
Week 9-10: Recurrence Relations and Generating
Functions

April 15, 2019

1 Some number sequences

An infinite sequence (or just a sequence for short) is an ordered array

a0, a1, a2, . . . , an, . . .

of countably many real or complex numbers, and is usually abbreviated as

(an; n ≥ 0) or just (an). A sequence (an) can be viewed as a function f from

the set of nonnegative integers to the set of real or complex numbers, i.e.,

f : Z≥0 → C, f (n) = an, n = 0, 1, 2, . . .

We call a sequence (an) an arithmetic sequence if it is of the form

a0, a0 + q, a0 + 2q, . . . , a0 + nq, . . .

The general term of such sequences satisfies the recurrence relation

an = an−1 + q, n ≥ 1.

A sequence (an) is called a geometric sequence if it is of the form

a0, a0q, a0q
2, . . . , a0q

n, . . .

The general term of such sequences satisfies the recurrence relation

an = qan−1, n ≥ 1.
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The partial sums of a sequence (an) are the summations:

s0 = a0,

s1 = a0 + a1,

s2 = a0 + a1 + a2,
...

sn = a0 + a1 + · · · + an,
...

The partial sums form a new sequence (sn; n ≥ 0).

For an arithmetic sequence an = a0 + nq (n ≥ 0), we have the partial sum

sn =

n∑

k=0

(a0 + kq) = (n + 1)a0 +
qn(n + 1)

2
.

For a geometric sequence an = a0q
n (n ≥ 1), we have

sn =

n∑

k=0

a0q
n =

{
qn+1−1

q−1 a0 if q 6= 1

(n + 1)a0 if q = 1.

Example 1.1. Determine the sequence an, defined as the number of regions

which are created by n mutually overlapping circles in general position on the

plane. (By mutually overlapping we mean that each pair of two circles

intersect in two distinct points. Thus non-intersecting or tangent circles are not

allowed. By general position we mean that there are no three circles through

a common point.)

We easily see that the first few numbers are given as

a0 = 1, a1 = 2, a2 = 4, a3 = 8.

It seems that we might have a4 = 16. However, by try-and-error we quickly see

that a4 = 14.

Assume that there are n circles in general position on a plane. When we take

one circle away, say the nth circle, there are n − 1 circles in general position

on the same plane. By induction hypothesis the n − 1 circles divide the plane
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into an−1 regions. Note that the nth circle intersects each of the n− 1 circles in

2(n − 1) distinct points. Let the 2(n − 1) points on the nth circle be ordered

clockwise as P1, P2, . . . , P2(n−1). Then each of the 2(n− 1) arcs

P1P2, P2P3, P3P4, . . . , P2(n−2)+1P2(n−1), P2(n−1)P1

intersects one and only one region in the case n − 1 circles and separate the

region into two regions. There are 2(n−1) more regions produced when the nth

circle is drawn. We thus obtain the recurrence relation

an = an−1 + 2(n− 1), n ≥ 2.

Repeating the recurrence relation we have

an = an−1 + 2(n− 1)

= an−2 + 2(n− 1) + 2(n− 2)

= an−3 + 2(n− 1) + 2(n− 2) + 2(n− 3)
...

= a1 + 2(n− 1) + 2(n− 2) + 2(n− 3) + · · · + 2

= a1 + 2 · (n− 1)n

2
= 2 + n(n− 1)

= n2 − n + 2, n ≥ 2.

This formula is also valid for n = 1 (since a1 = 2), although it doesn’t hold for

n = 0 (since a0 = 1).

Example 1.2 (Fibonacci Sequence). A pair of newly born rabbits of opposite

sexes is placed in an enclosure at the beginning of a year. Baby rabbits need

one moth to grow mature; they become an adult pair on the first day of the

second month. Beginning with the second month the female is pregnant, and

gives exactly one birth of one pair of rabbits of opposite sexes on the first day of

the third month, and gives exactly one such birth on the first day of each next

month. Each new pair also gives such birth to a pair of rabbits on the first day

of each month starting from the third month (from its birth). Find the number

of pairs of rabbits in the enclosure after one year?
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Let fn denote the number of pairs of rabbits on the first day of the nth month.

Some of these pairs are adult and some are babies. Let an and bn denote the

number of pairs of adult and baby rabbits respectively on the first day of the

nth month. Then the total number of pairs of rabbits on the first day of the nth

month is fn = an + bn, n ≥ 1.

n 1 2 3 4 5 6 7 8 9 10 11 12 13

an 0 1 1 2 3 5 8 13 21 34 55 89 144

bn 1 0 1 1 2 3 5 8 13 21 34 55 89

fn 1 1 2 3 5 8 13 21 34 55 89 144 233

If a pair is adult on the first day of the nth month, then it gives one birth of one

pair on the first day of the next month. So bn+1 = an, n ≥ 1. Note that each

adult pair on the first day of the nth month is still an adult pair on first day of

the next month and each baby pair on the first day of the nth month becomes

an adult pair on the first day of the next month, we have an+1 = an + bn = fn,

n ≥ 1. Thus

fn = an + bn = fn−1 + an−1 = fn−1 + fn−2, n ≥ 3.

Let us define f0 = 0. The sequence f0, f1, f2, f3, . . . satisfying the recurrence

relation 



fn = fn−1 + fn−2, n ≥ 2

f0 = 0

f1 = 1

(1)

is known as the Fibonacci sequence, and its terms are known as Fibonacci

numbers.

Example 1.3. The partial sum of Fibonacci sequence is

sn = f0 + f1 + f2 + · · · + fn = fn+2 − 1. (2)

This can be verified by induction on n. For n = 0, we have s0 = f2 − 1 = 0.

Now for n ≥ 1, we assume that it is true for n− 1, i.e., sn−1 = fn+1 − 1. Then

sn = f0 + f1 + · · · + fn

= sn−1 + fn

= fn+1 − 1 + fn (by the induction hypothesis)

= fn+2 − 1. (by the Fibonacci recurrence)
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Example 1.4. The Fibonacci number fn is even if and only if n is a multiple

of 3.

Note that f1 = f2 = 1 is odd and f3 = 2 is even. Assume that f3k is even,

f3k−2 and f3k−1 are odd. Then f3k+1 = f3k + f3k−1 is odd (even + odd = odd),

and subsequently, f3k+2 = f3k+1 +f3k is also odd (odd+even = odd). It follows

that f3(k+1) = f3k+2 + f3k+1 is even (odd + odd = even).

Theorem 1.1. The general term of the Fibonacci sequence (fn) is given by

fn =
1√
5

(
1 +

√
5

2

)n

− 1√
5

(
1−√5

2

)n

, n ≥ 0. (3)

Example 1.5. Determine the number hn of ways to perfectly cover a 2-by-n

board with dominoes. (Symmetries are not counted in counting the number of

coverings.)

We assume h0 = 1 since a 2-by-0 board is empty and it has exactly one

perfect cover, namely, the empty cover. Note that the first few terms can be

easily obtained such as

h0 = 1, h1 = 1, h2 = 2, h3 = 3, h4 = 5.

Now for n ≥ 3, the 2-by-n board can be covered by dominoes in two types:

n1 2 n−1 n−21 2 n

There are hn−1 ways in the first type and hn−2 ways in the second type. Thus

hn = hn−1 + hn−2, n ≥ 2.

Therefore the sequence (hn; n ≥ 0) is the Fibonacci sequence (fn; n ≥ 0) with

f0 = 0 deleted, i.e.,

hn = fn+1, n ≥ 0.

Example 1.6. Determine the number bn of ways to perfectly cover a 1-by-n

board by dominoes and monominoes.

5



bn = bn−1 + bn−2, b0 = b1 = 1, b2 = 2.

Theorem 1.2. The Fibonacci number fn can be written as

fn =

bn−1
2 c∑

k=0

(
n− k − 1

k

)
, n ≥ 0.

Proof. Let g0 = 0 and

gn =

bn−1
2 c∑

k=0

(
n− k − 1

k

)
, n ≥ 1.

Note that k >
⌊

n−1
2

⌋
is equivalent to k > n − k − 1. Since

(
m
p

)
= 0 for any

integers m and p such that p > m, we may write gn as

gn =

n−1∑

k=0

(
n− k − 1

k

)
, n ≥ 1.

