Week 11-12: Special Counting Sequences

April 17, 2019

We have considered several special counting sequences. For instance, the
sequence n! counts the number of permutations of an n-set; the sequence D,
counts the number of derangements of an n-set; and the Fibonacci sequence f,,
counts the pairs of rabbits.

1 Catalan Numbers
Definition 1.1. The Catalan sequence is the sequence

1 2
C, = (n)) n > 0.
n+1\n

The number C), is called the nth Catalan number. The first few Catalan
numbers are

Co=1, Ci=1, Cy=2 C3=5 Cy=14, Cs=42.

Theorem 1.2. The number of words aias . . . as, of length 2n having exactly
n positive ones +1’s and exactly n negative ones —1’s and satisfying

a;+as+---+a; >0 forall 1<i<2n, (1)

equals the nth Catalan number

1 2
C, = (n)) n > 0.
n+1\n

Proof. We call a word of length 2n with exactly n positive ones +1’s and n

negative ones —1’s acceptable if it satisfies (1) and unacceptable otherwise.
Let A,, denote the set of acceptable words, and U, the set of unacceptable words
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of length 2n. Then A, U U, is the set of words of length 2n with exactly n
positive ones and exactly n negative ones, and

2n 2n)!

Let .S, denote the set of words of length 2n with exactly n 4+ 1 ones and n — 1
negative ones.

We define a map f : U, — S, as follows: For each word aqas...as, in U,,
since the word is unacceptable there is a smallest integer k£ such that

a1+ as+ -+ ap <O.

Since the number k is smallest, we have £ > 1. a1 + a9+ -+ 4+ a1 = 0, and
ap = —1 (we assume ag = 0). Note that the integer £ must be an odd number.
Now switch the signs of the first & terms in the word ajas...as, to obtain a
new word ajay . ..aya41 - . . Gy, Where

/ / /
al — —CL1, CL2 — _a/2, ceey ak — —Cbk

The new word ajab . . . a,ag+1 - . . ag, has n+ 1 positive ones and n — 1 negative
ones. We then define

flaray ... as,) = ajay ... ayagiy ... as,.

We define another map g : S, — U, as follows: For each word a}aj . ..a), in
Sy, the word has exactly n + 1 positive ones and exactly n — 1 negatives ones.
There is a smallest integer k such that

ay+ah+ -+ ap > 0.

Then k > 1, a} + a5+ ---+a, ; =0, and a;, = 1 (we assume qy = 1).
Switch the signs of the first k terms in aja)...a), to obtain a new word
a1Gy . .. QpQ). q - - . Ay, Where

/ / /
CL1 — _a/1, CLQ — —CL2, ceey a/]{; — _a/k,

The word ajas . . . agaj - . . as, has exactly n ones and exactly n negative ones,
and is unacceptable because a1 + as + - - - + a; < 0. We set

(/ / / )_ / /
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Now it is easy to see that the maps f and g are inverses each other. Hence

U] =S| = ( 2n ) (2

n+1 (n+1)l(n—1)"
It follows from |A,| 4+ |U,| = (2n)!/(n!n!) that

(2n)! (2n)!
Aal = nlnl  (n+1)l(n— 1)

w11
~ nl(n—1)! (n n+1>
(2n)! 1

nl(n — 1) n(n+1)
__ni1(iv'

Corollary 1.3. The number of nondecreasing lattice paths from (0,0) to
(n,n) and above the straight line x =y is equal to the nth Catalan number

1 2
C, = (n), n > 0.
n+1\n

Proof. Viewing the +1 as a unit move upward and —1 as a unit move to the

[]

right, then each word of length 2n with exactly n positive ones (+1’s) and n
negative ones (—1’s) can be interpreted as a nondecreasing lattice path from
(0,0) to (n,n) and above the straight line z = y. ]

Example 1.1. There are 2n people line to get into theater. Admission is 50
cents. Of the 2n people, n have a 50 cent piece and n have a 1 dollar bill. Assume
the box office at the theater begin with empty cash register. In how many ways
can the people line up so that whenever a person with a dollar bill buys a ticket
and the box office has a 50 cent piece in order to make change?

