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1 Transportation Networks

• A network N = (D, x, y, c) is a digraph D = (G, ε) with two distinguished vertices, a source x and a sink
y, together with a nonnegative function c : E(D) → R≥0, called the capacity function of N . For each
edge e ∈ E(D), the value c(e) is called the capacity of e. Vertices other than x, y are called intermediate
vertices.

• For any function f : E(D) → R and a vertex subset X ⊆ V (D), we define

f+(X) :=
∑

e∈(X,Xc)

f(e), f−(X) :=
∑

e∈(Xc,X)

f(e).

• An (x, y)-flow of a network N = (D, x, y) is a function f : E(D) → R satisfying the conservation condition:
∑

e∈E+(v)

f(e) =
∑

e∈E−(v)

f(e) i.e., f+(v) = f−(v) for all v ∈ V (D)− {x, y},

where E+(v) is the set of edges whose tails are v, and E−(v) is the set of edges whose heads are v.

Equivalently, an (x, y)-flow of N is just a real-valued function f on E(D) such that for any v ∈ V (D)−{x, y},
∑

e∈E(D)

ε(v, e)f(e) = 0.

• The value of an (x, y)-flow f of a network N(x, y) is the flow value out of the source x, i.e.,

val(f) := f+(x) = f−(y).

An (x, y)-flow f is called a feasible flow (or just a flow) of N if it satisfies the capacity constraint:

0 ≤ f(e) ≤ c(e) for all e ∈ E(D).

A flow is called a maximum flow if there is no flow of greater value.

Lemma 1.1. Let f be a flow a network N(x, y), and X ⊆ V (N) be such that x ∈ X, y 6∈ X. Then

val(f) = f+(X)− f−(X).

Proof. By definition of f+(X) and f−(X), and
∑

e∈E ε(v, e)f(e) = 0 for all v 6= x, y, we have

val(f) =
∑

v∈X

∑

e∈E

ε(v, e)f(e)

=
∑

e∈E

f(e)
∑

v∈X

ε(v, e)

=

{ ∑

e∈[X,X]

+
∑

e∈(X,Xc)

+
∑

e∈(Xc,X)

}
f(e)

∑

v∈X

ε(v, e)

= f+(X)− f−(X).
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• An (x, y)-cut (or just a cut) of a network N(x, y) is a cut [X, Xc] separating x from y, i.e., x ∈ X, y 6∈ X.
The capacity of such an cut [X, Xc] is

c(X, Xc) :=
∑

e∈(X,Xc)

c(e).

• A cut [X, Xc] of a network N(x, y) is called a minimum cut if N has no cut of smaller capacity.

• Let f be a flow of a network N(x, y). A cut [X, Xc] is said to be f-saturated at its edge e if either (i)
e ∈ (X, Xc) and f(e) = c(e), or (ii) e ∈ (Xc, X) and f(e) = 0; otherwise it is said to be f-unsaturated at e,
i.e., either (i) e ∈ (X, Xc) and f(e) < c(e), or (ii) e ∈ (Xc, X) and f(e) > 0. If a cut [X, Xc] is f -unsaturated
at its edge e, we define

ι(e) = ι(e, f) :=
{

c(e)− f(e) if e ∈ (X, Xc),
f(e) if e ∈ (Xc, X).

If [X, Xc] is f -unsaturated at an edge e, then ι(e) > 0.

• A cut [X, Xc] of a network N is said to be (i) f-saturated if it is f -saturated at its every edge, and (ii)
f-unsaturated if it is f -unsaturated at one of its edges.

Proposition 1.2. For any flow f of a network N(x, y) and any cut [X, Xc],

val(f) ≤ c(X, Xc).

Moreover, the equality holds if and only if the cut [X, Xc] is f-saturated.

Proof. Note that f+(X) ≤ c(X, Xc) and f−(X) ≥ 0. Then

val(f) = f+(X)− f−(X) ≤ c(X, Xc).

As for the equality, the sufficiency is obvious. The necessity is as follows:
Suppose [X, Xc] is f -unsaturated, i.e., [X, Xc] has an f -unsaturated edge e. If e ∈ (X, Xc), then f(e) < c(e);

thus
val(f) = f+(X)− f−(X) < c(X, Xc)− f−(X) = c(X, Xc).

If e ∈ (Xc, X), then f(e) > 0; thus

val(f) = f+(X)− f−(X) < f+(X) ≤ c(X, Xc).

Both cases are contradictory to val(f) = c(X, Xc).