To prove the theorem, it suffices to show that the sequence (gn) satisfies the

Fibonacci recurrence relation with the same initial values. In fact, g0 = 0,

6



g1 =
(

0
0

)
= 1, and for n ≥ 0,

gn+1 + gn =

n∑

k=0

(
n− k

k

)
+

n−1∑

k=0

(
n− k − 1

k

)

=
(n

0

)
+

n∑

k=1

(
n− k

k

)
+

n∑

k=1

(
n− k

k − 1

)

=
(n

0

)
+

n∑

k=1

[(
n− k

k

)
+

(
n− k

k − 1

)]

=
(n

0

)
+

n∑

k=1

(
n− k + 1

k

)
(By the Pascal formula)

=

(
n + 1

0

)
+

n∑

k=1

(
n− k + 1

k

)
+

(
0

n + 1

)

=

n+1∑

k=0

(
(n + 2)− k − 1

k

)
= gn+2.

We conclude that the sequence (gn) is the Fibonacci sequence (fn).

2 Linear recurrence relations

Definition 2.1. A sequence (xn; n ≥ 0) of numbers is said to satisfy a linear

recurrence relation of order k if

xn = α1(n)xn−1 + α2(n)xn−2 + · · · + αk(n)xn−k + βn, (4)

where αk(n) 6= 0, n ≥ k, and the coefficients α1(n), α2(n), . . ., αk(n) and βn are

functions of n. The linear recurrence relation (4) is said to be homogeneous

if βn = 0 for all n ≥ k, and is said to have constant coefficients if α1(n),

α2(n), . . ., αk(n) are constants. The recurrence relation

xn = α1(n)xn−1 + α2(n)xn−2 + · · · + αk(n)xn−k, (5)

where αk(n) 6= 0, n ≥ k, is called the corresponding homogeneous linear

recurrence relation of (4).
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A solution of the recurrence relation (4) is a sequence (un) satisfying (4).

The general solution of (4) is a solution

xn = un(c1, c2, . . . , ck) (6)

with some parameters c1, c2, . . . , ck, provided that for arbitrary initial values

u0, u1, . . . , uk−1 there exist constants c1, c2, . . . , ck such that (6) is the unique

sequence satisfying both the recurrence relation (4) and the initial conditions.

Let S∞ denote the set of all sequences (an; n ≥ 0). Then S∞ is an infinite-

dimensional vector space under the ordinary addition and scalar multiplication

of sequences. Let Nk be the set all solutions of the nonhomogeneous linear

recurrence relation (4), and Hk the set of all solutions of the homogeneous linear

recurrence relation (5). We shall see that Hk is a k-dimensional subspace of S∞,

and Nk a k-dimensional affine subspace of S∞.

Theorem 2.2. (Structure Theorem for Linear Recurrence Relations)

(a) The solution space Hk is a k-dimensional subspace of the vector space

S∞ of sequences. Thus, if (an,1), (an,2), . . ., (an,k) are linearly independent

solutions of the homogeneous linear recurrence relation (5), then the general

solution of (5) is

xn = c1an,1 + c2an,2 + · · · + ckan,k, n ≥ 0,

where c1, c2, . . . , ck are arbitrary constants.

(b) Let (an) be a particular solution of the nonhomogeneous linear recur-

rence relation (4). Then the general solution of (4) is

xn = an + hn, n ≥ 0,

where (hn) is the general solution of the corresponding homogeneous linear

recurrence relation (5). In other words, Nk is a translate of Hk in S∞, i.e.,

Nk = (an) +Hk.

Proof. (a) To show that Hk is a vector subspace of S∞, we need to show that

Hk is closed under the addition and scalar multiplication of sequences. Let (an)
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and (bn) be solutions of (5). Then

an + bn = [α1(n)an−1 + α2(n)an−2 + · · · + αk(n)an−k]

+[α1(n)bn−1 + α2(n)bn−2 + · · · + αk(n)bn−k]

= α1(n)(an−1 + bn−1) + α2(n)(an−2 + bn−2) +

· · · + αk(n)(an−k + bn−k), n ≥ k.

For scalars c,

can = c[α1(n)an−1 + α2(n)an−2 + · · · + αk(n)an−k]

= α1(n)can−1 + α2(n)can−2 + · · · + αk(n)can−k, n ≥ k.

This means that Hk is closed under the addition and scalar multiplication of

sequences.

To show that Hk is k-dimensional, consider the projection π : S∞ → Rk,

defined by

π(x0, x1, x2, . . .) = (x0, x1, . . . , xk−1).

We shall see that the restriction π|Hk : Hk → Rk is a linear isomorphism. For

each (a0, a1, . . . , ak−1) ∈ Rk, define an inductively by

an = α1(n)an−1 + α2(n)an−2 + · · · + αk(n)an−k, n ≥ k.

Obviously, we have π(a0, a1, a2, . . .) = (a0, a1, . . . , ak−1). This means that π|Hk

is surjective. Now let (un) ∈ Hk be such that π(u0, u1, u2, . . .) = (0, 0, . . . , 0),

i.e.,

u0 = u1 = · · · = uk−1 = 0.

Applying the recurrence relation (5) for n = k, we have uk = 0. Again applying

(5) for n = k + 1, we obtain uk+1 = 0. Continuing to apply (5), we have un = 0

for n ≥ k. Thus (un) is the zero sequence. This means that π is injective. We

have finished the proof that π|Hk is a linear isomorphism from Hk onto Rk. So

dimHk = k.

(b) For each solution (vn) of (4), we claim that the sequence hn := vn − un

(n ≥ 0) is a solution of (5). So

vn = un + hn, n ≥ 0.

9



In fact, since (un) and (vn) are solutions of (4), applying the recurrence relation

(4), we have

hn = [α1(n)vn−1 + α2(n)vn−2 + · · · + αk(n)vn−k + βn]

−[α1(n)un−1 + α2(n)un−2 + · · · + αk(n)un−k + βn]

= α1(n)(vn−1 − un−1) + α2(n)(vn−2 − un−2) + · · · + αk(n)(vn−k − un−k)

= α1(n)hn−1 + α2(n)hn−2 + · · · + αk(n)hn−k, n ≥ k.

This means that (hn) is a solution of (5). Conversely, for any solution (hn) of

(5), we have

un + hn = [α1(n)un−1 + α2(n)un−2 + · · · + αk(n)un−k + βn]

+[α1(n)hn−1 + α2(n)hn−2 + · · · + αk(n)hn−k]

= α1(n)(un−1 + hn−1) + α2(n)(un−2 + hn−2)

+ · · · + αk(n)(un−k + hn−k) + βn

for n ≥ k. This means that the sequence (un + hn) is a solution of (4).

Definition 2.3. The Wronskian Wk(n) of k solutions (un,1), (un,2), . . .,

(un,k) of the homogeneous linear recurrence relation (5) is the determinant

Wk(n) = det




un,1 un,2 · · · un,k

un+1,1 un+1,2 · · · un+1,k
... ... ...

un+k−1,1 un+k−1,2 · · · un+j−1,k


 , n ≥ 0.

The Wronskian of (un,1), (un,2), . . ., (un,k) is also an infinite sequence

(Wk(n); n ≥ 0).

Proposition 2.4. If Wk(m) = 0, then Wk(n) = 0 for all n ≥ m.

Proof. Since Wk(m) = 0, there are constants c1, c2, . . . , ck, not all zero, such

that for i = 0, 1, . . . , k − 1,

k∑
j=1

cjum+i,j = c1um+i,1 + c2um+i,2 + · · · + ckum+i,k = 0.
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We claim that Wk(m+1) = 0. It is enough to show that for the same coefficients

c1, c2, . . . , ck above, the linear relation

k∑
j=1

cjum+k,j = c1um+k,1 + c2ui,2 + · · · + ckum+k,k = 0

holds. In fact, applying the recurrence relation (5) to (um+k,1), (um+k,2), . . .,

(um+k,k) respectively, we have

k∑
j=1

cjum+k,j =

k∑
j=1

cj

k−1∑
i=0

αi(m + k)um+i,j

=

k−1∑
i=0

αi(m + k)

k∑
j=1

cjum+i,j = 0.

This means that the vectors (um+i,1), (um+i,2), . . ., (um+i,k), with 1 ≤ i ≤ k,

are linearly dependent. So Wk(m+1) = 0. Continue the procedure, we see that

Wk(n) = 0 for n ≥ m.

