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1 Flows and Tensions

Let D = (V, A) be a digraph. Let be a function.

e A real-valued function f: A — R is called a flow (or circulation) of D if

S fa)= Y fla), ie. f(v)=f"(v) forall veV.

a€(ve,v) a€(v,v°)
The set of all flows in D is a vector space, called the flow space of D, denoted F(D).

o A real-valued function g : A — R is called a tension if for each directed cycle C' in
(V. E),
g7 (C) =g (C) =0,
where

gt (C) = gla), ¢ (C):= ) gla),

aeC —aeC

The set of all tension of D is a vector space, called the tension space of D, denoted
T (D).

e If C is a directed in (V, E), then fo : A — R, defined by

1 ifaeC
fela)=¢ —1 if —a€C,
0 otherwise

is a flow of D, called the flow generated by the directed cycle C'

e If U is a directed cut in (V, E), i.e., either U = (X, X¢) or U = (X¢,X) in (V, E) for a
nonempty proper subset X C V', then gy : A — R, defined by

1 facU
gu(a):=<¢ —1 if —a e U,
0 otherwise

is a tension of D, called the flow generated by the directed cut U.



e Given a directed cycle C' and a directed cut U in (V, E). Then

(fe,gu) =0,
where (fc, gu) = > ,ea fo(a)gu(a). In fact,
{(fo,guy =1ANCNU|—|ANnC NU|—-|[ANCNU|+|ANnC NU| =0,
since [ ANCNU|=[ANCNU Jand |[ANC NU|=|ANC-NU|.
e Let M be incidence matrix of D, i.e., M = [m,,], where v € V, a € A, and

1 if @ has its tail at v
My, = & —1 1if a has its head at v.
0 otherwise

Then
F(D)=kerM, T(D)=RowM,

and
dim F(D) = |V(D)| —¢(D), dimT(D) = |A(D)| — |[V(D)| + ¢(D)|.

2 Basis Matrices

A basis matrix of an m-dimensional vector subspace of R" is an m X n matrix whose row
space is the given vector subspace. For a digraph D, we are interested in the integral basis
matrix B of the tension space T'(D) and the basis matrix C of the flow space F'(D). For an
edge subset S C A(D), we denote by B|g (or just Bg) the submatrix of B consisting of the
columns of B that are labeled by members of S.

Given a maximal spanning forest F' of G. For each edge e € F', F'°U e contains a unique
bond B,, which must contain the edge e. For each edge ¢/ € F°, F'U ¢’ contains a unique
cycle Cy, which must contain the edge €’. It is well-know that the bond vectors gp,_, € € F,
form an integral basis of the tension lattice of D, and the cycle vectors fc,, € € F, form

an integral basis of the flow lattice of G. Let the members of F' be listed as eq,...,m, and
the members of F° as €], ..., e],. We obtain integral basis matrices
ey ey ey € ey - el
€1 1 0 - 0 *
€2 o 1 -+ 0 *x % - %
B= | i : . .
em 0 0 1 * * ES
€] e em €] € el
el s x 1 0 0
R R
e/ * * e * 0 0 e 1

called integral basis matrices of the tension lattice and flow the lattice relative to the
maximal spanning forest F' respectively.



Theorem 2.1. Let B be a basis matriz of the tension T'(D) of a digraph D, and C the basis
matriz of the flow space F(D). Given a nonempty subset S C A(D).

(a) The columns of B|s are linearly independent iff S does not contain cycle.
(b) The columns of C|g are linearly independent iff S does not contain bond.

Proof. (a) Let b(a) denote the column vector of B corresponding to the arc a € A(D). We
may write b(a) = [b1(a), ..., bn(a)]’, where m = dim T'(D). The columns b(a) for a € S are
linearly dependent iff there exists a nonzero function f : A — R such that f|4.s =0 and

S f@b(a) =0, ie, (fb)=0 for 1<i<m,

a€A

which means that f is a flow of D and its support is contained in S. Now if there is such a
flow f whose support is contained in S, then the support of f contains a cycle, so does S. If
S contains a cycle C, then f¢ is a nonzero flow whose support is C', which is contained in S.

