobile if its arrow points to a smaller

integer adjacent to it. For example, for
→
3
→
2
←
5
→
4
→
6
→
1 , the integers 3, 5, and 6

are mobile. It follows that 1 can never be mobile since there is no integer in

{1, 2, . . . , n} smaller than 1. The integer n is mobile, except two cases:

(i) n is the first integer and its arrow points to the left, i.e.,
←
n · · · ;

(ii) n is the last integer and its arrow points to the right, i.e., · · · →n.

2

For n = 4, we have the list

1 2 3 4

1 2 4 3

1 4 2 3

4 1 2 3

4 1 3 2

1 4 3 2

1 3 4 2

1 3 2 4

3 1 2 4

3 1 4 2

3 4 1 2

4 3 1 2

4 3 2 1

3 4 2 1

3 2 4 1

3 2 1 4

2 3 1 4

2 3 4 1

2 4 3 1

4 2 3 1

4 2 1 3

2 4 1 3

2 1 4 3

2 1 3 4

⇒

1 2 3 4

1 2 4 3

1 4 2 3

4 1 2 3

4 1 3 2

1 4 3 2

1 3 4 2

1 3 2 4

3 1 2 4

3 1 4 2

3 4 1 2

4 3 1 2

4 3 2 1

3 4 2 1

3 2 4 1

3 2 1 4

2 3 1 4

2 3 4 1

2 4 3 1

4 2 3 1

4 2 1 3

2 4 1 3

2 1 4 3

2 1 3 4

Algorithm 1.1. Algorithm for Generating Permutations of {1, 2, . . . , n}:
Step 0. Begin with

←
1
←
2 · · · ←n.

Step 1. Find the largest mobile integer m.

Step 2. Switch m and the adjacent integer its arrow points to.

Step 3. Switch the directions for all integers p > m.

Step 4. Write down the resulting permutation with directions and re-

turn to Step 1.
Step 5. Stop if there is no mobile integer.

3

For example, for n = 2, we have
←
1
←
2 and

←
2
←
1 . For n = 3, we have

←
1
←
2
←
3,

←
1
←
3
←
2 ,

←
3
←
1
←
2,

→
3
←
2
←
1 ,

←
2
→
3
←
1 ,

←
2
←
1
→
3 .

For n = 4, the algorithm produces the list
←
1

←
2

←
3

←
4

←
1

←
2

←
4

←
3

←
1

←
4

←
2

←
3

←
4

←
1

←
2

←
3

→
4

←
1

←
3

←
2

←
1

→
4

←
3

←
2

←
1

←
3

→
4

←
2

←
1

←
3

←
2

→
4

←
3

←
1

←
2

←
4

←
3

←
1

←
4

←
2

←
3

←
4

←
1

←
2

←
4

←
3

←
1

←
2

→
4

→
3

←
2

←
1

→
3

→
4

←
2

←
1

→
3

←
2

→
4

←
1

→
3

←
2

←
1

→
4

←
2

→
3

←
1

←
4

←
2

→
3

←
4

←
1

←
2

←
4

→
3

←
1

←
4

←
2

→
3

←
1

→
4

←
2

←
1

→
3

←
2

→
4

←
1

→
3

←
2

←
1

→
4

→
3

←
2

←
1

→
3

→
4

Proof. Observe that when n is not the largest mobile the direction of n must

be either like
←
n · · · or · · · →n

in the permutation. When the largest mobile m (with m < n) is switched

with its target integer to produce a new permutation, the direction of n will be

changed simultaneously, and the permutation with direction becomes
→
n · · · or · · · ←n .