Theorem 2.5. The solutions (un,1), (un,2), . . ., (un,k) of the homogeneous

linear recurrence relation (5) are linearly independent if and only if there is

a nonnegative integer n0 such that the Wronskian

Wk(n0) 6= 0.

In other words, the solutions (un,1), (un,2), . . ., (un,k) are linearly dependent

if and only if Wk(n) = 0 for all n ≥ 0.

Proof. We show that the sequences (un,1), (un,2), . . ., (un,k) are linearly depen-

dent if and only if Wk(n) = 0 for all n ≥ 0. If (un,1), (un,2), . . ., (un,k) are

linearly dependent, then for n ≥ 0 the columns of the matrix



un,1 un,2 · · · un,k

un+1,1 un+1,2 · · · un+1,k
... ... ...

un+k−1,1 un+k−1,2 · · · un+j−1,k



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are linearly dependent because the columns are part of the sequences (un,1),

(un,2), . . ., (un,k) respectively. It follows from linear algebra that the determinant

of the matrix is zero, i.e., the Wronskian Wk(n) = 0 for all n ≥ 0.

Conversely, if Wk(n) = 0 for all n ≥ 0, in particular, Wk(0) = 0, then there

are constants c1, c2, . . . , ck, not all zero, such that

k∑
j=1

cjui,j = c1ui,1 + c2ui,2 + · · · + ckui,k = 0, i = 0, 1, . . . , k − 1.

We claim that
∑k

j=1 cjun,j = 0 for all n by induction. Assume it is true for

n ≤ m−1. Applying the recurrence relation (5) to the sequences (um,1), (um,2),

. . ., (um,k), we have

k∑
j=1

cjum,j =

k∑
j=1

cj

k∑
i=1

αi(k)um−i,j

=

k∑
i=1

αi(k)

k∑
j=1

cjum−i,j = 0.

This means that the sequences (un,1), (un,2), . . ., (un,k) are linearly dependent.

3 Homogeneous linear recurrence relations with constant coeffi-

cients

In this section we only consider linear recurrence relations of the form

xn = α1xn−1 + α2xn−2 + · · · + αkxn−k, αk 6= 0, n ≥ k, (7)

where α1, α2, . . ., αk are constants. We call this kinds of recurrence relations as

homogeneous linear recurrence relations of order k with constant

coefficients. Sometimes it is convenient to write (7) as of the form

α0xn + α1xn−1 + · · · + αkxn−k = 0, n ≥ k (8)

where α0 6= 0 and αk 6= 0. The following polynomial equation

α0t
k + α1t

k−1 + · · · + αk−1t + αk = 0, (9)
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is called the characteristic equation associated with the recurrence relation

(8), and the polynomial on the left side of (9) is called the characteristic

polynomial.

Example 3.1. The Fibonacci sequence (fn; n ≥ 0) satisfies the linear recur-

rence relation

fn = fn−1 + fn−2, n ≥ 2

of order 2 with α1 = α2 = 1 in (7).

Example 3.2. The geometric sequence (xn; n ≥ 0), where xn = qn, satisfies

the linear recurrence relation

xn = qxn−1, n ≥ 1

of order 1 with α1 = q in (7).

It is quite heuristic that solutions of the first order homogeneous linear recur-

rence relations are geometric sequences. This hints that the recurrence relation

(7) may have solutions of the form xn = qn. The following theorem confirms the

speculation.

Theorem 3.1. (a) For any number q 6= 0, the geometric sequence

xn = qn

is a solution of the kth order homogeneous linear recurrence relation (8) with

constant coefficients if and only if the number q is a root of the characteristic

equation (9).

(b) If the characteristic equation (9) has k distinct roots q1, q2, . . ., qk,

then the general solution of (8) is

xn = c1q
n
1 + c2q

n
2 + · · · + ckq

n
k , n ≥ 0. (10)

Proof. (a) Put xn = qn into the recurrence relation (8). We obtain

α0q
n + α1q

n−1 + · · · + αkq
n−k = 0. (11)

Since q 6= 0, dividing both sides of (11) by qn−k, we have

α0q
k + α1q

k−1 + · · · + αk−1q + αk = 0 (12)
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This means that (11) and (12) are equivalent. This finishes the proof of Part

(a).

(b) Since q1, q2, . . . , qk are roots of the characteristic equation (9), xn = qn
i are

solutions of the homogeneous linear recurrence relation (8) for all i (1 ≤ i ≤ k).

Since the solution space of (8) is a vector space, the linear combination

xn = c1q
n
1 + c2q

n
2 + · · · + ckq

n
k , n ≥ 0

are also solutions (8). Now given arbitrary values for x0, x1, . . . , xk−1, the se-

quence (xn) is uniquely determined by the recurrence relation (8). Set

c1q
i
1 + c2q

i
2 + · · · + ckq

i
k = xi, 0 ≤ i ≤ k − 1.

The coefficients c1, c2, . . . , ck are uniquely determined by Cramer’s rule as fol-

lows:

ci =
det Ai

det A
, 1 ≤ i ≤ k

where A is the Vandermonde matrix

A =




1 1 · · · 1

q1 q2 · · · qk

q2
1 q2

2 · · · q2
k

... ... ...

qk−1
1 qk−1

2 · · · qk−1
k




,

and Ai is the matrix obtained from A by replacing its ith column by the column

[x0, x1, . . . , xk−1]
T . The determinant of A is given by

det A =
∏

1≤i<j≤k

(qj − qi) 6= 0.

This finishes the proof of Part (b).

Example 3.3. Find the sequence (xn) satisfying the recurrence relation

xn = 2xn−1 + xn−2 − 2xn−3, n ≥ 3

and the initial conditions x0 = 1, x1 = 2, and x2 = 0.
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Solution. The characteristic equation of the recurrence relation is

x3 − 2x2 − x + 2 = 0.

Factorizing the equation, we have

(x− 2)(x + 1)(x− 1) = 0.

There are three roots x = 1,−1, 2. By Theorem 3.1, we have the general solution

xn = c1(−1)n + c2 + c32
n.

Applying the initial conditions,



c1 +c2 +c3 = 1

c1 −c2 +2c3 = 2

c1 +c2 +4c3 = 0

Solving the linear system we have c1 = 2, c2 = −2/3, c3 = −1/3. Thus

xn = 2− 2

3
(−1)n − 1

3
2n.

Theorem 3.2. (a) Let q be a root with multiplicity m of the characteristic

equation (9) associated with the kth order homogeneous linear recurrence

relation (8) with constant coefficients. Then the m sequences

xn = qn, nqn, . . . , nm−1qn

are linearly independent solutions of the recurrence relation (8).

(b) Let q1, q2, . . . , qs be distinct nonzero roots with the multiplicities

m1, m2, . . . , ms

respectively for the characteristic equation (9). Then the sequences

xn = qn
1 , nqn

1 , . . . , nm1−1qn
1 ;

qn
2 , nqn

2 , . . . , nm2−1qn
2 ;

... ... ...

qn
s , nqn

s , . . . , nms−1qn
s ; n ≥ 0

are linearly independent solutions of the homogeneous linear recurrence re-

lation (8). Their linear combinations form the general solution of the re-

currence relation (8).
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Proof. The falling factorial polynomial of degree i is the polynomial

[t]i := t(t− 1) · · · (t− i + 1).

Let q be a root of the characteristic polynomial

P (t) = α0t
k + α1t

k−1 + · · · + αk−1t + αk = (t− q)mQ(t)

with multiplicity m. Then q is a root of the ith derivative P (i)(t) of P (t), where

0 ≤ i ≤ m−1. We claim that xn = [n]iq
n is a solution of the recurrence relation

for each i = 0, 1, . . . , m− 1. In fact,

LHS of (8) = α0[n]iq
n + α1[n− 1]iq

n−1 + · · · + αk[n− k]iq
n−k

=
di

dti

∣∣∣∣
t=q

qi
(
α0t

n + α1t
n−1 + · · · + αkt

n−k
)

= qi · di

dti

∣∣∣∣
t=q

(
α0t

k + α1t
k−1 + · · · + αk−1t + αk

)
tn−k

= qi · di

dti

∣∣∣∣
t=q

(t− q)mR(t), where R(t) = Q(t)tn−k.