If the 2n people are considered indistinguishable, then the answer is the Cata-

o 1 <2n)
n+1\n

3

lan number




If the 2n people are consider distinguishable, then the answer is
|
1 2n il — (2n)
n+1\n n+1

2 Difference Sequences and Stirling Numbers

Definition 2.1. The first order difference sequence (or just difference
sequence) of a sequence a = (a,;n > 0) is the sequence Aa = (Aa,;n > 0)
defined by

Aay, = (Aa), = apa1 — ay, n > 0.

Example 2.1. The difference sequence of the sequence 3" (n > 0) is the

sequence
A3" =37 3 =92 x 3" n>0.

The difference sequence of 2 x 3" is
A2x3")=2x3" —2x3"=2"x3" n>0.

The difference sequence A(Aay,;n > 0) of the sequence (Aa,;n > 0) is called
the second order difference sequence of (a,;n > 0), and is denoted by
(A%a,;n > 0). More specifically,

Ala, = (A%a), : = A(Day) = Aapyr — Aay,
= (an+2 — an+1) - (an+1 - an)

= Ap4+2 — 2an—|—1 + Q.

Similarly, the pth order difference sequence (APa,;n > 0) of (a,;n > 0)
is the difference sequence A(AP"la,;n > 0) of the sequence (AP~ta,;n > 0),
namely,

APa, = (APa), = A(AP'a,) = AP la, — AP ha,, n >0.

We define the Oth order difference sequence (Aoan;n > 0) to be the
sequence itself, namely,

Aa, = (A), ==a,, n>0.
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To avoid the cumbersome on notations of the higher order difference sequences,
we view each sequence (a,;n > 0) as a function

f:4{0,1,2,...} = C, f(n)=a, n>0.

Let Sy denote the vector space of functions defined on the set N = {0, 1,2,...}
of nonnegative integers. Then S, is a vector space under the ordinary addition
and scalar multiplication of functions. Now the difference operator A is a linear
function from Sy to itself. For each f € S, Af is the sequence defined by

(Af)(n) = f(n+1) = f(n), n=>0.
Lemma 2.2. The operator A : Soo — S 1S a linear map.

Proof. Given sequences f, g € Sy and numbers «a, 3. We have

Alaf +Bg)(n) = (af +Bg9)(n+1) — (af + Bg)(n)
= a[f(n+1) = f(n)] + Blg(n + 1) — g(n)]

a(Af)(n) + B(Ag)(n)
= (aAf + BAg)(n), n>0.
This means that A(af + Bg) = aAf + BAg. O

Theorem 2.3. For each sequence f € Sy, the pth order difference sequence
AP f has the form

p

A fn) = (A7f)n) = (=1 (V) Fn+ k), om0,

k=0
Proof. For p = 0, it is clear that A f(n) = (A’f)(n) = f(n). For p =1,

1

S () £k 8 = S 1) = o) = ()

k=0
Let p > 2. We assume that it is true for p — 1, that is,

1 — —p (P—1
(AP1f)(n) = (=1 ( N )f(n+k).

k=0
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By definition of difference, AP f = A(AP7Lf), we have
(APf)(n) = (AAPTf)) (n) = (AP f)(n+ 1) — (AP f)(n)

_ Z:(_np—l—k (p; 1) fln+14k) - ::(—1)p‘1"“ <p; 1) fn+ k)
_ i(—l)p‘k (7; - 1) fn+ k) + Z§§<—1>p—’f (p; 1) Fn+ k)

Applying the Pascal formula (g) = (Zj) + (pgl) for 1 < k < p—1, we obtain

(APF)(n) = ;—np—’f () fnth). n=o.

0
[]

Definition 2.4. The difference table of a sequence f(n) (n > 0) is the
array

f(0) f(1) f2) f3)
(Af)(0) (Af)(1) (AF)(2)
(A%)(0) (A%f)(1)

(A%)(0)

where the pth row is the pth order difference sequence (AP f)(n), n > 0.

Example 2.2. Let f(n) be a sequence defined by

f(n)=2n*+3n+1, n>0.



Then its difference table is

I 6 15 28 45 66
5 9 13 17 21
4 4 4 4
0 0 0
0 0
0

A sequence f(n) (n > 0) of the form
f(n) =a,n’ + ap_mp_l +---+amn+ay n>0,

where oy, . . ., o, are constants and «, # 0, is called a polynomial sequence
of degree p.