(b) Let c(a) denote the column vector of C corresponding to the arc a € A(D). The
columns c(a) for a € S are linearly independent iff there exists a nonzero function g on A
such that ) _, f(a)c(a) = 0, i.e., there exists a nonzero tension whose support is contained
in S. Now if there is such a tension g whose support is contained in .S, then the support of
g contains a bond, so does S. If S contains a bond B, then gp is a nonzero tension whose
support is B, which is contained in S. O

A rectangular matrix is said to be unimodular if its full square submatrices have de-
terminates 1, —1, or 0; and to be totally unimodular if its all square submatrices have
determinates 1, —1, or 0.

Lemma 2.2. Let B be a basis matrix of the tension of a connected digraph D, and C the
basis matrix of the flow space. Given a mazimal spanning forest F' of D.

(a) Then B is uniquely determined by B|g, and C is uniquely determined by C|pe.

(b) If B, C are basis matrices with respect to the maximal spanning forest F', then any basis
matrices B', C' of the tension and flow spaces respectively, we have

B = (B|;)B, C =(C

FC)C-

Proof. (a) Since F' contains no cycle, we see the columns of B are linearly independent
by Lemma 2.2(a). For each arc a € F€, the set F U a contains a cycle, it follows that the
columns of B|g, are linearly dependent; so the column b(a) is a unique linear combination
of columns of B|r. So B is uniquely determined by B|f.

Analogously, the set F'° contains no bond, it follows from Lemma 2.2(b) that the columns
of C|p. are linearly independent. Since F¢ U a contains a unique bond for each a € F, the
columns of C|pey, are linearly dependent, so the column c(a) is a unique linear combination
of the columns of C|gc. So C is uniquely determined by C|pe.

(b) We order the members of A as F, F°. Since B, C are respective to the maximal
spanning forest F', we have the form

B = [B|r Blpc|] = [IA], C=|[C|pClp]=[GI].



Write the basis matrices B’, C’ in the same order F, F° as the form

B/ _ |:B/|F Bl

FCi|, C/ _ [C/‘F C/

rel.
It is clear that there exist square matrices P, Q such that
B'=PB, C' =QC.

Then
B =P[IA] = [P,PA], C' =Q[GI]=[QG,Q]

It follows that P = B|p and Q = C'|p. Hence B’ = (B'|¢)B and C' = (C'|¢)C. O

Theorem 2.3. Let B be an integral basis matriz of the tension space, and C an integral
basis matrix of the flow space of a graph G. Then both B and C are unimodular.

Proof. Given a maximal spanning forest F' of G. Let B/, C’ be basis matrices of the tension
space and the flow space of G relative to F' respectively. There exist unimodular matrices
P and Q such that B' = PB and C' = QC. Restrict both sides to F’, F'“ respectively, we
obtain

B,|F’ = P(B|F/), C,|F’C = Q(C/|F’C>-

Since B'|p, C'|pre are identity matrices by definition, we see that
det(P)det(B|m) =1, det(Q)det(C'|pe) = 1.

It follows that det(B|p) = £1 and det(C|pe) = £1.

Given edge subsets S C A(D). If |S| = |V(D)| — 1 and S is not a spanning tree, then S
contains a cycle. Thus det(B|g) = 0 by Lemma 2.2. If |S| = |A(D)| — |V(D)| + 1 and S¢ is
a not spanning tree, then S contains a bond, then det(C|g) = 0 by Lemma 2.2. O

Proposition 2.4. The incidence matrizc M of an digraph D = (V, A) is totally unimodular.