Applying the Leibniz rule,

LHS of (8) = qi
i∑

j=0

(
i

j

)(
dj

dtj

∣∣∣∣
t=q

(t− q)m
)(

di−j

dti−j

∣∣∣∣
t=q

R(t)

)

= qi
i∑

j=0

(
i

j

)
[m]j(t− q)m−j

∣∣∣∣
t=q

(
di−j

dti−j

∣∣∣∣
t=q

R(t)

)
= 0.

So xn = [n]iq
n is a solution. Note that

[t]i = a0 + a1t + · · · + ait
i, (i = 0, 1, . . . , m− 1)

for some integers a0, a−1, . . . , ai. It follows that there some integers b0, b1, . . . , bi

such that

ti = b0[t]0 + b1[t]1 + · · · + bi[t]i, i = 0, 1, . . . , m− 1.

We see that

xn = niqn = b0[n]0q
n + b1[n]1q

n + · · · + bi[n]iq
n

16



is a solution, where 0 ≤ i ≤ m− 1. Next we show that qn, nqn, . . . , nm−1qn are

linearly independent. Set

c0q
n + c1nqn + · · · + cm−1n

m−1qn = 0, ∀n ≥ 0.

Since q 6= 0, we have

c0 + c1n + · · · + cm−1n
m−1 = 0 ∀n ≥ 0.

Consider c0, c1, . . . , cm−1 as variables and let n = 1, 2, . . . , m. We have a system

of linear equations about c0, c1, . . . , cm−1. The coefficient matrix

A =




1 1 12 · · · 1m−1

1 2 22 · · · 2m−1

1 3 32 · · · 3m−1

... ... ... ...

1 m m2 · · · mm−1




and det A =
∏

1≤i<j≤m(j − i) 6= 0. Hence c0 = c1 = · · · = cm−1 = 0.

Proof of General Linear Independence of Solutions: Consider the linear com-

bination
s∑

j=1

(cj,1q
n
j + cj,2nqn

j + · · · + cj,mj
nmj−1qn

j ) = 0 (13)

with coefficients cj,1, cj,2, . . . , cj,mj
, where j = 1, . . . , s. We assume the roots

q1, . . . , qs are already arranged in increasing order of their modulus as |q1| ≤
|q2| ≤ · · · ≤ |qs|, and the roots of equal modulus are are already arranged

in increasing order of their multiplicities. Let qr, . . . , qs be all roots of largest

modulus with the same largest multiplicity m = mr = · · · = ms. We may have

r = 1. Assume r > 1. Then

|q1| ≤ · · · ≤ |qr−1| ≤ |qr| = · · · = |qs|.
We have either |qr−1| < |qr| or |qr−1| = |qr|. If |qr−1| = |qr|, we must have

mr−1 < mr. Let ωj = qj/qs for j = 1, . . . , s. Then ωr, . . . , ωs are distinct roots

of unity. Divide both sides of (13) by nm−1qn
s and move the lower order terms
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to the right, we obtain
s∑

j=r

cj,mωn
j = ε(n) → 0 (n →∞).

Let A(n) be the (s− r + 1)× (s− r + 1) matrix

A(n) =




ωn
r ωn

r+1 · · · ωn
s

ωn+1
r ωn+1

r+1 · · · ωn+1
s

... ... ...

ωn+s−r
r ωn+s−r

r+1 · · · ωn+s−r
s


 ,

and Aj(n) the matrix obtained from A(n) by replacing its jth column with

[ε(n), ε(n + 1), . . . , ε(n + s− r)]T .

Then det A(n) = ωn
r ω

n
r+1 · · ·ωn

s

∏
r≤i<j≤s(ωj − ωi) 6= 0. By Cramer’s rule, we

have

cj,m =
det Aj(n)

det A(n)
→ 0 (n →∞), j = r, . . . , s.

It follows that cj,m = 0 for j = r, . . . , s. Likewise, applying the same method to

other nonzero coefficients with highest order, we see that all coefficients in (13)

are zero. ¤

4 Matric representation of linear recurrence relations

Let us write x0 = [x0, x1, . . . , xk−1]
T , x1 = [xk, xk+1, . . . , x2k−1]

T , . . . ,

xn = [xnk, xnk+1, . . . , xnk+k−1]
T , n ≥ 0.

Assume xm = a1xm−1 + a2xm−2 + · · · + akxm−k, m ≥ k. We see that

xn = Axn−1, n ≥ 1.

Then

xn = Anx0, n ≥ 0.

Example 4.1. Find the sequence (xn) satisfying the recurrence relation

xn = 2xn−1 + xn−2 − 2xn−3, n ≥ 3

and the initial conditions x0 = 1, x1 = 2, and x2 = 0.
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The recurrence relation can be repeated as




x3 = 2x2 + x1 − 2x0 = −2x0 + x1 + 2x2

x4 = 2x3 + x2 − 2x1 = −4x0 + 5x2

x5 = 2x4 + x3 − 2x2 = −10x0 + x1 + 10x2

Thus 


x3

x4

x5


 =



−2 1 2

−4 0 5

−10 1 10







x0

x1

x2


 , i.e., x1 = Ax0

It follows that xn = Axn−1 = A2xn−2 = · · · = Anx0.

xn =




x3n

x3n+1

x3n+2


 =



−2 1 2

−4 0 5

−10 1 10




n 


x0

x1

x2


 , n ≥ 0.

5 Nonhomogeneous linear recurrence relations with constant co-

efficients

Theorem 5.1. Given a nonhomogeneous linear recurrence relation of the

first order

xn = αxn−1 + βn, n ≥ 1. (14)

(a) Let βn = cqn be an exponential function of n. Then (14) has a particular

solution of the following form.

• If q 6= α, then xn = Aqn.

• If q = α, then xn = Anqn.

(b) Let βn =
∑k

i=0 bin
i be a polynomial function of n with degree k.

• If α 6= 1, then (14) has a particular solution of the form

xn = A0 + A1n + A2n
2 + · · · + Akn

k,
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where the coefficients A0, A1, . . ., Ak are recursively determined as

Ak =
bk

1− α
,

Ai =
1

1− α


bi + α

k∑
j=i+1

(−1)j−i

(
j

i

)
Aj


 , 0 ≤ i ≤ k − 1.

• If α = 1, then the solution of (14) is given by

xn = x0 +

n∑
i=1

βi.

Proof. (a) We may assume q 6= 0; otherwise the recurrence (14) is homogeneous.

For the case q 6= α, put xn = Aqn in (14); we have

Aqn = αAqn−1 + cqn.

The coefficient A is determined as A = cq/(q − α).

For the case q = α, put xn = Anqn in (14); we have

Anqn = αA(n− 1)qn−1 + cqn.

Since q = α, then αAqn−1 = cqn. The coefficient A is determined as A = cq/α.

(b) For the case α 6= 1, put xn =
∑k

j=0 Ajn
j in (14); we obtain

k∑
j=0

Ajn
j = α

k∑
j=0

Aj(n− 1)j +

k∑
j=0

bjn
j.

Then
k∑

j=0

Ajn
j = α

k∑
j=0

Aj

j∑
i=0

(
j

i

)
ni(−1)j−i +

k∑
j=0

bjn
j.

k∑
i=0

Ain
i = α

k∑
i=0

ni
k∑

j=i

(−1)j−i

(
j

i

)
Aj +

k∑
i=0

bin
i.

k∑
i=0


Ai − bi − α

k∑
j=i

(−1)j−i

(
j

i

)
Aj


ni = 0.
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The coefficients A0, A1, . . . , Ak are determined recursively as

Ak =
bk

1− α
,

Ai =
1

1− α


bi + α

k∑
j=i+1

(−1)j−i

(
j

i

)
Aj


 , 0 ≤ i ≤ k − 1.

As for the case α = 1, iterate the recurrence relation (14); we have

xn = xn−1 + βn = xn−2 + βn−1 + βn

= xn−1 + βn−2 + βn−1 + βn = · · ·
= x0 + β1 + β2 + · · · + βn.

Example 5.1. Solve the difference equation
{

xn = xn−1 + 3n2 − 5n3, n ≥ 1

x0 = 2.