Now n is the largest mobile. Switching n with its target integer for n− 1 times

to produce n − 1 more permutations, we obtain exactly n new permutations

(including the one before switching n). Each member k (2 ≤ k ≤ n) moves

k − 1 times from right to left, then k − 1 times from left to right, and goes in

this way from one side to the other for (k− 1)! times (which is an even number

when k ≥ 3); the total number of moves of k is (k− 1)!(k− 1). Thus the total

number of moves is
n∑

k=1

(k − 1)!(k − 1),

which is n!− 1 by induction on n. The algorithm stops at the permutation
←
2
←
1
→
3
→
4 · · · →

n .

4

2 Inversions of Permutations

Let u1u2 . . . un be a permutation of S = {1, 2, . . . , n}. We can view u1u2 . . . un

as a bijection π : S → S defined by

π(1) = u1, π(2) = u2, . . . , π(n) = un.

If ui > uj for some i < j, the ordered pair (ui, uj) is called an inversion

of π. The number of inversions of π is denoted by inv(π). For example, the

permutation 3241765 of {1, 2, . . . , 7} has the inversions:

(2, 1), (3, 1), (4, 1), (3, 2), (6, 5), (7, 5), (7, 6).

For k ∈ {1, 2, . . . , n} and uj = k, let ak be the number of integers that precede

k in the permutation u1u2 . . . un but greater than k, i.e.,

ak = #{ui : i < j, ui > uj = k}
= #{π(i) : i < j, π(i) > π(j) = k}.

It measures how much k is out of order by counting the number of integers larger

than k but located before k. The tuple (a1, a2, . . . , an) is called the inversion

sequence (or inversion table) of the permutation π = u1u2 . . . un. The

sum

inv(π) := a1 + a2 + · · · + an

measures the total disorder of a permutation.

Example 2.1. The inversion sequence of the permutation 3241765 of {1, 2, . . . , 7}
is (3, 1, 0, 0, 2, 1, 0).

It is clear that for any permutation π of {1, 2, . . . , n}, the inversion sequence

(a1, a2, . . . , an) of π satisfies

0 ≤ a1 ≤ n− 1, 0 ≤ a2 ≤ n− 2, . . . , 0 ≤ an−1 ≤ 1, an = 0. (1)

It is easy to see that the number of sequences (a1, a2, . . . , an) satisfying (1)

equals

n · (n− 1) · · · 2 · 1 = n!.

This suggests that the inversion sequences may be characterized by (1).

5

Theorem 2.1. Let (a1, a2, . . . , an) be an integer sequence satisfying

0 ≤ a1 ≤ n− 1, 0 ≤ a2 ≤ n− 2, . . . , 0 ≤ an−1 ≤ 1, an = 0.

Then there is a unique permutation π of {1, 2, . . . , n} whose inversion

sequence is (a1, a2, . . . , an).

Proof. We give two algorithms to uniquely construct the permutation whose

inversion sequence is (a1, a2, . . . , an).

Algorithm I. Construction of a Permutation from Its Inversion Sequence:

Step 0. Write down n.

Step 1. If an−1 = 0, place n− 1 before n; if an−1 = 1, place n− 1 after

n.
Step 2. If an−2 = 0, place n−2 before the two members n and n−1; if

an−2 = 1, place n− 2 between n and n− 1; if an−2 = 2, place

n− 2 after both n and n− 1.
...

Step k. If an−k = 0, place n − k to the left of the first position; if

an−k = 1, place n−k to the right of the 1st existing number; if

an−k = 2, place n− k to the right of the 2nd existing number;

. . .; if an−k = k, place n − k to the right of the last existing

number. In general, insert n − k to the right of the an−k-th

existing number.
...

Step n−1. If a1 = 0, place 1 before all existing numbers; otherwise, place

1 to the right of the a1th existing number.