Theorem 2.5. For each polynomial sequence f(n) (n > 0) of degree p, the
(p + 1)th order difference sequence AP f is identically zero, that is,

(AP f)(n) =0, n >0,

Proof. We proceed by induction on p. For p = 0, the sequence f(n) = ag is a
constant sequence, and

(Af)(n)=ag—ay=0
is the zero sequence. Consider p > 1 and assume AP¢g = 0 for all polynomial
sequences g of degree at most p — 1. Compute the difference
(Af)(n) = [apn+ 1) +apa(n+ 1)+ + ai(n+1) + ]
—[apn? + P4 agn + )

= (]1)) nP~1 + lower degree terms.

The sequence g = Af is a polynomial sequence of degree at most p — 1. Thus
by the induction hypothesis,

AP = AP(Af) = APg = 0.



Theorem 2.6. The difference table of a sequence f(n) (n > 0) is deter-
mined by its Oth diagonal sequence

(AY1)(0), (AT)0), (A*F)(0), ..., (A"f)(0),

Moreover, the sequence f(n) itself is determined as

o= (D) a0 =3 (B e, nzo. )

Proof. We proceed by induction on n > 0. For n = 0, for any sequence g € Sy,

00/ =3 () (@49)0) = (@%5)0) = 900

k=0

Let n > 1 and assume that it is true for the case n — 1, that is, for each sequence

h € Sy,

n—1

hn—1)=Y" (” . 1) (ARB)(0).

k=0
Now for the sequence f € S, by definition of Af at n — 1, we have

fin)=fn =1+ (Af)n—-1)=(f+Af)(n—-1)
Applying the induction hypothesis to the sequences f and Af, we have

n—1

r = (") @ ("‘1 (AH(AD)

k=0
n—1

)
:Z<n;1>(ﬁf - 0( )@
)

k=0

- eno 3 [(77)

. ] +(A")(0)
—;:wf =) (”‘1)



Corollary 2.7. If the Oth diagonal of the difference table for a sequence
f(n),n >0 is
Cp, (1, N &) <7£ O), O, ceey

then f(n) is a polynomial sequence of degree p, and is explicitly given by

f(n) =c0(7g) +c1<7f) +02<;L) +---+cp<Z), n > 0.

In other words,

fin) = (Z) (A"F)(0), n =0, (3)
=0
Proof. Note that f(n Zk 0 ( ) (AF£)(0) for n > 0. For n < p, we have
n p p
=3 (): 5 a()-5e ()
=0 =n+1 =0

For n > p, we have

n

rw=>a(r)+ o (h)=>a(l)

k=p+1 k=0

[]

For sequence f, such that A" f,(0) = d,,, with p = 3, we have its difference
table

Example 2.3. Consider the sequence

f(n)=n’+2n*—-3n+2, n>0.



Computing the difference we obtain

2 2 12 38
0 10 26
10 16
6

Thus the sequence f(n) can be written as

f(n) :2(3) +10(Z) +6<g), n > 0.

Corollary 2.8. For any sequence f(n), n > 0, its partial sum can be written

as
> s =3 (1 )@no. azo <4>
+1
k=0 k=0
Proof. Recall the identity > (]: ) (7:11) Then
S = 35 (V) o
k=0 k=0 i=0
> [ () @
i=0 | k=i
" /n+1 :
= A'f)(0
> (7)) o
[l
Example 2.4. For the sequence f(n) = n? (n > 0), computing the difference
we have
0 1 4
1 3
2
Thus

n+1> +2(n;)|—1) B (n—l—l)n6(2n—|—1)



3

For the sequence f(n) = n’, computing the difference we obtain

0 1 8 27

Thus

1 1 1
P+22 43+ 40’ = (n; >+6(n§ >+6<n1 )

[y

For f(n) = n*, computing the difference we have

0 1 16 31 256
1 15 65 175
14 50 110
36 60
24

Hence

- n+1 n+1 n+1 n+1
kY = 14 36 24
= () () e () e (7
(n+ 1)n(6n® 4+ 9n* +n — 1)
30 '

Example 2.5. Consider the sequence f(n) = n?, n > 0, with p € N. Write
its Oth diagonal sequence as

C(p70>7 C(p7 1)7 ) C(p?p)) O?
Then by Corollary 2.7,
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Definition 2.9. The falling factorial of n with length £ is the number
[n]() — 17
n)y = nn—1---(n—k+1), k>1.