Solution.

xn = x0 +

n∑
i=1

bi = 2 +

n∑
i=1

(
3i2 − 5i3

)

= 2 + 3

n∑
i=1

i2 − 5

n∑
i=1

i3

= 2 + 3× n(n + 1)(2n + 1)

6
− 5×

(
n(n + 1)

2

)2

.

We have applied the following identities

n∑
i=1

i2 =
n(n + 1)(2n + 1)

6
,

n∑
i=1

i3 =

(
n(n + 1)

2

)2

.
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Example 5.2. Solve the equation
{

xn = 3xn−1 − 4n, n ≥ 1

x0 = 2.

Solution. Note that xn = 3nc is the general solution of the corresponding

homogeneous linear recurrence relation. Let xn = An + B be a particular

solution. Then

An + B = 3[A(n− 1) + B]− 4n

Comparing the coefficients of n0 and n, it follows that A = 2 and B = 3. Thus

the general solution is given by

xn = 2n + 3 + 3nc.

The initial condition x0 = 2 implies that c = −1. Therefore the solution is

xn = −3n + 2n + 3.

Theorem 5.2. Given a nonhomogeneous linear recurrence relation of the

second order

xn = α1xn−1 + α2xn−2 + cqn. (15)

Let q1 and q2 be solutions of its characteristic equation

x2 − α1x− α2 = 0.

Then (15) has a particular solution of the following forms, where A is a

constant to be determined.

(a) If q 6= q1, q 6= q2, then xn = Aqn.

(b) If q = q1, q1 6= q2, then xn = Anqn.

(c) If q = q1 = q2, then xn = An2qn.

Proof. The homogeneous linear recurrence relation corresponding to (15) is

xn = α1xn−1 + α2xn−2, n ≥ 2. (16)

We may assume q 6= 0. Otherwise (15) is homogeneous.
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(a) Put xn = Aqn into (15); we have

Aqn = α1Aqn−1 + α2Aqn−2 + cqn.

Then

A(q2 − a1q − a2) = cq2.

Since q is not a root of the characteristic equation x2 = α1x + α2, that is,

q2 − α1q − α2 6= 0, the coefficient A is determined as

A =
cq2

q2 − α1q − α2
.

(b) Since q = q1 6= q2, then xn = qn is a solution of (16) but xn = nqn is not,

that is,

q2 − α1q − α2 = 0 and nqn 6= α1(n− 1)qn−1 + α2(n− 2)qn−2.

It follows that

nq2 − α1(n− 1)q − α2(n− 2) = n(q2 − α1q − α2) + α1q + 2α2

= α1q + 2α2 6= 0.

Put xn = Anqn into (15); we have

Anqn = α1A(n− 1)qn−1 + α2A(n− 2)qn−2 + cqn.

Then

A
[
nq2 − α1(n− 1)q − α2(n− 2)

]
= cq2.

Since α1q + 2α2 6= 0, the coefficient A is determined as

A =
cq2

α1q + 2α2
.

(c) Since q = q1 = q2, then both xn = qn and xn = nqn are solutions of (16),

but xn = n2qn is not. It then follows that

q2 − α1q − α2 = 0, α1q + 2α2 = 0, and

n2q2 − α1(n− 1)2q − α2(n− 2)2 = n2(q2 − α1q − α2) + 2n(α1q + 2α2)− α1q − 4α2

= −α1q − 4α2 6= 0.
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Put xn = An2qn into (15); we have

Aqn−2
[
n2q2 − α1(n− 1)2q − α2(n− 2)2

]
= cqn.

The coefficient A is determined as

A = − cq2

α1q + 4α2
.

Example 5.3. Solve the equation




xn = 10xn−1 − 25xn−2 + 5n+1, n ≥ 2

x0 = 5

x1 = 15.

Put xn = An2 × 5n into the recurrence relation. We have

An2 × 5n = 10A(n− 1)2 × 5n−1 − 25A(n− 2)2 × 5n−2 + 5n+1.

Dividing both sides we further have

An2 = 2A(n− 1)2 − A(n− 2)2 + 5.

Thus A = 5/2. The general solution is given by

xn =
5

2
n25n + c15

n + c2n5n.

Applying the initial conditions x0 = 5 and x1 = 15, we have c1 = 5 and

c2 = −9/2. Hence

xn =

(
5

2
n2 − 9

2
n + 5

)
5n.

Theorem 5.3. Given a nonhomogeneous linear recurrence relation of the

second order

xn = α1xn−1 + α2xn−2 + βn, n ≥ 2, (17)

where βn is a polynomial function of n with degree k.
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(a) If α1 + α2 6= 1, then (17) has a particular solution of the form

xn = A0 + A1n + · · · + Akn
k,

where A0, A1, . . ., Ak are constants to be determined. If k ≤ 2, then a

particular solution has the form

xn = A0 + A1n + A2n
2.

(b) If α1 + α2 = 1, then (17) can be reduced to a first order recurrence

relation

yn = (α1 − 1)yn−1 + βn, n ≥ 2,

where yn = xn − xn−1 for n ≥ 1.

Proof. (a) Let βn =
∑k

j=0 bjn
j. Put xn =

∑k
j=0 Ajn

j into the recurrence

relation (17); we obtain

k∑
j=0

Ajn
j = α1

k∑
j=0

Aj(n− 1)j + α2

k∑
j=0

Aj(n− 2)j +

k∑
j=0

bjn
j

= α1

k∑
j=0

Aj

j∑
i=0

(−1)j−i

(
j

i

)
ni

+α2

k∑
j=0

Aj

j∑
i=0

(−2)j−i

(
j

i

)
ni +

k∑
j=0

bjn
j

= α1

k∑
i=0

ni
k∑

j=i

(−1)j−i

(
j

i

)
Aj

+α2

k∑
i=0

ni
k∑

j=i

(−2)j−i

(
j

i

)
Aj +

k∑
j=0

bjn
j.

Collecting the coefficients of ni, we have

k∑
i=0


Ai − α1

k∑
j=i

(−1)j−i

(
j

i

)
Aj − α2

k∑
j=i

(−2)j−i

(
j

i

)
Aj −

k∑
i=0

bi


ni = 0.
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Since α1 + α2 6= 1, the coefficients A0, A1, . . ., Ak are determined as

Ak =
bk

1− α1 − α2
,

Ai =
1

1− α1 − α2


bi +

k∑
j=i+1

(−1)j−i

(
j

i

) (
α1 + 2j−iα2

)
Aj


 ,

where 0 ≤ i ≤ k − 1.

(b) The recurrence relation (17) becomes

xn = α1xn−1 + (1− α1)xn−2 + βn, n ≥ 2.

Set yn = xn − xn−1 for n ≥ 1; the recurrence (17) reduces to a first order

recurrence relation.

Example 5.4. Solve the following recurrence relation




xn = 6xn−1 − 9xn−2 + 8n2 − 24n

x0 = 5

x1 = 5.

Solution. Put xn = A0 + A1n + A2n
2 into the recurrence relation; we obtain

A0+A1n+A2n
2 = 6[A0+A1(n−1)+A2(n−1)2]−9[A0+A1(n−2)+A2(n−2)2]+8n2−24n.

Collecting the coefficients of n2, n, and the constant, we have

(4A2 − 8)n2 + (4A1 − 24A2 + 24)n + (4A0 − 12A1 + 30A2) = 0.

We conclude that A2 = 2, A1 = 6, and A0 = 3. So xn = 2n2 + 6n + 3 is a

particular solution. Then the general solution of the recurrence is

xn = 2n2 + 6n + 3 + 3nc1 + 3nnc2.

Applying the initial condition x0 = x1 = 5, we have c1 = 2, c2 = −4. The

sequence is finally obtained as

xn = 2n2 + 6n + 3 + 2× 3n − 4n× 3n.
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6 Generating functions

The (ordinary) generating function of an infinite sequence

a0, a1, a2, . . . , an, . . .

is the infinite series

A(x) = a0 + a1x + a2x
2 + · · · + anx

n + · · · .

A finite sequence

a0, a1, a2, . . . , an

can be regarded as the infinite sequence

a0, a1, a2, . . . , an, 0, 0, . . .

and its generating function

A(x) = a0 + a1x + a2x
2 + · · · + anx

n

is a polynomial.

Example 6.1. The generating function of the constant infinite sequence

1, 1, . . . , 1, . . .

is the function

A(x) = 1 + x + x2 + · · · + xn + · · · =
1

1− x
.