For example, for the inversion sequence (a1, a2, . . . , a8) = (4, 6, 1, 0, 3, 1, 1, 0),

6

its permutation can be constructed by Algorithm I as follows:

8 Write down 8.

87 Since a7 = 1, insert 7 to the right of the first number 8.

867 Since a6 = 1, insert 6 to the right of the first number 8.

8675 Since a5 = 3, insert 5 to the right of the third number 7.

48675 Since a4 = 0, insert 4 to the left of the first number 8.

438675 Since a3 = 1, insert 3 to the right of the first number 4.

4386752 Since a2 = 6, insert 2 to the right of the sixth number 5.

43861752 Since a1 = 4, insert 1 to the right of the fifth number 6.

Algorithm II. Construction of a Permutation from Its Inversion Sequence:

Step 0. Mark down n empty spaces ¤¤¤ · · ·¤¤¤.

Step 1. Put 1 into the (a1 + 1)-th empty space from left.

Step 2. Put 2 into the (a2 + 1)-th empty space from left.
...

Step k. Put k into the (ak + 1)-th empty space from left.
...

Step n. Put n into the (an + 1)-th empty space (the last empty box)

from left.

For example, the permutation for the inversion sequence

(a1, a2, . . . , a8) = (4, 6, 1, 0, 3, 1, 1, 0)

can be constructed by Algorithm II as follows:

¤¤¤¤¤¤¤¤ Mark down 8 empty spaces.

¤¤¤¤1¤¤¤ Since a1 = 4, put 1 into the 5th empty space.

¤¤¤¤1¤¤2 Since a2 = 6, put 2 into the 7th empty space.

¤3¤¤1¤¤2 Since a3 = 1, put 3 into the 2nd empty space.

43¤¤1¤¤2 Since a4 = 0, put 4 into the 1st empty space.

43¤¤1¤52 Since a5 = 3, put 5 into the 4th empty space.

43¤61¤52 Since a6 = 1, put 6 into the 2nd empty space.

43¤61752 Since a7 = 1, put 7 into the 2nd empty space.

43861752 Since a8 = 0, put 8 into the 1st empty space.

7

3 Generating Combinations

Let S be an n-set. For convenience of generating combinations of S, we take

S to be the set

S = {xn−1, xn−2, . . . , x2, x1, x0}.
Each subset A of S can be identified as a function χA : S → {0, 1}, called the

characteristic function of A, defined by

χA(x) =

{
1 if x ∈ A

0 if x 6∈ A.

In practice, χA is represented by a 0-1 sequence or a base 2 numeral. For

example, for S = {x7, x6, x5, x4, x3, x2, x1, x0},
∅ 00000000

{x7, x5, x2, x1} 10100110

{x6, x5, x3, x1, x0} 01101011

{x7, x6, x5, x4, x3, x2, x1, x0} 11111111

Algorithm 3.1. The algorithm for Generating Combinations of

{xn−1, . . . , x1, x0}:
Step 0. Begin with an−1 · · · a1a0 = 0 · · · 00.

Step 1. If an−1 · · · a1a0 = 1 · · · 11, stop.

Step 2. If an−1 · · · a1a0 6= 1 · · · 11, find the smallest integer j such that

aj = 0.
Step 3. Change aj, aj−1, . . . , a0 (either from 0 to 1 or from 1 to 0), write

down an−1 · · · a1a0, and return to Sept 1.

For n = 4, the algorithm produces the list

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

The unit n-cube Qn is a graph whose vertex set is the set of all 0-1 se-

quences of length n, and two sequences are adjacent if they differ in only one

place. A Gray code of order n is a path of Qn that visits every vertex of

8

1011

0010

0011

0100

0110

0111

0101

0001

0000

1000

1001

1010

1100

1101

1110

1111

Figure 1: 4-dimensional cube.

Qn exactly once, i.e., a Hamilton path of Qn. For example,

000 → 001 → 101 → 100 → 110 → 010 → 011 → 111

is a Gray code of order 3. It is obvious that this Gray code can not be a part of

any Hamilton cycle since 000 and 111 are not adjacent. A cyclic Gray code

of order n is a Hamilton cycle of Qn. For example, the closed path

000 → 001 → 011 → 010 → 110 → 111 → 101 → 100 → 000

is a cyclic Gray code of order 3.