Proof. Let S C V and F C FE be such that |[S| = |F|. If there exists a vertex v € S such
that v € V(F'), then the v-row of M|gyr is a zero row; clearly, det(M|gxr) = 0. We may
assume that S C V(F'). We see that M|g«r is the incidence matrix of the subgraph (S, F)
with possible half-edges. If (S, F') contains a cycle, then the columns indexed by the edges
of the cycle are linearly dependent; thus det(M|syxr) = 0. If (S, F') contains no cycles, we
claim that S is a proper subset of V(F). Otherwise, S = V(F), then (V(F), F) is a forest;
thus |F| = |V(F)| — ¢(F) = |S| — ¢(F) < |S], which is a contradiction.

Now let e = uv € F be an edge such that one of w,v is not in S, say, v € S. Then the
e-column of Mgy has 1 or —1 at (u,e) and 0 elsewhere. Thus by the expansion along the

e-column,
det(M|SXF) = :f:det(M|(S\u)><(F\e)) = +1.

The second equality above follows from the fact that (S ~\ wu, F' \ e) contains no cycles and
by induction on the size of the matrix. O]



3 The Matrix-Tree Theorem

In many occasions one needs to compute the determinant of a product matrix AB, where A
is an m X n matrix and B an n x m matrix. If m > n, then det(AB) = 0, since

rank (AB) < min{rank (A),rank (B)} < n.
If m < n, we have the following Cauchy-Binet formula.

Proposition 3.1 (Cauchy-Binet Formula). Let A be an m x n matriz and B an n x m
matriz. If m <n, then

det(A) = > det(Als)det(Bls), (3.1)
SCl[n], |S|=m

where Alg is the m x m submatriz of A whose column index set is S, and B|g is the m x m
submatriz of B whose row index set is S.

Proof. Let A = [aik)mxn, B = [brjlnxm, and C = AB = [¢ijlmxm, Where ¢;; = > 1_ irby;.
Then

221:1 g, bgn - szzl a1k, bk, m
det(C) = det : : :
Y it ki bryt 0 D n oy Gk, Dk

alklbkll alkmbkmm

k=l km=1 Umky Oky1 0 Qe Dk
n A1k, = Qik,
= E det : : b1 - brypom-
k1,..., km=1 amkl Ce amkm

Rewrite the nonzero terms in the above expansion of det(C'), we obtain

det(C) = > det (Al gy, k) Dk - Dkm

1<k, ....km<n, ki#k;

- Z det<A|{t1 ..... tm}) Z Sgn (U)bta(l)l Tt bta(m)ma

1<t1<---<tm<n 0€Gm

where &,, is the set of all permutations of {1,...,m}. Set S = {t1,...,t,}, we have
det(C) = X sc i), |51=m det(Als) det(B]s). O

Theorem 3.2 (Matrix-Tree Theorem). Let B be an integral basis matriz of the tension
space, and C an integral basis matrixz of the flow space of a graph G. Then the number of
mazimal spanning forests of G is

det(BB”) = det(CC”).



Proof. Let m,n be the dimensions of the tension space and the flow space of D respectively,
and ¢(G) the number of maximal spanning forests of D. Note that an edge subset S C E(G)
is a maximal forest of G iff S’ contains no cycles and | S| is the dimension of the tension space
of G. By the Cauchy-Binet formula, we have

det(BB") = ) det(Bs)det(Bf) = > (detBg)’ =t(G),

SCE,|S|=m SCE,|S|=m
S is ayclic S is ayclic
det(CCT) = Y det(Cge)det(CL) = > (det Cse)? =t(G).
%CE,LS'\I:n SgE,\S|l=m
€ is ayclic is ayclic

The second equality follows from the fact that an set S C FE(G) is a maximal edge set
containing no bonds of G iff S¢ is a maximal edge set containing no cycles. O]

Corollary 3.3. Let B and C be integral bases of the tension space and the flow space of a
digraph D. Then the number of mazximal spanning forests of D is the absolute value of

B
det .
) M
Proof. 1t follows from the calculation

(det lg} )2 = det ({31 [B” CT]> = det { BOBT C%T } =t(G).