Corollary 1.3. Let f be a flow and (X, Xc) a cut of a network N(x, y). If val(f) = c(X, Xc), then f is a maximum
flow and [X, Xc] is a minimum cut.

Proof. Let f∗ be a maximum flow and (X∗, X∗c) a minimum cut of N . Then by Proposition 1.2,

val(f) ≤ val(f∗) ≤ c(X∗, X∗c) ≤ c(X, Xc).

Since val(f) = c(X, Xc), it follows that val(f) = val(f∗) and c(X∗, X∗c) = c(X, Xc).

2 The Max-Flow Min-Cut Theorem

• Let N(x, y) be a network, f a flow of N(x, y), and P an x-path (not necessarily a directed path); the positive
direction of P is denoted by εP . The f-increment of P is

ε(P ) = ε(P, f) := min{ε(e) | e ∈ E(P )},
where

ε(e) = ε(e, f) :=
{

c(e)− f(e) if ~e is a forward arc in P , i.e., [ε, εP ](e) = 1,
f(e) if ~e is a reverse arc in P , i.e., [ε, εP ](e) = −1.
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• Given a flow of a network N ; an x-path P is said to be f-saturated if ε(P ) = 0 and f-unsaturated if
ε(P ) > 0. An (x, y)-path is called an f-incrementing path if it is f -unsaturated.

Proposition 2.1. Let f be a flow of a network N(x, y) and P an (x, y)-path. Then ε(P ) ≥ 0, f ′ := f + ε(P )[ε, εP ]
is a flow of N with val(f ′) = val(f) + ε(P ), and f ′ is explicitly given by

f ′(e) :=





f(e) + ε(P ) if ~e is a forward arc in P ,
f(e)− ε(P ) if ~e is a reverse arc in P ,
f(e) otherwise.

Proof. We only need to verify that f ′ is a flow, for f ′ is clearly feasible. Since any linear combination of flows is
also a flow, it is equivalent to check that [ε, εP ] is a flow. In fact,

∑

e∈E

ε(v, e)[ε, εP ](e) =
∑

e∈E

ε(v, e)ε(v, e)εP (v, e) =
∑

e∈E

εP (v, e),

which is zero at each internal vertex v of P by definition of direction of a path.

Proposition 2.2. Let f be a flow of a network N(x, y), and there is no f-incrementing path from x to y in N .
Let X be the set of vertices reachable from x by f-unsaturated paths, including x itself. Then f is a maximum flow,
[X, Xc] is a minimum cut, and val(f) = c(X, Xc).

Proof. It is clear that [X, Xc] is a cut separating x from y. We claim that [X, Xc] is f -saturated. In fact, suppose
[X, Xc] has an f -unsaturated edge e with end-vertices u ∈ X, v ∈ Xc. Let Pu be an f -unsaturated path from x to
u. Then Pv := Puev is an f -unsaturated path from x to v; this is a contradiction.

Thus val(f) = c(X, Xc). By Corollary 1.3, f is a maximum flow and (X, Xc) is a minimum cut.

Theorem 2.3 (Max-Flow Min-Cut Theorem). The value of a maximum flow in a network is equal to the capacity
of a minimum cut.

Proof. Let f be a maximum flow. By Proposition 2.1, there is no f -incrementing path by Proposition 2.1. Then by
Proposition 2.2, val(f) is equal to the capacity of a cut of N .

Theorem 2.4 (Ford-Fulkerson Algorithm). Input: a network N = (D, x, y) with a capacity function c : E → R; a
feasible flow f of N .

Output: a maximum flow f and a minimum cut [T,D − T ].
Step 1: Initialize a tree T := {x}, set ι(x) = ∞, then go to Step 2.
Step 2: If y ∈ T , set f := f + ι(y)[ε, εP ] with P the unique path from x to y in T , then go to Step 1.

If y 6∈ T , go to Step 3.
Step 3: If [T, D − T ] is f-saturated, Stop; f is a maximum flow, [T,D − T ] is a minimum cut.

If [T, D−T ] is f-unsaturated, select an f-unsaturated edge e ∈ [T,D−T ] with end-vertices u ∈ T
and v 6∈ T , add e and v to T , set ι(v) := min{ι(u), ι(e)}, then go to Step 2.

Proof. Trivial with previous preparation.