For n = 1, we have the Gray code 0 → 1.

For n = 2, we use 0 → 1 to produce the path 00 → 01 by adding a 0 in

the front, and use 1 → 0 to produce 11 → 10 by adding a 1 in the front, then

combine the two paths to produce the Gray code

00 → 01 → 11 → 10.

For n = 3, we use the Gray code 00 → 01 → 11 → 10 (of order 2) to

produce the path 000 → 001 → 011 → 010 by adding 0 in the front, and use

the Gray code 10 → 11 → 01 → 00 (the reverse of 00 → 01 → 11 → 10) to

produce the path 110 → 111 → 101 → 100 by adding 1 in the front. Combine

9

the two paths to produce the Gray code of order 3

000 → 001 → 011 → 010 → 110 → 111 → 101 → 100.

The Gray codes obtained in this way are called reflected Gray codes.

Algorithm 3.2. Algorithm of generating a Reflected Gray Code of order n:

Step 0. Begin with anan−1 · · · a2a1 = 00 · · · 0.

Step 1. If anan−1 · · · a2a1 = 10 · · · 00, stop.

Step 2. If an +an−1 + · · ·+a2 +a1 = even, then change a1 (either from

0 to 1 or from 1 to 0), i.e., set a1 := 1− a1.
Step 3. If an + an−1 · · ·+ a2 + a1 = odd, find the smallest index j such

that aj = 1 and change aj+1 (either from 0 to 1 or from 1 to

0), i.e., set aj+1 := 1− aj+1.
Step 4. Write down anan−1 · · · a2a1 and return to Step 1.

We note that if anan−1 · · · a1 6= 10 · · · 0 and an +an−1 + · · ·+a1 = odd, then

j ≤ n− 1 so that j + 1 ≤ n and aj+1 is defined.

Proof. We proceed by induction on n. For n = 1, it is obviously true. For

n = 2, we have 00 → 01 → 11 → 10. Let n ≥ 3 and assume that it is true for

1, 2, . . . , n− 1.

(1) When the algorithm is applied, by the induction hypothesis the first

resulted 2n−1 words form the reflected Gray code of order n − 1 with a 0

attached to the head of each word; the 2n−1-th word is 010 · · · 0.

(2) Continuing the algorithm, we have

010 · · · 0 → 110 · · · 0.
Now for each word of the form 11bn−2 · · · b1, the parity of 11bn−2 · · · b1 is the

same as the parity of bn−2 · · · b1. Continuing the algorithm, the next 2n−2

words (including 110 · · · 0) form a reflected Gray code (of order n − 2) with a

11 attached at the beginning; the last word is 1110 · · · 0.

(3) Continuing the algorithm, we have

1110 · · · 0 → 1010 · · · 0 → · · ·
The next 2n−3 words (including 1010 · · · 0) form a reflected Gray code (of order

n− 3) with a 101 attached at the beginning; the last word is 10110 · · · 0.

10

(4) 10110 · · · 0 → 10010 · · · 0 →; there are 2n−4 words with 1001 attached at

the beginning.
...

(n− 2) Continuing the algorithm, we have

10 · · · 01100 → 10 · · · 00100 → .

The next 22 words (including 10 · · · 0100) form a reflected Gray code (of order

2) with 10 · · · 01 attached at the beginning; the last word is 10 · · · 0110.

(n − 1) 10 · · · 0110 → 10 · · · 0010 → 10 · · · 0011; there are 21 words (of

order 1), 10 · · · 0010 → 10 · · · 0011, with 10 · · · 001 attached at the beginning.

(n) 10 · · · 0011 → 10 · · · 0001. The algorithm produces 1 word 10 · · · 0001.

(n + 1) Finally, the algorithm ends at 10 · · · 0001 → 10 · · · 0000.