We call the numbers

S(p, k) = 21,

the Stirling numbers of the second kind.

0<k<np.

[t is easy to see that the falling factorial [n|; with n > k > 0 satisfies the
recurrence relation

— k)[ni;

(3 n,k > 0.

Then[n]oz[n]nzlfornZOand[ | =0 for k > n.

Corollary 2.10. For any integer p > 0,

n” =" S(p,k)nls. (5)

PTOOf' C(pv k) (Z) - (C(pv k)/k')[n]k‘ — S(pv k)[n]k []

Theorem 2.11. The Stirling numbers S(p, k) of the second kind are inte-
gers, satisfying the recurrence relation:

([ 5(0,0)=S(p,p) = if p>0

) S(p,0) =0 it p=>1 (6)
Sp.1) =1 if p>1
kS(p,k):S(p—l,k—l)JrkS(p—l,k) if p>k>1

Proof. For p = 0, since n’ = 1 and [n]y = 1, (5) implies S(0,0) = 1. Since
[n]) is a polynomial of degree k in n with leading coefficient 1, then (5) implies

S(p,p) = 1.
Let p > 1. The constant term of the polynomial n? is zero. Since [n] is a

polynomial of degree k, the constant term of [nl; is zero if k > 1. Then [n]y = 1
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and (5) force that S(p,0) = 0. Since [n]; = n, let n = 1 in (5), since 17 = 1,
S(p,0) =0, [1]; =1, and [1]; = 0 for & > 2, we see that S(p,1) = 1.
Now for p > k > 1, notice that

p p—1
n’ =Y S k)l T =Y Sp—1,k)nlk
k=0 k=0
[t follows that
p—1
n’ =nxnt ! = nZS(p — 1, k)[nl;
k=0
p—1

k
Splitting n — k + k into (n — k) + k, we have

W= 3 Sl L — B+ Y S~ 1Rkl
k=0 k=0
k=0 k=0
= Sp-1,j-Dn);+ > kS(p—1,k)n)
j=1 k=1

Thus

> S(p.k)nlk = S(p—Lp—1)n],+

D S(p—1,k=1)+k(S(p—1,k)]nk.

k=1
Therefore S(p,p) = S(p—1,p — 1) and

Spk)=Sp—1Lk—-1)+kS(p—1,k), 1<k<p.
In particular, for p > 2 and k = 1, since S(p — 1,0) = 0, we obtain
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Applying the recurrence, we have
S(p,1)=Sp-1,1)=---=5(2,1)=5(1,1) = 1.

The recurrence relation implies that S(p, k) are integers for all p > k > 0. [

k)01 2 3 4 5 6 7 8
0 |1

1 101

2 01 1

3 01 3 1

4 01 7 6 1

5 01 15 25 10 1

6 0131 90 65 15 1

7 101 63 301 350 140 21 1
8 |01 127 966 1701 1050 266 28 1

Theorem 2.12.

ﬁkp = i} (?:11) C(p,1)
>

_ 1],
2 7;+1[ + i1
p+1
Sip, k—1
=S (nk )[n—i—l]k.
k=1

Definition 2.13. A partition of a set .S is a collection P of disjoint nonempty
subsets of .S such that
S=|JA

AeP
The cardinality |P| is called the number of parts (or blocks) of the partition P.
We define

Sy = number of partitions of an n-set into £ parts.
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We have S, = 0 for &k > n. We assume Sy = 1.
A partition of a set S into k parts can be viewed as a placement of S into &
indistinguishable boxes so that each box is nonempty:.

Example 2.6. (a) An n-set S with n > 1 cannot be partitioned into zero parts,
can be partitioned into one part in only one way, and can be partitioned into n
parts in only one way. So we have

5%93:10, S%JVIZSEJL::l, n,zjl.
(b) For S = {1, 2}, we have partitions
L2k {002}
(c) For S = {1,2,3}, we have partitions:
{1,2,3};
{1h 42,34, {125, (33}, {{1.3}.{2}}:
{1} {2}, {3}}.