4 Farkas’ Lemma

Lemma 4.1 (Farkas’ Lemma). Let A be a real m x n matriz and b € R™. Then ezactly one
of the following two statements is valid.

(a) There exists a vector x € R™ such that Ax =b and x > 0.

(b) There exists a vector y € R™ such that ATy > 0 and by <0, i.e., such that
yI'A>0", y'b<o0.

Proof. Farkas’s Lemma is just the geometric interpretation: Let ay, ..., a, denote the columns
of A. Let Cone(A) denote the convex cone generated by ay, ..., a,. Let xI = (z1,...,2,) >
0. Then Ax = b means that b = x1a; + --- + z,a,. The first statement means that
b € Cone(A).

Let y© = (y1,...,Ym). Consider the hyperplane H = {z € R™ : (z,y) = 0}. Then
yTA > 0 means that (a;,;y) > 0,i =1,...,n, i.e.,, Cone(A) lies in one side of H. While
the strictly inequality b’y < 0 means that b lies in the other side of H. In other words, H
separates the vector b and the cone Cone(A), which is equivalent to b ¢ Cone(A).

Assume that the first statement is true, i.e., there exists a vector x > 0 such that Ax = b.
Suppose the second statement is also true, i.e., there exists a vector y such that ATy > 0
and b’y < 0. Then

0>b'y = (Ax)'y =xATy >0,

which is a contradiction. ]



Lemma 4.2 (Farkas’ Lemma — variant version). Let A be a real m x n matriz and b € R™.
Then exactly one of the following two statements is valid.

(a) There exists a vector x € R"™ such that Ax =0 and x > b.

(b) There exists a vector y € R™ such that yTA > 0 and yTAb > 0.

Proof. Let b’ = —Ab. The second statement becomes that there exists a vector y such that
yI'A > 07 and y'b’ < 0. Let x = X' + b. The first statement becomes that there exists a
vector x’ such that Ax’ = b’ and x' > 0. O

Lemma 4.3 (Farkas’ Lemma — Another Variation). Let A be a real m X n matriz and
b € R™. Then exactly one of the following two statements is valid.

(a) There exists a vector x € R™ such that Ax =0 and x < b.

(b) There exists a vector y € R™ such that y' A > 07 and y" Ab < 0.

Proof. Let b’ = Ab. The second statement becomes that there exists a vector y such that
yT'A > 07 and y'b’ < 0. Let x = —x’ + b. The first statement becomes that there exists a
vector x’ such that Ax’ = b’ and x’ > 0. O

Lemma 4.4 (A Variant Farkas’ Lemma). Let A be a real m x n matriz and b € R™. Then
exactly one of the following two statements is valid.

(a) There exists a vector x € R™ such that Ax =0, x > 0, and b"x > 0.

(b) There erists a vector y € R™ such that yTA > b”, i.e., ATy > b.
Proof. 1t is easy to see that (a) and (b) cannot be valid simultaneously, since the contradiction
0=y Ax >blx > 0.

Let C be the convex set of vectors ¢ € R™ such that ¢ > b. The statement (b) is equivalent
to CN Row (A) # &. The statement (a) is equivalent to that there exists a vector x € RZ,
such that Row (A) C x* and (x,b) > 0. The lemma is obviously true when Row (A) = R™,
since (b) is obviously valid and (a) is not. Consider the case that Row (A) is a proper vector
subspace of R™. Assume that CNRow (A) = &. Let Row (A) be extended into a hyperplane
H with normal vector x such that C is on the one side of H, i.e., c-x > 0 for all c € C.
Then obviously, Ax = 0, bYx > 0. We claim that x > 0. Suppose x; < 0 for a fixed i. Let
c € C be such that ¢; is large enough. Then ¢ - x < 0, which is a contradiction. O]

5 Feasible Flows and Tensions

Let D = (V, A) be a digraph wit two weight functions b,c¢ : A — R such that b(a) < ¢(a)
for all a € A. A flow or a tension f of D is said to be feasible (with respect to b and c)
if b(a) < f(a) < c(a) for all a € A. If f is a flow, then f(X) = f~(X) for each vertex
nonempty proper subset X C V(D). By definition of feasibility, we have

frX) < et (X), (X)) = b7 (X).
It follows that b~ (X) < ¢™(X), i.e.,
b(X¢ X) < (X, X). (5.1)



Proposition 5.1. Let D be a digraph with a capacity lower bound function b. Then there
exists either a flow £ of D such that f > b, or a nonnegative tension g such that g'b > 0,
but not both.