Example 6.2. For any positive integer n, the generating function for the bi-

nomial coefficients
(n

0

)
,

(n

1

)
,

(n

2

)
, . . . ,

(n

n

)
, 0, . . .

is the function
n∑

k=0

(n

k

)
xk = (1 + x)n.
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Example 6.3. For any real number α, the generating function for the infinite

sequence of binomial coefficients
(α

0

)
,

(α

1

)
,

(α

2

)
, . . . ,

(α

n

)
, . . .

is the function ∞∑
n=0

(α

n

)
xn = (1 + x)α.

Example 6.4. Let k be a positive integer and let

a0, a1, a2, . . . , an, . . .

be the infinite sequence whose general term an is the number of nonnegative

integral solutions of the equation

x1 + x2 + · · · + xk = n.

Then the generating function of the sequence (an) is

A(x) =

∞∑
n=0


 ∑

i1+···+ik=n

1


 xn =

∞∑
n=0

∑
i1+···+ik=n

xi1+···+ik

=




∞∑
i1=0

xi1


 · · ·




∞∑
ik=0

xik


 =

1

(1− x)k

=

∞∑
n=0

(−1)n
(−k

n

)
xn =

∞∑
n=0

(
n + k − 1

n

)
xn.

Example 6.5. Let an be the number of integral solutions of the equation

x1 + x2 + x3 + x4 = n,

where 0 ≤ x1 ≤ 3, 0 ≤ x2 ≤ 2, x3 ≥ 2, and 3 ≤ x4 ≤ 5. The generating

function of the sequence (an) is

A(x) =
(
1 + x + x2 + x3

) (
1 + x + x2

) (
x2 + x3 + · · · ) (

x3 + x4 + x5
)

=
x5

(
1 + x + x2 + x3

) (
1 + x + x2

)2

1− x
.
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Example 6.6. Determine the generating function for the number of n-combinations

of apples, bananas, oranges, and pears where in each n-combination the num-

ber of apples is even, the number of bananas is odd, the number of oranges is

between 0 and 4, and the number of pears is at least two.

The required generating function is

A(x) =

( ∞∑
i=0

x2i

)( ∞∑
i=0

x2i+1

)(
4∑

i=0

xi

)( ∞∑
i=2

xi

)

=
x3(1− x5)

(1− x2)2(1− x)2
.

Example 6.7. Determine the number an of bags with n pieces of fruit (apples,

bananas, oranges, and pears) such that the number of apples is even, the number

bananas is a multiple of 5, the number oranges is at most 4, and the number of

pears is either one or zero.

The generating function of the sequence (an) is

A(x) =

( ∞∑
i=0

x2i

)( ∞∑
i=0

x5i

)(
4∑

i=0

xi

)(
1∑

i=0

xi

)

=
(1 + x + x2 + x3 + x4)(1 + x)

(1− x2)(1− x5)

=
(1 + x)(1− x5)/(1− x)

(1 + x)(1− x)(1− x5)

=
1

(1− x)2
=

∞∑
n=0

(−1)n
(−2

n

)
xn

=

∞∑
n=0

(
n + 1

n

)
xn =

∞∑
n=0

(n + 1)xn.

Thus an = n + 1.

Example 6.8. Find a formula for the number an,k of integer solutions (i1, i2, . . . , ik)

of the equation

x1 + x2 + · · · + xk = n

such that i1, i2, . . . , ik are nonnegative odd numbers.
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The generating function of the sequence (an) is

A(x) =

( ∞∑
i=0

x2i+1

)
· · ·

( ∞∑
i=0

x2i+1

)
=

xk

(1− x2)k

= xk
∞∑
i=0

(
i + k − 1

i

)
x2i =

∞∑
i=0

(
i + k − 1

i

)
x2i+k

=





∑∞
j=r

(
j+r−1
j−r

)
x2j for k = 2r

∑∞
j=r

(
j+r
j−r

)
x2j+1 for k = 2r + 1.

We then conclude that a2s,2r =
(

s+r−1
s−r

)
, a2s+1,2r+1 =

(
s+r
s−r

)
, and an,k = 0

otherwise. We may combine the three cases into

an,k =





(bn
2 c+dk

2e−1

bn
2 c−bk

2c

)
if n− k = even,

0 if n− k = odd.

Example 6.9. Let an denote the number of nonnegative integral solutions of

the equation

2x1 + 3x2 + 4x3 + 5x4 = n.

Then the generating function of the sequence (an) is

A(x) =

∞∑
n=0




∑
i,j,k,l≥0

2i+3j+4k+5l=0

1


 xn

=

( ∞∑
i=0

x2i

)


∞∑
j=0

x3j




( ∞∑

k=0

x4k

)( ∞∑

l=0

x5l

)

=
1

(1− x2)(1− x3)(1− x4)(1− x5)
.

Theorem 6.1. Let sn be the number of nonnegative integral solutions of

the equation

a1x1 + a2x2 + · · · + akxk = n.
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Then the generating function of the sequence (sn) is

A(x) =
1

(1− xa1)(1− xa2) · · · (1− xak)
.

7 Recurrence and generating functions

Since

1

(1− x)n
=

∞∑

k=0

(−n

k

)
(−x)k =

∞∑

k=0

(
n + k − 1

k

)
xk, |x| < 1;

then

1

(1− ax)n
=

∞∑

k=0

(−n

k

)
(−ax)k =

∞∑

k=0

(
n + k − 1

k

)
akxk, |x| < 1

|a|.

Example 7.1. Determine the generating function of the sequence

0, 1, 22, . . . , n2, . . . .

Since 1
1−x =

∑∞
k=0 xk, then

1

(1− x)2
=

d

dx

(
1

1− x

)
=

∞∑

k=0

d

dx

(
xk

)
=

∞∑

k=0

kxk−1.

Thus x
(1−x)2

=
∑∞

k=0 kxk. Taking the derivative with respect to x we have

1 + x

(1− x)3
=

∞∑

k=0

k2xk−1.

Therefore the desired generating function is

A(x) =
x(1 + x)

(1− x)3
.

Example 7.2. Solve the recurrence relation




an = 5an−1 − 6an−2, n ≥ 2

a0 = 1

a1 = −2
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Let A(x) =
∑∞

n=0 anx
n. Applying the recurrence relation, we have

A(x) = a0 + a1x +

∞∑
n=2

(5an−1 − 6an−2) xn

= a0 + a1x− 5xa0 + 5xA(x)− 6x2A(x).

Applying the initial values and collecting the coefficient functions of A(x), we

further have (
1− 5x + 6x2

)
A(x) = 1− 7x.

Thus the function g(x) is solved as

A(x) =
1− 7x

1− 5x + 6x2
.

Observing that 1− 5x + 6x2 = (1− 2x)(1− 3x) and applying partial fraction,

1− 7x

1− 5x + 6x2
=

A

1− 2x
+

B

1− 3x
.

The constants A and B can be determined by

A(1− 3x) + B(1− 2x) = 1− 7x.

Then {
A +B = 1

−3A −2B = −7

Thus A = 5, B = −4. Hence

A(x) =
1− 7x

1− 5x + 6x2
=

5

1− 2x
− 4

1− 3x
.

Since
1

1− 2x
=

∞∑
n=0

2nxn and
1

1− 3x
=

∞∑
n=0

3nxn

We obtain the sequence

an = 5× 2n − 4× 3n, n ≥ 0.
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Theorem 7.1. Let (an; n ≥ 0) be a sequence satisfying the homogeneous

linear recurrence relation of order k with constant coefficients, i.e.,

an = α1an−1 + α2an−2 + · · · + αkan−k, (18)

where αk 6= 0, n ≥ k. Then its generating function A(x) =
∑∞

n=0 anx
n is a

rational function of the form

A(x) =
P (x)

Q(x)
, (19)

where Q(x) is a polynomial of degree k with a nonzero constant term and

P (x) is a polynomial of degree strictly less than k.

Conversely, given such polynomials P (x) and Q(x), there exists a unique

sequence (an) satisfying the linear homogeneous recurrence relation (18),

and its generating function is the rational function in (19).

