Homework – Hilbert's Axioms

Deadline: Mar. 28, 2013

1. Let A, B, C, D be points a on line l. Prove or disprove by giving a counterexample for the following statements.

(a) If A * B * C and B * C * D, then A, B, C, D are distinct points, and A * C * D, A * B * D.

(b) If A * B * C and A * B * D, then A * C * D and B * C * D.

(c) If A * C * D and A * B * D, then A * B * C and B * C * D.

- 2. Exterior Angle Theorem says that the exterior angle of a triangle is larger than its two remote interior angles. Given a triangle ΔABC . Show that $\angle A < \angle B$ if and only if BC < AC. (Hint: Applying Exterior Angle Theorem)
- 3. Let \mathbb{Q}^2 be the rational plane of all ordered pairs (x, y) of rational numbers, viewing elements of \mathbb{Q}^2 as points and the solution sets of linear equations ax + by + c = 0 as lines, where $a, b, c \in \mathbb{Q}$ are fixed constants. Show that Betweenness and Congruence Axioms are satisfied, except Congruence Axiom 1 and Dedekind's Axiom.
- 4. Show that the interior of a triangle is nonempty.
- 5. Check if SAS can be replaced by ASA in the congruence axioms.