Proof. Let M be the incidence matrix of D and write the capacity lower function b as the
column vector b. By Farkas’ Lemma, exactly one of the two systems

Mf =0, f>b; p’M > 0", p'Mb >0

has a solution. Note that f is a flow, and g’ := p’M is a tension, since rows of M are
tensions of D. O]

Corollary 5.2. Let D be a digraph and b a real-valued function on A(D). Then there exists
either a flow £ of D such that £ > b, or a directed bond B such that gkb > 0, but not both.

Proof. Let g be the nonnegative tension of D in Proposition 5.1 such that g'’b > 0. Since
g > 0, we have g = > . a;,gp, with a; > 0, where B; are some directed bonds contain in
supp (g). Since Y, a;g5 b > 0, there exists at least one i such that g, b > 0. O

Let D' = (V' A’) be a digraph obtain from D by subdivide each arc a = uv into two arcs
a; = uw and as = vw., i.e.,

V' =V(D)U{w(a):a€ A}, A ={(t(a),w(a)),(h(a),w(a)):aec A},

where t(a) denote the tail of a, h(a) the head of a, and w(a) the middle point of a. The
lower bound function & on A’ is defined by

b (t(a), w(a)) = bla), V(h(a),w(a)) = —c(a).
For each function f : A — R, we associate a function f': A’ — R defined by
f'((ta), w(a)) = f(a), f'(h(a),w(a)) = —f(a).
Then £ is a flow of D iff f' is a flow of D’. Moreover, b(a) < f(a) < c(a) is equivalent to
f'(t(a), w(a)) >V (t(a),w(a), f(h(a),w(a)) >V (h(a),w(a)).

By Corollary 5.2, there exists either a flow f of D’ such that f* > b’, or a bond tension gp
of D’ such that gL, b’ > 0, but not both. We claim that the latter case cannot be happen.

In fact, let B’ = [ X', X’°| with X"* = V(D') \ X', where X’ C V(D'). If B’ contains
both half-arcs from a common arc a = ud of D, then [X', X"] = {(u,w), (v,w)}, since B’ is
a bond. Thus

ghb =V (u,w) +V(v,w) =b(a) —c(a) >0, ie, bla)>c(a),

which is a contradictory to b(a) < c¢(a). If B’ contains at most one half-arc from each arc a
of D, then we must have X C V(D) and

(X7, X" = {(h(a), w(a)), ((t(d),w(d)) : a € (X, X), a" € (X, X)},



where X¢ = V(D) ~\ X. Thus

gpb = Y )+ Y V() wd))

ac(X,X¢) a’e(Xe,X)
COY e X )
ag(X,X°) a’e(Xe,X)

= B(X,X%) — (X%, X) >0,
which is contradictory to b(X, X¢) < ¢(X¢ X). We have proved the following theorem.

Theorem 5.3 (Hoffman’s Feasible Flow Theorem). A digraph D has a feasible flow with
respect to bounds b and c iff for each nonempty proper verter subset X,

b(X¢ X) < (X, X°). (5.2)
Moreover, if b and c are integer-valued, then D has integer-valued flows.