(d) For S = {1,2,3,4}, there are 7 partitions of S into two parts:
{15 42,343 ), ({1343, {20}, {{1.2.4}, {33}, {{1.2,3}, {4} },
{{172}7{374}}’ {{173}7{274}}7 {{174}7{273}}'

There are 6 partitions of S into three parts:
{28, (3,40}, {1 (3% {24}, {1} {4}.{2.3}},
{25 8 {L 4}, ({28 {ah {13} ), {8} {4}, {1.2}}.

Theorem 2.14. The numbers S, ;. satisfy the recurrence relation:

([ Spo =S, =1 if n>0

Sno =0 if n>1
) Sp1=1 if n>1 (7)
L Sn,k: — Sn—l,k—l + kSn—l,k if n—1 > k > 1
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Proof. Obviously, Sop = Spn = 1. For n > 1, it is also clear that .S, o = 0 and
Sna = L.

Let S be a set of n elements, n > k£ > 1. Fix an element a € S. The
partitions of S into k parts can be divided into two categories: partitions in
which {a} is a single part, and the partitions that {a} is not a single part. The
formal partitions can be viewed as partitions of S \ {a} into k — 1 parts; there
are Sy,_1 -1 such partitions. The latter partitions can be obtained by partitions
of S\ {a} into k parts and joining the element a in one of the k parts; there
are kS,_1 1 such partitions. Thus

Sn,k: - Sn—l,k—l + kSn—l,k:-

Corollary 2.15.

Theorem 2.16.

Definition 2.17. The nth Bell number B, is the number of partitions of
an n-set into nonempty indistinguishable boxes, i.e.,

k=0

The first few Bell numbers are
By=1 DB;=15
Bi=1 B;=2>52
By =2 Bg =203
Bs=5 B; =877
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Theorem 2.18. Forn > 1,

n—1 n— 1
B, = B;..
k=0

Proof. Let S be a set of n elements and fix an element a € S. For each partition
P of S, there is a part (or block) A which contains a. Then A’ = A — {a} is a
subset of S'— {a}. The other blocks of P except the block A form a partition
Pof S—A Let k=|A). Then0<k<p-—1

Conversely, for any subset A" C S —{a} and any partition P’ of S — A'U{a},
the collection P U {A U {a}} forms a partition of S. If |A'| = k, then there

are (p;l) ways to select A’; there are B, 1 (= By) partitions for the set
S — AU {a}. Thus

[]

The falling factorial [n), is a polynomial of degree k in n, and so can be written
as a linear combination of the monomials 1,n,n?, ..., n?. Let

), = n(n—=1)---(n—p+1)

= S (1 Felp, K 8)

The integers s(p, k) are called the (signed) Stirling numbers of the
first kind. For variables x1, 29, ..., z), the elementary symmetric polynomials
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50, 51, 52, . . . , 8, are defined as follows:

S()(Zl?l, Io... ,CEp) = 1,
p
si(xy,29...,2,) = in,
i=1
so(z1, 9. .. 1)) = inazj,
1<j
Sp(x1,29...,2,) = X122+ - T,
Since
p
[n]p n(n_l) n_p+ :Z Sp k‘ 717 7p_1)nk7
k=0
we have

s(p, k) = (—1)P s, 1(0,1,...,p—1).

Theorem 2.19. The integers c(p, k) satisfy the recurrence relation

c(0,0) = c(p,p) =1 if p>0
c(p,0) =0 if p>1 9)
cpk)=cp—1LEk—-1)+(p—1clp—1,k) if p—1>k>1

Proof. Tt follows from definition (8) that ¢(0,0) = ¢(p,p) = 1 and ¢(p,0) = 0
for p > 1.
Let 1 <k <p—1. Note that

b I
»—t T
-
(@]
/N
|
H
L

Z P Fe(p — 1, k)nk
—0
(
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n, = Y (=1 F(n—(p—1)clp— 1, k)n"
k=0
= ) (1P relp = Lk =Y (1P p = De(p — L k)n
k=0 k=0

—1

= > (=) Felp =1k =10t + (p—1) Y (=1)"Fe(p— 1, k)"

=

Eon
[
—_
o~
I

Comparing the coefficients of n*, we obtain
cp,k)=clp—Lk—1)+(p—1clp—1,k), 1<k<p-—1.
[l

Recall that each permutation of n letters can be written as disjoint cycles.
Let ¢, 1 denote the number of permutations of an n-set S with exactly k cycles.
We assume that cpo = 1.

