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1 Transportation Networks

e A network N = (D, z,y,c) is a digraph D = (G, ¢) with two distinguished vertices, a source x and a sink
y, together with a nonnegative function ¢ : E(D) — Rxq, called the capacity function of N. For each
edge e € E(D), the value c(e) is called the capacity of e. Vertices other than x,y are called intermediate
vertices.

e For any function f: E(D) — R and a vertex subset X C V (D), we define
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e An (z,y)-flow of a network N = (D, z,y) is a function f : E(D) — R satisfying the conservation condition:
Y. fleo= D> fle) ie, ff(v)=f(v) forallveV(D)-{z,y},
ecE+(v) ecE—(v)
where ET(v) is the set of edges whose tails are v, and E~(v) is the set of edges whose heads are v.

Equivalently, an (z,y)-flow of N is just a real-valued function f on E(D) such that for any v € V(D) —{x, y},

Z e(v,e)f(e) =0.

ccE(D)
e The value of an (z,y)-flow f of a network N(z,y) is the flow value out of the source z, i.e.,
val(f) == f¥(2) = f~(y).
An (z,y)-flow f is called a feasible flow (or just a flow) of NV if it satisfies the capacity constraint:
0< f(e) <c(e) forall e E(D).
A flow is called a maximum flow if there is no flow of greater value.
Lemma 1.1. Let f be a flow a network N(x,y), and X C V(N) be such that x € X,y ¢ X. Then
val(f) = F+(X) - f~(X).
Proof. By definition of f*(X) and f~(X), and > .pe(v,e)f(e) = 0 for all v # z,y, we have

val(f) = > e(v,e)f(e)
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An (x,y)-cut (or just a cut) of a network N(z,y) is a cut [X, X¢| separating z from y, i.e,, z € X,y & X.
The capacity of such an cut [X, X¢] is

(X, XY= Y cle)

e€(X,X¢)

A cut [X, X of a network N (z,y) is called a minimum cut if N has no cut of smaller capacity.

Let f be a flow of a network N(z,y). A cut [X, X¢] is said to be f-saturated at its edge e if either (i)
e € (X,X° and f(e) =c(e), or (ii) e € (X X) and f(e) = 0; otherwise it is said to be f-unsaturated at e,
i.e., either (i) e € (X, X¢) and f(e) < c(e), or (ii) e € (X X) and f(e) > 0. If a cut [X, X¢] is f-unsaturated
at its edge e, we define
_ | cle)— f(e) ifee (X, X°),
te) = e, f) = { f(e) if e € (X, X).

If [X, X€] is f-unsaturated at an edge e, then «(e) > 0.

A cut [X, X€] of a network N is said to be (i) f-saturated if it is f-saturated at its every edge, and (ii)
f-unsaturated if it is f-unsaturated at one of its edges.

Proposition 1.2. For any flow f of a network N(z,y) and any cut [X, X¢],
val(f) < (X, X°).
Moreover, the equality holds if and only if the cut [X, X¢| is f-saturated.
Proof. Note that f7(X) < ¢(X, X¢) and f~(X) > 0. Then
val(f) = f+(X) = f~(X) < e(X, X°).

As for the equality, the sufficiency is obvious. The necessity is as follows:
Suppose [X, X€] is f-unsaturated, i.e., [X, X¢| has an f-unsaturated edge e. If e € (X, X€), then f(e) < c(e);
thus
val(f) = f7(X) = f7(X) < e(X, X) = f7(X) = (X, X°).

If e € (X¢ X), then f(e) > 0; thus
val(f) = f1(X) = f7(X) < fT(X) < (X, X).
Both cases are contradictory to val(f) = ¢(X, X¢). O

Corollary 1.3. Let f be a flow and (X, X) a cut of a network N(x,y). If val(f) = ¢(X, X€), then f is a mazimum
flow and [ X, X€] is a minimum cut.

Proof. Let f* be a maximum flow and (X*, X*¢) a minimum cut of N. Then by Proposition 1.2,
val(f) < val(f*) < (X", X™) < o(X, X°).
Since val(f) = ¢(X, X€), it follows that val(f) = val(f*) and ¢(X™*, X*¢) = ¢(X, X°). O

2 The Max-Flow Min-Cut Theorem

e Let N(z,y) be a network, f a flow of N(z,y), and P an z-path (not necessarily a directed path); the positive
direction of P is denoted by ep. The f-increment of P is

e(P) =¢€(P, f) := min{e(e) | e € E(P)},

where
cle) — f(e) if €is a forward arc in P, i.e., [g,ep|(e) =1,
f(e) if €'is a reverse arc in P, i.e., [¢,ep](e) = —1.



e Given a flow of a network N; an z-path P is said to be f-saturated if ¢(P) = 0 and f-unsaturated if
¢(P) > 0. An (z,y)-path is called an f-incrementing path if it is f-unsaturated.