Proof. (Constructive) Let f : A — R be such that b(a) < f(a) < c(a) for all a € A. Note
that

S () - () = Z( S ) 2 @ >)

veV veEV Ya€A t(a)=v a€A, h(a
= Y (f(a) = f(a)) = 0.
acA

The access n(f) of f is defined by

£ =Y 1 ) = f ()l

veV

Then f is a flow iff n(f) = 0. Whenever n(f) > 0, choose a vertex = such that f~(x) > f*(z)
(and also a vertex y such that f~(y) < f*(y)). We must have either f~(v) > b~ (v) or
[T (v) < ¢t(v). Otherwise, f~(v) = b~ (v) and f*(v) = ¢ (v) imply that b~ (v) > ¢*(v),
contradicting to b~ (v) < ¢t(v). If f~(v) > b~ (v), there is an arc a = vu such that f(a) >
b(a); if f*(v) < ¢ (v), there is an arc a = ud such that f(a) < c(a).

An z-path P is said to be f-improving provided that f(a) < c(a) if a is a forward arc
in P, and f(a) > b(a) if a is a reverse arc in P. Let X be the set of vertices reachable

from x by an f-improving path of positive length. Note that for each a € [X, X¢|, we have
f(a) =c(a) if a € (X, X°), and f(a) = b(a) if a € (X X). Then

S () = f(0) = FHX) = f7(X) = (X, X) — b(X, X) > 0.

veX

Since fT(x) — f~(x) < 0, there exists a vertex y € X such that f*(y) — f~(y) > 0. Let
P be an f-improving path from x to y in D. Let €(P) denote the minimum of the positive
numbers

fo@) = fT@), )=y, ca)=fla), fld)->bd)



where a,a’ € P are forward and reverse arcs respectively. We modify f into the function
f'iA—Rby
f(a) +€e(P) if ais a forward arc of P
f'(a) =< f(a)—e(P) if ais areverse arc of P
f(a) otherwise.

Clearly, b(a) < f'(a) < ¢(a) for all a € A. For each vertex v € P with v # x,y, consider the
local subpath uava’w of P near v, we have

€
€

E;*Ev; +e€)— gfL(fv (—I—)e) iia = v ang a = o
It , Tw)—e+e)—f (v if « = w and o’ = VW
[r) =17 w) = (ff(v) = (f~(v)+e—¢) ifa=udandd =tw
(ff(v) —¢) = (f~(v) —¢) ifa=uwand a = vw

= [T(v) = [ (v), where € = €(P).

For the initial and terminal vertices z,y of P and near their local subpaths zau and wa'y of
P, we have

/ () — (ff(@)+e) —f(x) fa=z0 2 () 4«
) - = LG H e @) - @) e

|
2
=N
S
I
=1

rigy ey = d @ =W o) ifd=wy
== { D T - e

It is clear that the access n(f’) of f’, given by

is less than the access n(f) of f. Continue this procedure if n(f’) > 0, we obtain a feasible
function on A with zero access, i.e., a feasible flow of D. n

Theorem 5.4 (Ghouila-Houri’s Theorem). Let D be a digraph with capacity bound functions
b and c. Then D has feasible tensions g iff the bound functions b and c satisfy the condition:
for all cycles C of D,

b(CT) <¢(CT),  b(CT) < e(C). (53)

where CT is the set of forward arcs of C' with respect to one of its two directions, C~ is the
set of reverse arcs of C' with respect to the same direction, and

BCT)= > ba), c(C) = cla)
acC— acC+

Proof. Let D" be the digraph obtained from D by adding a new arc o’ with t(a’) = v and
h(a’) = u for each arc a of D with ¢(a) = u and h(a) = v. Let b’ be a lower bound capacity
function on A(D’), given by

V(a) =bla), b(d)=—c(a).

A function g on A(D) corresponds to a function ¢’ on A(D') defined by



Then b(a) < g(a) < ¢(a) for all a € A(D) iff ¢'(a) > b'(a) for all a € A(D’), and g is a
tension of D iff ¢ is tension of D’.
Let M’ be the incidence matrix of D’. By Farkas’ Lemma, there exists either a vector f’
such that
Mf =0, f >0 b7f >0,

or a vector p’ such that

p/TM/ Z ‘l)/j—’7
but not both, i.e., there exists either a nonnegative flow f’ such that b’7f’ > 0, or a tension
g’ = M'Tp’ such that g’ > b/, but not both. We claim that the existence of a flow f' > 0
such that b’"f’ > 0 is a contradiction.