Example 2.1. Consider the following network with capacity function specified on the edges.

y(d+,5)0 (2)0 (7)

0 (7)

0 (3)

0 (9)

x(,*)

0 (5)

0 (7) 0 (8)

0 (6)

0 (4)

0 (8)

b(x+,9)

a(x+,7)

c(a+,7)

d(a+,5)

0 (3)

e(c+,3)
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y(e+,6)0 (2)0 (7)
0 (4)

0 (3)

0 (9)

x(,*)

b(x+,9)

0 (8)

0 (5) 0 (7)

5 (7)

5 (5)

5 (8)

0 (6)

a(x+,2)

c(a+,2)

d

e(b+,6)

e(c+,2)

0 (2)
0 (4)

0 (3)

x(,*)
0 (8)

0 (5)

5 (5) d

5 (8)

6 (9)

6 (6)

6 (7)

b(x+,3)

0 (7) y(e+,1)

5 (7)

a(x+,2)

c(a+,2)

y0 (2)
0 (4)

0 (3)

x(,*)

5 (5) d

5 (8)

6 (9)

6 (6)

0 (7)

7 (7)1 (5)

1 (8)

b(x+,3)

6 (7)

a(x+,1)

c(a+,1)

e(c+,1)

3 Arc Disjoint Paths

Proposition 3.1. Let f be a flow in a digraph D = (V, A) = (G, ε).

(a) If f is nonzero, then the support of f contains a cycle.

(b) If f is nonnegative and nonzero, then the support of f contains a directed cycle.

Proposition 3.2. (a) Every nonnegative flow f in a digraph D is a nonnegative linear combination of flows
associated with its directed cycles.

(b) If the flow f is integer-valued, the coefficients in the linear combination may be chosen to be integers.

Corollary 3.3. let N = (D, x, y) be a network in which each arc has unit capacity 1. Then N has an (x, y)-flow of
value k if and only if the digraph D(x, y) has k arc-disjoint directed (x, y)-paths.

Theorem 3.4 (Menger’s Theorem). (a) In any digraph D(x, y), the maximum number of arc-disjoint directed
(x, y)-paths is equal to the minimum number of forward arcs in an (x, y)-cut.

(b) In any graph G(x, y), the maximum number of edge-disjoint (x, y)-paths is equal to the minimum number of
edges in an (x, y)-cut.

4 Matchings in Bipartite Graphs

Let G = (V, E) be a bipartite graph with vertex set V = X ∪ Y , each edge is between a vertex of X and a vertex
of Y .

• A matching in G is a subset of E such that no two edges share a common vertex in X and Y .
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• A complete matching of X into Y is a matching in G such that every vertex x ∈ X is an end-vertex of an
edge.

Theorem 4.1. Let G = (V, E) be a bipartite graph with bipartition V = X ∪ Y . Then there exists a complete
matching of X into Y if and only if for each subset A ⊆ X,

|A| ≤ |R(A)|,

where R(A) ⊆ Y is set of vertices adjacent to at least one vertex in A.

Proof. The necessity is trivial. We only need to prove sufficiency.
Let X = {x1, . . . , xm}, Y = {y1, . . . , yn}. Let N be a network with a source a, a sink z, and intermediate vertex

set V , where (a, xi) and (yj , z) have capacity 1, (xi, yj) ∈ E has capacity M , and M ≥ m. It is clear that there
exists a matching in G if and only if there is a maximum flow in N that uses all arcs (a, xi), 1 ≤ i ≤ m. Then the
value of such a maximum flow is m = |X|. To show that a maximum flow in N uses all arcs (a, xi), it suffices to
show that for any cut [P, P c],

c(P, P c) ≥ |X|.
Fix a cut [P, P c]; let A := P ∩X and B := P ∩ Y . Then P c = (X − A) ∪ (Y − B) ∪ {z}. We may relabel the

vertices of X so that A = {x1, . . . , xi}, 0 ≤ i ≤ m. (When i = 0, A = ∅.) note that

(P, P c) = (a,X −A) ∪ (A, Y −B) ∪ (B, z).

If [A, Y −B] 6= ∅, then c(P, P c) ≥ M ≥ |X|. If [A, Y −B] = ∅, then (P, P c) = [a,X −A] ∪ [B, z]. Thus

c(P, P c) = |X −A|+ |B|.

Since [A, Y −B] = ∅, then R(A) ⊆ B. Hence c(P, P c) ≥ |X −A|+ |R(A)| ≥ |X −A|+ |A| = |X|.
Conversely, suppose there is a subset A ⊆ X such that |A| > |R(A)|. Consider the cut [P, P c] with

P := {a} ∪A ∪R(A), P c := (X −A) ∪ (Y −R(A)) ∪ {z}.

Then (P, P c) = [a,X −A) ∪ [A, Y −R(A)] ∪ [R(A), z]. Thus

c(P, P c) = |X −A|+ |R(A)| < |X −A|+ |A| = |X|.