Proof. The generating function A(x) of the sequence (an) can be written as

A(x) =

k−1∑
i=0

aix
i +

∞∑

n=k

anx
n =

k−1∑
i=0

aix
i +

∞∑

n=k

(
k∑

i=1

αian−i

)
xn

=

k−1∑
i=0

aix
i +

k∑
i=1

αi

∞∑

n=k

an−ix
n =

k−1∑
i=0

aix
i +

k∑
i=1

αi

∞∑

n=k−i

anx
n+i

=

k−1∑
i=0

aix
i + αkx

k
∞∑

n=0

anx
n +

k−1∑
i=1

αix
i




∞∑
n=0

anx
n −

k−i−1∑
j=0

ajx
j




=

k−1∑
i=0

aix
i + A(x)

k∑
i=1

αix
i −

k−1∑
i=1

αix
i
k−i−1∑
j=0

ajx
j

= A(x)

k∑
i=1

αix
i +

k−1∑
i=0

aix
i −

k−1∑

l=1

xl
l∑

i=1

αial−i.
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Then

A(x)

(
1−

k∑
i=1

αix
i

)
=

k−1∑
i=0

aix
i −

k−1∑

l=1

xl
l∑

i=1

αial−i

= a0 +

k−1∑

l=1

(
al −

i∑
i=1

αial−i

)
xl.

Thus

P (x) = a0 +

k−1∑

l=1

(
al −

l∑
i=1

αial−i

)
xl,

Q(x) = 1−
k∑

i=1

αix
i.

Conversely, let (an) be the sequence whose generating function is A(x) =

P (x)/Q(x). Write

A(x) =

∞∑
n=0

anx
n, P (x) =

k∑
i=0

bix
i, Q(x) = 1−

k∑
i=1

αix
i.

Then A(x) = P (x)
Q(x) is equivalent to

(
1−

k∑
i=1

αix
i

)( ∞∑
n=0

anx
n

)
=

k∑
i=0

bix
i.

The polynomial Q(x) can be viewed as an infinite series with αi = 0 for i > k.

Thus
∞∑

n=0

anx
n −

∞∑
n=0

(
n∑

i=1

αian−i

)
xn =

k∑
i=0

bix
i.

Equating the coefficients of xn, we have the recurrence relation

an =

k∑
i=1

αian−i, n ≥ k.
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Proposition 7.2 (Partial Fractions). (a) If P (x) is a polynomial of degree

less than k, then

P (x)

(1− ax)k
=

A1

1− ax
+

A2

(1− ax)2
+ · · · + Ak

(1− ax)k
,

where A1, A2, . . . , Ak are constants to be determined.

(b) If P (x) is a polynomial of degree less than p + q + r, then

P (x)

(1− ax)p(1− bx)q(1− cx)r
=

A1(x)

(1− ax)p
+

A2(x)

(1− bx)q
+

A3(x)

(1− cx)r
,

where A1(x), A2(x), and A3(x) are polynomials of degree q + r, p + r, and

p + q, respectively.

8 A geometry example

A polygon P in R2 is called convex if the segment joining any two points in

P is also contained in P . Let Cn denote the number of ways to divide a labeled

convex polygon with n+ 2 sides into triangles. The first a few such numbers are

C1 = 1, C2 = 2, C3 = 5.

We first establish a recurrence relation for Cn+1 in terms of C0, C1, . . ., Cn.

Let Pv1v2...vn+3 denote a convex (n+3)-polygon with vertices v1, v2, . . . , vn+3. In

each triangular decomposition of Pv1v2...vn+3 into triangles, the segment v1vn+3 is

one side of a triangle ∆ in the decomposition; the third vertex of the triangle ∆ is

one of the vertices v2, v3, . . . , vn+2. Let vk+2 be the third vertex of ∆ other than

v1 and vn+3 (0 ≤ k ≤ n); see Figure 1 below. Then we have a convex (k + 2)-

n+3

v v1 2

v

v3

k+2v

n+2

v

Figure 1: vk+2 is the third vertex of the triangle with the side v1vn+3

polygon Pv1v2...vk+2 and another convex (n−k+2)-polygon Pvk+2vk+3...vn+3. Then
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by induction there are Ck ways to divide Pv1v2...vk+2 into triangles, and Cn−k ways

to divide Pvk+2vk+3...vn+3 into triangles. We thus have the recurrence relation

Cn+1 =

n∑

k=0

CkCn−k with C0 = 1.

Consider the generating function F (x) =
∑∞

n=0 Cnx
n. Then

F (x)F (x) =

( ∞∑
n=0

Cnx
n

)( ∞∑
n=0

Cnx
n

)

=

∞∑
n=0

(
n∑

k=0

CkCn−k

)
xn

=

∞∑
n=0

Cn+1x
n =

1

x

∞∑
n=1

Cnx
n

=
F (x)

x
− 1

x
.

We thus obtain the equation

xF (x)2 − F (x) + 1 = 0.

Solving for F (x), we obtain

F (x) =
1±√1− 4x

2x
.

Note that

√
1− 4x = 1 +

∞∑
n=1

(−1)n
( 1

2

n

)
4nxn

= 1 +

∞∑
n=1

anx
n,
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where

an = (−1)n
[
1

2

(
1

2
− 1

)
· · ·

(
1

2
− n + 1

)/
n!

]
· 2n · 2n

= (−1)n · (−1)(−3)(−5) · · · (−2 n− 1 + 1)

n!
· 2n

= −1 · 3 · 5 · · · (2 n− 1− 1)

n!
· 2n

= −2 · (2(n− 1))!

n!(n− 1)!
.

Then

√
1− 4x = 1− 2

∞∑
n=1

(2(n− 1))!

n!(n− 1)!
xn

= 1− 2

∞∑
n=0

(2n)!

n!(n + 1)!
xn+1.

We conclude that

F (x) =
1−√1− 4x

2x

=

∞∑
n=0

(2n)!

n!(n + 1)!
xn

=

∞∑
n=0

1

n + 1

(
2n

n

)
xn.

Hence the sequence (Cn) is given by the binomial coefficients:

Cn =
1

n + 1

(
2n

n

)
, n ≥ 0.

The sequence (Cn) is known as the Catalan sequence and the numbers Cn

as the Catalan numbers.

Example 8.1. Let Cn be the number of ways to evaluate a matrix product

A1A2 · · ·An+1, n ≥ 0
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by adding various parentheses. For instance, C0 = 1, C1 = 1, C2 = 2, and

C3 = 5. In general the formula is given by

Cn =
1

n + 1

(
2n

n

)
.

Note that each way of evaluating the matrix product A1A2 · · ·An+2 will be

finished by multiplying of two matrices at the end. There are exactly n+1 ways

of multiplying the two matrices at the end:

A1A2 · · ·An+2 = (A1 · · ·Ak+1)(Ak+2 · · ·An+2), 0 ≤ k ≤ n.

This yields the recurrence relation

Cn+1 =

n∑

k=0

CkCn−k.

Thus Cn = 1
n+1

(
2n
n

)
, n ≥ 0.

9 Exponential generating functions

The ordinary generating function method is a powerful algebraic tool for finding

unknown sequences, especially when the sequences are certain binomial coeffi-

cients or the order is immaterial. However, when the sequences are not binomial

type or the order is material in defining the sequences, we may need to consider

a different type of generating functions. For example, the sequence an = n! is

the counting of the number of permutations of n distinct objects; its ordinary

generating function
∞∑

n=0

anx
n =

∞∑
n=0

n!xn

cannot be easily figure out as a closed known expression. However, the generating

function ∞∑
n=0

an

n!
xn =

∞∑
n=0

xn =
1

1− x

is obvious.
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The exponential generating function of a sequence (an; n ≥ 0) is the

infinite series

E(x) =

∞∑
n=0

an

n!
xn.

Example 9.1. The exponential generating function of the sequence

P (n, 0), P (n, 1), . . . , P (n, n), 0, . . .

is given by

E(x) =

n∑

k=0

P (n, k)

k!
xk

=

n∑

k=0

(n

k

)
xk

= (1 + x)n.

Example 9.2. The exponential generating function of the constant sequence

(an = 1; n ≥ 0) is

E(x) =

∞∑
n=0

xn

n!
= ex.

The exponential generating function of the geometric sequence (an = an; n ≥ 0)

is

E(x) =

∞∑
n=0

anxn

n!
= eax.