Suppose the existence of such a flow f’, and let it be a positive linear combination of
directed cycle flows of D’. Then one of such directed cycles of D', say, C’, satisfies b'T o > 0.
If C" is of the form {a,a’} with a = ud and a’ = vu, then b'Tfer > 0 is b(a) — c¢(a) > 0, which
contradicts b(a) < c(a). If C” is directed cycle of length at least three, let C; = C' N A(D)
and Cy = C' N (A(D") \ A(D)). Then the directed cycle C” of D’ corresponds to a cycle C
of D, with each arc @’ = vt € Cy replaced by a = ud in D. Now b7 fo > 0 is

D bla)+ > V()= bla)— Y cla)>0, ie, bCT)>c(C),

aeCy a’eCy acCt aceC—

which is contradictory to the feasible condition (5.3). O

6 Graph Laplacian

Let D = (V, A) be a connected loopless digraph in which half arcs are allowed, and M the
incidence matrix of D. For each vertex v € V, let M, denote the matrix obtained from
M by deleting the row corresponding to the vertex v. A Kirchhoff matrix of D is the
matrix K := M, for a vertex v of D. The Laplace matrix of the underlying graph G of
the digraph D is the matrix

L := MM".

Let A be the adjacency matrix of G, whose (u, v)-entry is the number edges between u and
v, each loop is counted twice. Let D be the diagonal matrix whose diagonal (v,v)-entry is
deg (v), which is the number of edges at v with loops counted twice. Then

L=D-A.

In fact, let eq, ..., ex be the links and fi,..., f; the loops at v. Recall that (v, e;)-entry in
M is either 1 or —1, and (v, f;)-entry in M is always 0. So the (v,v)-entry of L is

k
Zw(v, i) + Zw(v, fi)? = k = number of links at v.

i=1 j=1

The (v,v)-entry of D is deg (v), which is the number of edges incident with v, where each
loop is counted twice. The (v,v)-entry of A is the twice number of loops at v. Then the
(v,v)-entry of D — A is also the number of links at v.
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For distinct vertices u,v € V, let ¢i,..., gn be the edges between u and v. The (u,v)-
entry of L is

Zw(u, gi)w(v, g;) = —m = —a,, = number of edge between u and v.
i=1

We have seen that L=D — A.

Lemma 6.1. Let G be a graph with n vertices and ¢ connected components. Then the
Laplacian L(G) has rank n — c.

Proof. Since rank (M) = n — ¢, it suffices to show that rank (L) = rank (M). Given a vector
v. f MMTv = 0, then vIMMTv = 0, i.e., |[MTv| = 0, thus M?v = 0. Clearly, MTv =0
implies MM?v = 0. So L and M7 have the same kernel. Hence rank L = rank M’ =
rank M. [

Since L is a symmetric square matrix, all eigenvalues of L are real. Since vILv
IMTv]||?2 > 0 for each vector v € RE@. We see that L is semi-positive definite. If v is
an eigenvector for the eigenvalue ), i.e., Lv = \v, then vILv = Avlv = \||v||*> > 0, thus
A > 0. So all eigenvalues L are nonnegative, and 0 is always an eigenvalue, since L is
singular. It is easy to see that the multiplicity of the zero eigenvalue is ¢(G), the number of
components of G. Let G1,..., Gk be the connected components of G. Then the eigenspace
of L for the eigenvalue 0 is the vector space generated by ly(g,), 1 < i < k. Let A\(G)
denote the smallest positive eigenvalue of GG, called the second smallest eigenvalue of L.
The eigenvalues of L(G) are ordered as

Lemma 6.2. For two n x n matrices A and B, the determinant of A+ B is given by
det(A+ B) = > det(Ag U Bse),
5C[n]

where Ag U Bge is the matriz obtained from A by replacing the rows with indices not in S
with the corresponding rows of B.