Notice that all words produced from Step (k) to Step (n + 1) inclusive are

distinct from the words produced in Step (k − 1), where 2 ≤ k ≤ n + 1. Thus

the words produced by the algorithm are distinct and the total number of words

is

2n−1 + 2n−2 + · · · + 22 + 21 + 20 + 1 = 2n.

This implies that the sequence of the words produced forms a Gray code of

order n.

Next we show that the words resulted in the second half of the algorithm are

the words obtained from the reversing of the Gray codes of order n− 1 with 1

attached in the front. Consider two consecutive words of length n in the second

half of the algorithm, say,

1 an−1an−2 · · · a2a1 → 1 bn−1bn−2 · · · b2b1.

We need to show that

bn−1bn−2 · · · b2b1 → an−1an−2 · · · a2a1

by the same algorithm for n− 1.

Note that 1 an−1an−2 · · · a2a1 and 1 bn−1bn−2 · · · b2b1 have opposite parity. It

follows that an−1an−2 · · · a2a1 and bn−1bn−2 · · · b2b1 have opposite parity. We

have two cases.

11

(1) bn−1bn−2 · · · b2b1 is even. Then an−1an−2 · · · a2a1 is odd. It follows that

1 an−1an−2 · · · a2a1 is even. By definition of the algorithm, we have bn−1 = an−1,

bn−2 = an−2, . . ., b2 = a2, and b1 = 1− a1; i.e., an−1 = bn−1, . . ., a2 = b2, and

a1 = 1− b1. This means that bn−1bn−2 · · · b2b1 → an−1an−2 · · · a2a1.

(2) bn−1bn−2 · · · b2b1 is odd. Then an−1an−2 · · · a2a1 is even. It follows that

1 an−1an−2 · · · a2a1 is odd. Note that not all of a1, . . . , an−1 are zero, since it

is not stopped yet. Since 1 an−1an−2 · · · a2a1 → 1 bn−1bn−2 · · · b2b1, then by

definition of the algorithm, there exists an index j (1 ≤ j ≤ n − 2) such that

a1 = · · · = aj−1 = b1 = · · · = bj−1 = 0, aj = bj = 1, and bj+1 = 1 − aj+1,

bj+2 = aj+2, . . ., bn−1 = an−1. Note that aj+1 = 1 − bj+1. We see that

bn−1bn−2 · · · b2b1 → an−1an−2 · · · a2a1 by definition of the algorithm.

4 Generating r-Combinations

Let S = {1, 2, . . . , n}. When an r-combination or an r-subset A = {a1, a2, . . . , ar}
of S is given, we always assume that a1 < a2 < · · · < ar. For two r-

combinations A = {a1, a2, . . . , ar} and B = {b1, b2, . . . , br} of S, if there

is an integer k (1 ≤ k ≤ r) such that

a1 = b1, a2 = b2, . . . , ak−1 = bk−1, ak < bk,

we say that A precedes B in the lexicographic order, written A < B.

Then the set Pr(S) of all r-subsets of S is linearly ordered by the lexico-

graphic order. For simplicity, we write an r-combination {a1, a2, . . . , ar} as

an r-permutation

a1a2 · · · ar with a1 < a2 < · · · < ar.

Theorem 4.1. Let a1a2 · · · ar be an r-combination of {1, 2, . . . , n}. The

first r-combination in lexicographic order is 12 · · · r, and the last r-combination

in lexicographic order is

(n− r + 1) · · · (n− 1)n.

If a1a2 · · · ak · · · ar 6= (n− r + 1) · · · (n− 1)n and k is the largest index such

that ak 6= n− r + k, then the successor of a1a2 · · · ar is

a1a2 · · · ak−1(ak + 1)(ak + 2) · · · (ak + r − k + 1).

12

Proof. Since ai ≤ (n − r + i) for all 1 ≤ i ≤ r, then ak 6= n − r + k implies

ak < n− r + k. Hence ak + r − k + 1 < n + 1.