The cut [P, P c] has capacity smaller than |X|.

5 Matchings

• A matching in a graph G is a set of non-loop edges, having end-vertices in common. If M is a matching, the
two end-vertices of each edge of M are said to be matched under M , and each vertex incident with an edge
of M is said to be covered by M .

• A perfect matching in a graph G is a matching that covers every vertex of the graph. A maximum
matching is a matching which cover as many vertices as possible; the number of edges of such a matching
is called the matching number of the graph, denoted α′(G). A graph is said to be matchable if it has a
perfect matching.

Let M be a matching in a graph G. An M-alternating path (cycle) in G is a path (cycle) whose edges are
alternating between M and E −M . An M -alternating path may not start or end with a vertex incident with an
edge of M . An M-augmenting path is an M -alternating path of which neither its initial vertex nor its terminal
vertex is covered by M .

Theorem 5.1 (Berge’s Theorem). A matching M in a graph G is a maximum matching if and only if G contains
no M -augmenting path.
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Proof. “⇒”: Suppose G contains an M -augmenting path P . Then M has more edges of in E −M than of M , and
the initial and terminal vertices are not covered by M . Set M ′ := M∆E(P ). Then M ′ is a matching in G with
|M ′| > |M |. So M is not a maximum matching, a contradiction.

“⇐”: Suppose M is not a maximum matching. Given a maximum matching M∗; set H := G(M∆M∗). Then H
is a graph whose vertices have degree either 1 or 2. Thus H is a vertex-disjoint union of paths and cycles, alternating
between M and M∗. Since |M∗| > |M |, the subgraph H contain more edge of M∗ than of M . Then H has at least
one path component P , whose initial and terminal vertices are not covered by M∗, i.e., P is an M -augmenting path
in G, a contradiction.

6 Matching in Arbitrary Graphs

• Let o(G) denote the number of odd components in a graph G. An odd component is a connected component
having odd number of vertices.

• For matching M of a graph G, let U denote the set of vertices that are not covered by M . Then

|U | ≥ o(G).

[Each odd component must have a vertex uncovered by M .]

• Let M be a matching in a graph G, and let U be the set of vertices uncovered by M . Then for any proper
subset S ( V ,

|U | ≥ o(G− S)− |S|.
[Let O(G − S) be the set of odd components of G − S. For each H ∈ O(G − S), if V (H) is covered by M ,
then at least one vertex of H must be matched by an edge of M with a vertex in S. Let SH denote the set of
vertices in S that are matched to the vertices of H by M . Note that {SH |H ∈ O(G− S)} is a collection of
disjoint subsets of S. There are at most |S| odd components of G− S that are covered by M . Thus there are
at least o(G− S)− |S| odd components of G− S that are not covered by M . So |U | ≥ o(G− S)− |S|.]

• Let U be the set of vertices uncovered by a matching M in a graph G. Then |U | = |V (G)| − 2|M |. If there is
a proper subset B ( V such that

|V (G)| − 2|M | = o(G−B)− |B|,
the matching M is necessarily to be maximal. Such a vertex set B is a called a barrier of G with respect to
the maximum matching M .

Theorem 6.1 (Tutte-Berge Theorem). Every graph has a barrier. ¤

Theorem 6.2 (Tutte’s Theorem). A graph G has a perfect matching M if and only if for each subset S ⊆ V ,

o(G− S) ≤ |S|.

Proof. “⇒”: Fix a nonempty proper subset S ( V . Let O(G − S) be the set of odd components of G − S.
For each H ∈ O(G − S), let SH be the set of vertices in S that are matched to the vertices of H by M . Then
{SH |H ∈ O(G− S)} is a collection of disjoint subsets of S. Of course,

o(G− S) = #{SH |H ∈ O(G− S)} ≤ |S|.

“⇐”: Too long.

Theorem 6.3 (Petersen’s Theorem). Every 3-regular graph without cut edges has a perfect matching. ¤
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7 Matchings and Coverings

• A covering of a graph G is a subset S of V (G) such that every edge of G has at least one end-vertex in S.

• A covering S∗ of G is called a minimum covering if G has no covering S such that |S| < |S∗|. The covering
number of G is the number of vertices of a minimum covering of G.

• A covering is said to be minimal if none of its proper subsets is a covering.

• If M is a matching and S a covering of G, then

|M | ≤ |S|.

Proposition 7.1. Let M be a matching and S a covering of a graph G. If |M | = |S|, then is a maximum matching
and S is a minimum covering of G. ¤
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