Theorem 9.1. Let M = {n1α1, n2α2, . . . , nkαk} be a multiset over the set

S = {α1, α2, . . . , αk} with n1 many α1’s, n2 many α2’s, . . ., nk many αk’s.

Let an be the number of n-permutations of the multiset M . Then the expo-

nential generating function of the sequence (an; n ≥ 0) is given by

E(x) =

(
n1∑
i=0

xi

i!

)(
n2∑
i=0

xi

i!

)
· · ·

(
nk∑
i=0

xi

i!

)
. (20)
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Proof. Note that an = 0 for n > n1 + · · ·+nk. Thus E(x) is a polynomial. The

right side of (20) can be expanded to the form

n1,n2,...,nk∑
i1,i2,...,ik=0

xi1+i2+···+ik

i1!i2! · · · ik! =

n1+n2+···+nk∑
n=0

xn

n!

∑
i1+i2+···+ik=n

0≤i1≤n1,...,0≤ik≤nk

n!

i1!i2! · · · ik!.

Note that the number of permutation of M with exactly i1 α1’s, i2 α2’s, . . .,

and ik αk’s such that

i1 + i2 + · · · + ik = n

is the multinomial coefficient(
n

i1, i2, . . . , ik

)
=

n!

i1!i2! · · · ik!.

It turns out that the sequence (an) is given by

an =
∑

i1+i2+···+ik=n
0≤i1≤n1,...,0≤ik≤nk

(
n

i1, i2, . . . , ik

)
, n ≥ 0.

We proved the closed form of the required exponential generating function.

Example 9.3. Determine the number of ways to color the squares of a 1-by-n

chessboard using the colors, red, white, and blue, if an even number of squares

are colored red.

Let an denote the number of ways of such colorings and set a0 = 1. Each such

coloring can be considered as a permutation of three objects r (for red), w (for

white), and b (for blue) with repetition allowed, and the element r appears even
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number of times. The exponential generating function of the sequence (an) is

E(x) =

( ∞∑
n=0

x2n

(2n)!

)( ∞∑
n=0

xn

n!

)2

=
ex + e−x

2
e2x =

1

2

(
e3x + ex

)

=
1

2

( ∞∑
n=0

3nxn

n!
+

∞∑
n=0

xn

n!

)

=
1

2

∞∑
n=0

(3n + 1) · x
n

n!
.

Thus the sequence is given by

an =
3n + 1

2
, n ≥ 0.

Example 9.4. Determine the number an of n digit (under base 10) numbers

with each digit odd where the digit 1 and 3 occur an even number of times.

Assume a0 = 1. The number an equals the number of n-permutations of the

multiset M = {∞1,∞3,∞5,∞7,∞9}, in which 1 and 3 occur an even number

of times. The exponential generating function of the sequence an is

E(x) =

( ∞∑
n=0

x2n

(2n)!

)2 ( ∞∑
n=0

xn

n!

)3

=

(
ex + e−x

2

)2

e3x

=
1

4

(
e5x + 2e3x + ex

)

=
1

4

( ∞∑
n=0

5nxn

n!
+

∞∑
n=0

3nxn

n!
+

∞∑
n=0

xn

n!

)

=

∞∑
n=0

(
5n + 2× 3n + 1

4

)
xn

n!
.

Thus

an =
5n + 2× 3n + 1

4
, n ≥ 0.
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Example 9.5. Determine the number of ways to color the squares of a 1-by-n

board with the colors, red, blue, and white, where the number of red squares is

even and there is at least one blue square.

The exponential generating function for the sequence is

E(x) =

( ∞∑
i=0

x2i

(2i)!

)( ∞∑
i=0

xi

i!

)( ∞∑
i=1

xi

i!

)

=
ex + e−x

2
ex(ex − 1)

=
1

2

(
e3x − e2x + ex − 1

)

= −1

2
+

∞∑
n=0

3n − 2n + 1

2
· x

n

n!

Thus

an =
3n − 2n + 1

2
, n ≥ 1

and

a0 = 0.

10 Combinatorial interpretations

Theorem 10.1. The combinatorial interpretations of ordinary generating

functions:

(a) The number of ways of placing n indistinguishable balls into m distin-

guishable boxes is the coefficient of xn in

(
1 + x + x2 + · · · )m

=

( ∞∑

k=0

xk

)m

=
1

(1− x)m
.

(b) The number of ways of placing n indistinguishable balls into m distin-

guishable boxes with at most rk balls in the kth box is the coefficient of

xn in the expression
m∏

k=1

(
1 + x + x2 + · · · + xrk

)
.
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(c) The number of ways of placing n indistinguishable balls into m distin-

guishable boxes with at least sk balls in the kth box is the coefficient of

xn in the expression
m∏

k=1

xsk
(
1 + x + x2 + · · · ) =

xs1+···+sm

(1− x)m
.

(d) The number of ways of placing n indistinguishable balls into m distin-

guishable boxes, such that the number of balls held in the kth box is

allowed in a subset Ck ⊆ Z≥0 (1 ≤ k ≤ m), is the coefficient of xn in

the expression 
∑

k∈C1

xk





∑

k∈C2

xk


 · · ·


 ∑

k∈Cm

xk


 .

Proof. Let us consider the situation of placing infinitely many indistinguishable

balls into m distinguishable boxes. We use the symbol x to represent a ball and

xk to represent indistinguishable k balls. In the course of placing the balls into

m boxes, each box contains either none of balls (x0 = 1), or one ball (x), or two

balls (x2), or three balls (x3), etc.; that is, each box contains

1 + x + x2 + x3 + · · ·
balls, where the plus sign “+” means “or”.

Box 1 Box 2 Box 3 · · · Box m

1 1 1 1 1

x x x x x

x2 x2 x2 x2 x2

x3 x3 x3 x3 x3

... ... ... ... ...

If we use multiplication to represent “and”, then all possible distributions of

balls in the m boxes in the course of placing are contained in the expression

(1 + x + x2 + · · · )m. (21)
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Thus, when there are n distinguishable balls to be placed into the m distinguish-

able boxes, the number of distributions of the n balls in the m boxes will be the

coefficient of xn in the expression (21). Indeed, to compute the coefficient of xn

in (21), we select xn1 from column 1, xn2 from column 2, . . ., xnm from column

m in the above table such that xn1xn2 · · ·xnm = xn, and do this in all possible

ways. The number of such ways is clearly the number of nonnegative integer

solutions of the equation

y1 + y2 + · · · + ym = n,

and is given by
(

m+n−1
n

)
.

The situation for other cases are similar.

Theorem 10.2. The combinatorial interpretation of exponential generating

functions:

(a) The number of ways of selecting an ordered n objects with repetition

allowed from an m-set is the coefficient of xn

n! in the expression

(
1 +

x

1!
+

x2

2!
+

x3

3!
+ · · ·

)m

=

( ∞∑

k=0

xk

k!

)m

= emx. (22)

(b) The number of ways of selecting an ordered n objects from an m-set

such that the number of kth objects is allowed in a subset Ck ⊆ Z≥0, is

the coefficient of xn

n! in the expression

∑

k∈C1

xk

k!





∑

k∈C2

xk

k!


 · · ·


 ∑

k∈Cm

xk

k!


 . (23)

Example 10.1. Find the number of 4-permutations of the multiset

M = {a, a, b, b, b, c}.
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There are 5 sub-multisets of M having cardinality 4.

{a, a, b, b} {a, a, b, c} {a, b, b, b} {a, b, b, c} {b, b, b, c}

4!/2!2!0! 4!/2!1!1! 4!/1!3!0! 4!/1!2!1! 4!/0!3!1!

Then the answer is

4!

2!2!0!
+

4!

2!1!1!
+

4!

1!3!0!
+

4!

1!2!1!
+

4!

0!3!1!
= 38,

which is the coefficient of x4

4! in the expansion of

E(x) =

(
1 +

x

1!
+

x2

2!

)(
1 +

x

1!
+

x2

2!
+

x3

3!

) (
1 +

x

1!

)
.

In fact, the coefficient of x4/4! is

a4 =
∑

i+j+k=4
i≤2,j≤3,k≤1

4!

i!j!k!
=

4!

2!2!0!
+

4!

2!1!1!
+

4!

1!3!0!
+

4!

1!2!1!
+

4!

0!3!1!
.
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