Proposition 2.20. The numbers c, . satisfy the recurrence relation:

Co0 = Cpn = 1 if n>0
Cpno =0 it n>1 (10)
Cnk = Cp—1k—1 1 (n — 1)Cn—1,k: if n—1>k>1

Proof. Let S = {ay,aq,...,a,} be a set of n objects. If n is positive, then the
number of cycles of any permutation must be positive. So ¢, = 0 for n > 1.
Note that only the identity permutation has exactly n cycles, so ¢,, = 1 for
n > 0.

Now fix the object a, of S. Then permutations of S with k& cycles can be
divided into two kinds: the permutations that the singleton {a,} is a cycle,
and the permutations that the singleton {a,} is not a cycle. In the former
case, deleting the cycle {a,}, the permutations become the permutations of
n — 1 objects with k — 1 cycles; there are ¢,,—1 ;-1 such permutations. In the
latter case, deleting the element a, from the cycle that a, is contained, the
permutations of S become permutations of S \ {a,} with k cycles; since each
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such permutation of § with k cycles can be obtained by putting a,, into the
left of elements aq, as, ..., a,_1, and since there are n — 1 such ways, there are
(n — 1)ep—1 permutations of the second type. Thus we obtain the recurrence
relation:

Cnk = Cp—1,k—1 T (n - 1)Cn—1,k7 1<k<n-1

Corollary 2.21.
C<p7 k) = Cpk-

3 Partition Numbers

A partition of a positive integer n is a representation of n as an unordered
sum of one or more positive integers (called parts). The number of partitions
of n is denoted by p,,. For instance,

2 = 141,
3 =24+1=1+1+1,
4 =3+1=242=241+1=1+1+1+1.

Thuspy =1, po = 2, p3 = 3, p, = 5. The partition sequence is the sequence
of numbers

Po = 17 pi, P2, ---5 Pn,

A partition of n is sometimes symbolically written as
A= 1912%...pf%

where a; is the number of parts equal to k. If £ is not a part of the partition A
then a; = 0, and in this case the term k% is usually omitted. For instance, the
partitions
b =44+1=34+2=34+1+1=2+2+1
=24 14+14+1=14+14+1+1+1

can be written as

RIS L CR 1 S e CR B £ L

)
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Let A be the partition
n=mny+ng+- -+ ng

of n with ny > ny > -+ > ni. The Ferrers diagram of A is a left-justified
array of dots which has k rows with n; dots in the ith row. For instance, the
Ferrers diagram of the partition 15 =64+4+3+ 1+ 118

e 6 6 o o

Theorem 3.1.

(0. 9] . ] 1
nzzopn:rz _g1—xk' (11)
Proof. Note that the right side of (11) is the product of the series
1
1 —ak

for 1 < k < oo. The term 2" arises in the product by choosing a term x

=1+a" +a% 27+ ...

ail from

the first factor, a term x%? from the second factor, a term 2%? from the third
factor, and so on, with

a1l +as2+asgd3+---+apk+---=n.
Such choices are in one-to-one correspondent with the partitions
)\ = 191992303 . ., L% . . .
of the integer n. O
Definition 3.2. Let A and p be partitions of a positive integer n, and
Al n=A+ N4+ A, A > X > > N,
A TR R N VI U = 1

The partition A is called majorized by the partition p (or © majorizes \),
denoted by A < p, if

MA+X+- -+ N <y +pu+---+p for 1<1<k.

21



Example 3.1. Consider the three partitions of 9:

A 9=5+1+1+4+1+1,
o 9=4+2+2+1,
v: 9=4+4+1.

The partition p is majorized by the partition v because

4 <4,

442 <4+4,
44242<4+4+1,
A42424+1<4+4+1.

However, the partitions A and p are incomparable because

5>14,
44242>5+1+1.