Proof. Write the rows of A as aq,...,a,, and the rows of B as by,...,b,. The formula
follows from the following direct calculation:

det(A+ B) = Z sgn (o) H(aio(i) + bis(i))

o =1

= Z sgn (o) Z H Cio (i)

7 i (i) %o (i) Pio (i)} 1=1
i=1

i=1,..., n

= Z Z sgn (o) H Cio (i)

ci€fa;b;} o i=1

1=1,..., n

= ) det(As U Bge).

SC[n]
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Theorem 6.3. The characteristic polynomial of the Laplacian L of a graph G with n vertices

18
n—1

det(tT — L) = (=1)Fet" ",
k=0
where ¢ 1s the number of rooted spanning forests of G with k edges. In particular, when G
is connected, c,_1 1s the n times of the number of spanning trees of G.

Proof. Write (tI — L) as (tI+ (—L)) and L = MM, where M is the vertex-edge incidence
matrix of G. Applying Lemma 6.2,

n—1
det(tI—L) = "+ > (=D Y~ det (MgMF)
k=1 SCV(G),|S|=k
n—1
= (—1)kcktnik.

i

0

Since M is totally unimodular, applying Cauchy-Binet formula, we see that
det (MsMg) = #{F C E: |[F| = |S], det(Msyr) # 0}.

Note that det(Mgxr) # 0 implies that |S| = |F|, S C V(F), and the subgraph (S, F') (with
possible half-edges) contains no cycle. Let (S, F) be decomposed into connected components
(S;, F;). Then det(Mgxp) = []; det(Mg,xr,), which implies |S;| = |F|, S; € V(F;), and
det(Mg,xr,) # 0 for all 4. Likewise, det(Mg,«xr,) # 0 implies that (S;, F;) (with possible
half-edges) contains no cycle. We claim that each graph (V(F;), F;) is a tree. Suppose
(V(F;), F};) is not a tree, i.e., it contains a cycle. Then its number of independent cycles is

n(F) = |E] = [V(F)[+1=1.

Consequently, |V (F;)| < |F;| = |S;|. Since S; C V(F;), we have (S;, F;) = (V(F;), F;), which
contains a cycle, a contradictory to that (S;, F;) contains no cycle.

Now each (V(F;), F}) is a tree and V(F;) \ S; is a single vertex, which can be viewed as
a root of the tree (V(F;), F;). So each (S;, F;) may be considered as a rooted tree (V(F;), F})
with the root v such that {v} = V(F;) \ S;. Conversely, if S; C V(F;), |S;| = |Fi|, and
(V(F;), F};) is a tree, then it is clear that det(Mg,«r,) # 0 by expansion along its v-row with
v a leaf. Thus we obtain

cr = #{acyclic (S, F): F C E, S CV(F), |S| = |F| =k},

where each such (S, F) is identified as a rooted spanning forest F' with k edges, i.e., each
component of F' is specified a root. In particular, ¢,_; is the number of rooted spanning
trees, which is n times of the number of spanning trees of G. O

Corollary 6.4. Let G be a graph with n vertices. If the eigenvalues of L(G) are linearly
ordered as 0 = Ay < Ay < --- < N\, (multiply listed with multiplicities). Then the number of
spanning trees of G equals



Proof. Let ¢(t) denote the characteristic polynomial of L, i.e., ¢(t) = det(tI — L). Then
d(t) =t(t — Ag) -+ (t — \n). The coefficient of ¢ in ¢(t) is (=1)""* Ay - -+ \,, which is also the
number of spanning trees of G times (—1)""'n by Theorem 6.3. O

Exercises

Ch10: 9.1.1; 9.1.8; 9.1.9; 9.2.1; 9.3.2; 9.3.7;
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