Algorithm 4.2. Algorithm for Generating r-Combinations of {1, 2, . . . , n}
in Lexicographic Order:

Step 0. Begin with the r-combination a1a2 · · · ar = 12 · · · r.

Step 1. If a1a2 · · · ar = (n− r + 1) · · · (n− 1)n, stop.

Step 2. If a1a2 · · · ar 6= (n− r + 1) · · · (n− 1)n, find the largest k such

that ak < n− r + k.
Step 3. Change a1a2 · · · ar to

a1 · · · ak−1(ak + 1)(ak + 2) · · · (ak + r − k + 1),

write down a1a2 · · · ar, and return back to Step 1.

Example 4.1. The collection of all 4-combinations of {1, 2, 3, 4, 5, 6} are listed

by the algorithm:
1234 1245 1345 1456 2356

1235 1246 1346 2345 2456

1236 1256 1356 2346 3456

Theorem 4.3. Let a1a2 · · · ar be an r-combination of {1, 2, . . . , n}. Then

the number of r-combinations up to the place a1a2 · · · ar in lexicographic

order equals(
n

r

)
−

(
n− a1

r

)
−

(
n− a2

r − 1

)
− · · · −

(
n− ar−1

2

)
−

(
n− ar

1

)
.

Proof. The r-combinations b1b2 · · · br after a1a2 · · · ar can be classified into r

kinds:

(1) b1 > a1; there are
(

n−a1
r

)
such r-combinations.

(2) b1 = a1, b2 > a2; there are
(

n−a2
r−1

)
such r-combinations.

(3) b1 = a1, b2 = a2, b3 > a3; there are
(

n−a3
r−2

)
such r-combinations.

...

(r − 1) b1 = a1, . . ., br−2 = ar−2, br−1 > ar−1; there are
(

n−ar−1
2

)
such

r-combinations.

(r) b1 = a1, . . ., br−1 = ar−1, br > ar; there are
(

n−ar
1

)
such r-combinations.

Since the number of r-combinations of {1, 2, . . . , n} is
(

n
r

)
, the conclusion fol-

lows immediately.

13

Example 4.2. The 3-combinations of {1, 2, 3, 4, 5} are as follows:

123, 124, 125, 134, 135, 145, 234, 235, 245, 345

The 3-permutations of {1, 2, 3, 4, 5} can be obtained by making 3! permutations

for each 3-combination:

123 124 125 134 135 145 234 235 245 345

132 142 152 143 153 154 243 253 254 354

213 214 215 314 315 415 324 325 425 435

231 241 251 341 351 451 342 352 452 453

312 412 512 413 513 514 423 523 524 534

321 421 521 431 531 541 432 532 542 543

5 Partially Ordered Sets

Definition 5.1. A (binary) relation on a set X is a subset R ⊆ X ×X .

Two members x and y of X are said to satisfy the relation R, written xRy, if

(x, y) ∈ R. A relation R on X is said to be

(1) reflexive if xRx for all x ∈ X ;

(2) irreflexive if xR̄x (also write x \Rx) for all x ∈ X ,

where R̄ = (X ×X)rR.

(3) symmetric provided that if xRy then yRx;

(4) antisymmetric provided that if x 6= y and xRy then yR̄x

(equivalently, if xRy and yRx then x = y);

(5) transitive provided that if xRy and yRz then xRz;

(6) complete provided that if x, y ∈ X and x 6= y

then either xRy or yRx.

Example 5.1. (1) The relation of set containment, ⊆, is a reflexive and

transitive relation on the power set P (X) of all subsets of X .

(2) The relation of divisibility, denoted |, is a reflexive and transitive rela-

tion on the set Z of integers.

14

A partial order ≤ on a set X is a reflexive, antisymmetric, and transitive

relation, that is,

(P1) x ≤ x for all x,

(P2) x ≤ y and y ≤ x then x = y,

(P3) if x ≤ y and y ≤ z then x ≤ z.