Similarly, A and v are incomparable.

Theorem 3.3. The lexicographic order is a linear extension of the partial
order of majorization on the set P, of partitions of a positive integer n.

Proof. Let A = (A1, Ao, ..., Ax) and p = (pg, pho, - - -, i) be distinct partitions
of n. We need to show that if A is majorized by u then there exists an ¢ such
that

AL= 1, A=, ..., No1= -1, and A < .

In fact we choose the smallest integer ¢ such that A\; = p; for all j < ¢ but
A # p;. Since
AMF A+ A S+ pe e+

we conclude that A\; < pu;, and hence A precedes p in the lexicographic order. [

4 A Geometric Problem

This section is to give a geometric and combinatorial interpretation for the num-

ho = (") (M) (" >0, n>0
n 0 1 m, m=U, n-~=U.
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For each fixed m > 0, we obtain a sequence

For each fixed n,

For m = 0, we have

hgl>_(g>+(7f>_n+1, n > 0.
2
+n—+2
n (O + | + 5 5 , n=>0

Using Pascal’s formula (”jl) = (") + ( ziL1> for ¢+ > 1, the difference of the

1
sequence h%m) can be computed as

n

() ()

Theorem 4.1. The number h,(»bm) counts the number of regions in an m-
dimensional space divided by n hyperplanes in general position.
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Proof. Hyperplanes in general position in an m-dimensional vector space: Every
k hyperplanes, where 1 < k < m, meet in an (m—k)-plane; no k+1 hyperplanes
meet in an (m — k)-plane.

Let gT(lm) denote the number of regions divided by n hyperplanes in an m-
dimensional vector space in general position. Assume gr(lo) =1forn > 0. We
need to prove that gy(lm> = h%m). We show it by induction on m > 1.

For m = 1, any 1-dimensional space is a straight line; a hyperplane of a
straight line is just a point; any finite number of points on a line are in general
position. If n distinct points are inserted on a straight line, the line is divided
into n + 1 parts (called regions). Thus the number of regions of a line divided

by n distinct points is

W1 =(" R I AC)
9, n + <0>+<1> N

For m = 2, consider n lines in a plane in general position. Being in general
position in this case means that any two lines meet at a common point, not three
lines meet at a point (the intersection of any three lines is empty).

Given n lines in general position in a plane, we add a new line so that the
total n + 1 lines are in general position. The first n lines intersect the (n + 1)th
line at n distinct points, and the (n + 1)th line is divided into

97(11) =n-+1
(1)

open segments, including two unbounded open segments. FEach of these g,
segments divides a region formed by the first n lines into two regions. Thus the
number of regions formed by n + 1 lines is increased by gg) (from the number

of regions formed by the first n lines), i.e.,

n n n

Ag? = g% — g = gl = D = AR®.

Note that h((f) = g(()Q) = 1 (the number of regions of a plane divided by zero lines
(2) 1(2)

is 1). The two sequences g, hy,” have the same difference and satisfy the same
initial condition. We conclude that

2 _ 2 _ (T n n
=02 =(0)+ (1) +(5)
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For m = 3, consider n planes in 3-space in general position: Every two planes
meet at a line, every three planes meet at a point, and no four planes meet at
point (the intersection of any four planes is empty).

Now for m > 2, consider n hyperplanes in m-dimensional vector space in
general position. The number of regions of an m-dimensional space divided
by 0 hyperplanes is 1, i.e., g(()m) = 1. Consider n + 1 hyperplanes in general
position. The first n hyperplanes intersect the (n+ 1)th hyperplane in n distinct
(m — 2)-planes in general position. These n planes of dimension m — 2 divide
the (n 4+ 1)th hyperplane into gfzm_l) regions of dimension m — 1; each of these
(m — 1)-dimensional regions divides an m-dimensional region (formed by the

first n hyperplanes) into two m-dimensional regions. Then the number of m-

dimensional regions formed by n + 1 hyperplanes is increased by gﬁlm_l), i.e.,
Agim = git) — gl = gim= = BimY = AR,

Note that h(()m) = gém) = 1 (having the same initial condition). The sequences
gém>, h%m) for the fixed m have the same difference and satisfy the same initial

condition. We conclude that
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