
Homework 4

Chapter 7 p.246 (3rd edition) 7, 12, 19, 22, 24, 25b,e, 26, 30, 32, 37

1. Let an equal the number of different ways in which the squares of 1-by-n chessboard can be colored, using
the colors red, white, and blue so that no two squares colored red are adjacent. Find and verify a recurrence
relation that an satisfies. Then find a formula for an.

2. Solve the recurrence relation an = 8an−1 − 2an−2, (n ≥ 2), with initial values a0 = −1 and a1 = 0.

3. Solve the nonhomogeneous recurrence relation an = 3an−1 − 2 with a0 = 1.

4. Solve the nonhomogeneous recurrence relation an = 4an−1 − 4an−2 + 3n + 1 with a0 = 1 and a1 = 2.

5. Let M be the multiset {∞ · e1,∞ · e2,∞ · e3,∞ · e4}. Determine the generating function for the sequence
(an;n ≥ 0), where an is the number of n-combinations of M with the additional restrictions:

(a) Each ei occurs an odd number of times.

(b) Each ei occurs a multiple-of-3 number of times.

(c) The element e1 does not occur, and e2 occurs at most once.

(d) The element e1 occurs 1, 3, or 11 times, and the element e2 occurs 2, 4, or 5 times.

(e) Each ei occurs at least 10 times.

6. Solve the following recurrence relations by using the method of generating functions.

(a) an = an−1 + an−2, (n ≥ 2); a0 = 1, a1 = 3.

(b) an = 3an−2 − 2an−3, n ≥ 3; a + 0 = 1, a1 = 1, a2 = 0.

7. Solve the nonhomogeneous recurrence relation

an = 4an−1 + 4n, n ≥ 1; a0 = 3.

8. Determine the generating function for the number an of the bags of fruit of apples, oranges, bananas, and pears
in which there are an even number of apples, at most two oranges, a multiple of three number of bananas,
and at most one pear. Then find the formula for an from the generating function.

9. Let an =
(

n
2

)
, n ≥ 0. Determine the generating function of (an;n ≥ 0).

10. Let M be the multiset {∞ · e1,∞ · e2, . . . ,∞ · ek}. determine the exponential generating function for the
sequence (an;n ≥ 0), where a0 = 1 and for n ≥ 1:

(a) an equals the number of n-permutations of M in which each object occurs an odd number of times.

(b) an equals the number of n-permutations of M in which each object occurs at least four times.

(c) an equals the number of n-permutations of M in which 1 occurs at least once, e2 occurs at least twice,
. . ., ek occurs at least k times.

(d) an equals the number of n-permutations of M in which 1 occurs at most once, e2 occurs at most twice,
. . ., ek occurs at most k times.
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1. Let q be a root of the characteristic polynomial of the recurrence relation

xn = α1xn−1 + α2xn−2 + · · ·+ αkxn−k, n ≥ k, (1)

where α1, α2, . . . , αk are constants and αk 6= 0.

(a) If the multiplicity of the root q is m, show that xn = niqn, where 0 ≤ i ≤ m − 1, is a solution of the
recurrence relation.

(b) Prove that the solutions qn, nqn, . . ., nm−1qn are linearly independent solutions.

2. In the recurrence relation (1), let Yn = [yn,0, yn,1, . . . , yn,k−1]T , where yn,i = xkn+i. Show that the recurrence
relation (1) can be changed into the following matrix recurrence relation of order 1:

Yn = AYn−1.

Find possible relation between the roots of the characteristic polynomial of (1) and the eigenvalues of the
matrix A.

Chapter 8, pp.290: 2, 6, 7, 12, 15, 19, 25, 29

1. Prove that the number of 2-by-n arrays
[

x11 x12 · · · x1n

x21 x22 · · · x2n

]

that can be made from the numbers 1, 2, . . . , 2n so that

x11 < x12 < · · · < x1n, x21 < x22 < · · · < x2n,

and
x11 < x21, x12 < x22, . . . , x1n < x2n,

equals the nth Catalan number Cn.

2. Let m and n be the non-negative integers with m ≤ n. There are m + n people in line to get into a theater
for which admission is 5 dollars. Of the m + n people, n have a 5 dollar single coin m have a 10 dollar bill.
The box office opens with an empty cash register. Show that the number of ways the people can line up so
that change is available when needed is

n−m + 1
n + 1

(
m + n

m

)
.

3. Let (an;n ≥ 0) be defined by an = 2n2−n+3. Determine the difference table of (an;≥ 0); and find a formula
for

∑n
k=0 ak.

4. Show that the Stirling numbers of the second kind satisfy the relation:

(a) S(n, 1) = 1 for n ≥ 1;

(b) S(n, 2) = 2n−1 − 1 for n ≥ 2;

(c) S(n, n− 1) =
(

n
2

)
for n ≥ 1;

(d) S(n, n− 2) =
(

n
3

)
+ 3

(
n
4

)
.

5. The number of partitions of a set of n elements into k distinguishable boxes (some of which may be empty)
is kn. By counting in a different way prove that

kn =
n∑

i=1

(
k

i

)
i!S(n, i).
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6. Show that the Stirling numbers of the first kind satisfy

(a) S(n, 1) = (n− 1)!, n ≥ 1.

(b) S(n, n− 1) =
(

n
2

)
, n ≥ 1.

7. Let a1, a2, . . . , am be distinct positive integers, and let qn = qn(a1, a2, . . . , am) be equal to the number of
partitions of n in which all parts are taken from a1, a2, . . . , am. Define q0 = 1. Show that the generating
function for q1, q2, . . . , qn, . . . is

m∏

k=1

1
(1− xtk)

.

8. Evaluation h
(k)
k−1, the number of regions into which k-dimensional spaces is partitioned by k − 1 hyperplanes

in general position.
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