A strict partial order on a set X is an irreflexive and transitive relation,

that is,

(SP1) x 6< x for all x, and

(SP2) if x < y and y < z then x < z.

If a relation R is a partial order, which is usually denoted by ≤, then the

relation <, defined by a < b iff a ≤ b but a 6= b, is a strict partial order.

Conversely, for a strict partial order < on a set X , the relation ≤ defined by

a ≤ b iff a < b or a = b is a partial order. A set X with a partial order ≤ is

called a partially ordered set (or poset for short), denoted (X,≤).

A linear order on a set X is a partial order ≤ such that either a ≤ b

or b ≤ a for any two members a and b of X , i.e., a complete partial order.

A strict linear order is an irreflexive, transitive, and complete relation.

A preference relation is a relation which is reflexive and transitive. An

equivalence relation is a reflexive, symmetric, and transitive relation.

Example 5.2. Let S = {1, 2, 3, 4}. Then relation “larger than” in its ordinary

meaning is the relation

“ > ” =
{
(2, 1), (3, 1), (4, 1), (3, 2), (4, 2), (4, 3)

}
,

and it is a strict linear order relation. The relation “less than or equal to” in

its ordinary meaning is the relation

“ ≤ ” =
{
(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 3), (2, 4), (3, 3), (3, 4), (4, 4)

}
,

and is a linear order relation.

15

Example 5.3. LetC denote the set of complex numbers. Consider the relation

R on C given by zRw if |z| = |w|, where z = a+ ib and |z| =
√

a2 + b2. Then

R is an equivalence relation on C.

The relation L on C, defined by zLw (where z = a + ib and w = c + id) if

a < c or a = c but b ≤ d, is a linear order on C.

Example 5.4. Let V be a vector space over R. A partial order ¹ on V is

said to be compatible with the addition and scalar multiplication

provided that

(i) u ¹ u for all u ∈ V ;

(ii) if u ¹ v then cu ¹ cv for all c ≥ 0;

(iii) if u1 ¹ v1 and u2 ¹ v2 then u1 + u2 ¹ v1 + v2.

Properties (i) and (iii) imply the translation preserving property

(iv) if u ¹ v then u + w ¹ v + w for all w ∈ V .

A convex cone of V is a nonempty subset C ⊆ V satisfying

(a) if u ∈ C and c ≥ 0 then cu ∈ C;

(b) if u, v ∈ C then u + v ∈ C.

A convex cone C is said to be strongly convex if it further satisfies

(c) if u ∈ C and u 6= 0, then −u 6∈ C, i.e., if u,−u ∈ C then u = 0.

Strongly convex cone does not contain any 1-dimensional subspace.

Theorem 5.2. Let C be a strongly convex cone of V . Then the binary

relation ¹ on V , defined by

u ¹ v if v − u ∈ C,

is a partial order compatible with the addition and scalar multiplication.

Conversely, let ¹ be a partial order on V compatible with the addition

and scalar multiplication. Then the subset

C := {v ∈ V | 0 ¹ v}
is a strongly convex cone of V .

16

Proof. The relation ¹ is antisymmetric and transitive, since u ¹ v and v ¹ u

imply u = v, and u ¹ v and v ¹ w imply u ¹ w. Clearly, the relation ¹ is

compatible with the addition and scalar multiplication. In fact, (i) u ¹ u for

all u ∈ V ; (ii) if u ¹ v, then cu ¹ cv for all c ≥ 0; (iii) if u1 ¹ v1 and u2 ¹ v2,

then u1 + u2 ¹ v1 + v2.

In fact, (i) u ∈ C implies cu ∈ C for c ≥ 0; (ii) u, v ∈ C imply u + v ∈ C;

(iii) if u,−u ∈ C, i.e., 0 ¹ u and 0 ¹ −u, then u = u + 0 ¹ u− u = 0, thus

u = 0.

Let H be a subspace of V . Then the relation ∼ on V , defined by u ∼ v if

v − u ∈ H , is an equivalence relation on V .

Let ≤1 and ≤2 be two partial orders on a set X . The poset (X,≤2) is called

an extension of the poset (X,≤1) if, whenever a ≤1 b, then a ≤2 b. In

particular, an extension of a partial order has more compatible pairs. We show

that every finite poset has a linear extension, that is, an extension which is

a linearly ordered set.

Theorem 5.3. Let (X,≤) be a finite partially ordered set. Then there is

a linear order ¹ such that (X,¹) is an extension of (X,≤).

Proof. We need to show that the elements of X can be listed in some order

x1, x2, . . . , xn in such a way that if xi ≤ xj then xi comes before xj in this list,

i.e., i ≤ j. The following algorithm does the job.

Algorithm 5.4. Algorithm for a Linear Extension of an n-Poset:

Step 1. Choose a minimal element x1 from X (with respect to the or-

dering ≤; if such elements are not unique, choose any one).
Step 2. Delete x1 from X ; choose a minimal element x2 from Xr{x1}.
Step 3. Delete x2 from X r {x1}; choose a minimal element x3 from

X r {x1, x2}.
...

Step n. Delete xn−1 from X r {x1, . . . , xn−2} and choose the only ele-

ment xn in X r {x1, . . . , xn−1}.

17

Let R be an equivalence relation on a set X . For each element x ∈ X , we

call the set

[x] = {y ∈ X : xRy}
an equivalence class of R and x a representative of the class [x].

Theorem 5.5. Let R be an equivalence relation on a set X. Then for any

x, y ∈ X, the following statements are logically equivalent:

1) [x] ∩ [y] 6= ∅;
2) [x] = [y];

3) xRy.

A collection P = {A1, A2, . . . , Ak} of nonempty subsets of a set X is called

a partition of X if Ai ∩ Aj = ∅ for i 6= j and X =
⋃k

i=1 Ai. We will show

below that if R is an equivalence relation on a set X , then the collection

PR =
{
[x] : x ∈ X

}

is a partition of X . Conversely, if P = {A1, A2, . . . , Ak} is a partition of X ,

then the relation

RP =

k⋃
i=1

Ai × Ai

is an equivalence relation on X .

Theorem 5.6. Let R be an equivalence relation on a set X, and let P =

{A1, A2, . . . , Ak} be a partition of X. Then

(a) PR is a partition of X.

(b) RP is an equivalence relation on X.

(c) RPR
= R, PRP = P.

Proof. Parts (a) and (b) are trivial. We only prove Part (c).

Let (x, y) ∈ RPR
. Then, by definition of equivalence relation induced from

the partition PR, there exists a part A ∈ PR such that x, y ∈ A. Note that

the parts in PR are the equivalence classes [x] of the equivalence relation R; in

18

particular A is an equivalence class of R. Since A contains both x and y, it

follows that A = [x] = [y]. So (x, y) ∈ R. Hence RPR
⊆ R.

Let (x, y) ∈ R. Then [x] = [y] is a part of PR. Thus [x]× [y] ⊆ RPR
. Since

(x, y) ∈ [x]× [y], we see that (x, y) ∈ RPR
. Therefore R ⊆ RPR

.

A ∈ PRP ⇔ A is an equivalence class of the relation RP ⇔ A is a part of

the partition P .

Example 5.5. Let V be a vector space over R. An equivalence relation ∼ on

V is said to be translation preserving if u ∼ v implies u + w ∼ v + w for

all w ∈ V .

A subspace of V is a nonempty subset H ⊂ V such that if u, v ∈ H then

au + bv ∈ H for all a, b ∈ R.

Given a subspace H ⊂ V . The relation ∼ on V , defined by u ∼ v if

v − u ∈ H , is an order preserving equivalence relation on V .

19