Proposition 2.1. Let f be a flow of a network N(z,y) and P an (x,y)-path. Then e(P) >0, ' := f+€(P)[e,ep]
is a flow of N with val(f’) = val(f) + e(P), and f’ is explicitly given by

f(e) +€(P) if €is a forward arc in P,
f'(e):=< f(e) —e(P) if €is a reverse arc in P,
f(e) otherwise.

Proof. We only need to verify that f’ is a flow, for f’ is clearly feasible. Since any linear combination of flows is
also a flow, it is equivalent to check that [e,ep] is a flow. In fact,

Za(v,e)[a,sp](e) = Za(v,e)s(v,e)sp(v,e) = Zap(v,e),

eclk ecE eeE
which is zero at each internal vertex v of P by definition of direction of a path. O

Proposition 2.2. Let f be a flow of a network N(z,y), and there is no f-incrementing path from x to y in N.
Let X be the set of vertices reachable from x by f-unsaturated paths, including x itself. Then f is a mazimum flow,
[X, X€] is a minimum cut, and val(f) = c(X, X°).

Proof. Tt is clear that [X, X€] is a cut separating = from y. We claim that [X, X¢] is f-saturated. In fact, suppose
[X, X¢] has an f-unsaturated edge e with end-vertices u € X,v € X¢. Let P, be an f-unsaturated path from z to
u. Then P, := P,ev is an f-unsaturated path from z to v; this is a contradiction.

Thus val(f) = ¢(X, X¢). By Corollary 1.3, f is a maximum flow and (X, X¢) is a minimum cut. O

Theorem 2.3 (Max-Flow Min-Cut Theorem). The value of a mazimum flow in a network is equal to the capacity
of a minimum cut.

Proof. Let f be a maximum flow. By Proposition 2.1, there is no f-incrementing path by Proposition 2.1. Then by
Proposition 2.2, val(f) is equal to the capacity of a cut of N. O

Theorem 2.4 (Ford-Fulkerson Algorithm). INPUT: a network N = (D, z,y) with a capacity function c: E — R; a
feasible flow f of N.
OutpUT: a mazimum flow f and a minimum cut [T, D —T).
STEP 1: Initialize a tree T := {x}, set 1(x) = oo, then go to STEP 2.
STEP 2: Ify € T, set f := f+ 1(y)[e,ep] with P the unique path from x toy in T, then go to STEP 1.
Ify ¢T, go to STEP 3.
STEP 3: If [T, D — T is f-saturated, STOP; f is a maximum flow, [T, D — T is a minimum cut.
If [T, D —T] is f-unsaturated, select an f-unsaturated edge e € [T, D —T| with end-vertices u € T
andv &€ T, add e and v to T, set t(v) := min{c(u), t(e)}, then go to STEP 2.

Proof. Trivial with previous preparation. O

Example 2.1. Consider the following network with capacity function specified on the edges.

ax+,7)  0(5) d(a+,5)

y(d+,5)




a(x+,2) 5 (5) d

y(e+,6)

b(x+9) 0(6) e(b+,6)
ax+2)  5(5) d

x(*)

b(x+,3) 6(6) e(c+,2)
ax+1)  5(5) d

b(x+3) 6(6) e(ct,1)

3 Arc Disjoint Paths
Proposition 3.1. Let f be a flow in a digraph D = (V, A) = (G, ¢).
(a) If f is nonzero, then the support of f contains a cycle.
(b) If f is nonnegative and nonzero, then the support of f contains a directed cycle.

Proposition 3.2. (a) Every nonnegative flow f in a digraph D is a nonnegative linear combination of flows
associated with its directed cycles.

(b) If the flow f is integer-valued, the coefficients in the linear combination may be chosen to be integers.

Corollary 3.3. let N = (D, z,y) be a network in which each arc has unit capacity 1. Then N has an (z,y)-flow of
value k if and only if the digraph D(x,y) has k arc-disjoint directed (x,y)-paths.

Theorem 3.4 (Menger’s Theorem). (a) In any digraph D(z,y), the mazimum number of arc-disjoint directed
(z,y)-paths is equal to the minimum number of forward arcs in an (x,y)-cut.

(b) In any graph G(x,y), the mazimum number of edge-disjoint (x,y)-paths is equal to the minimum number of
edges in an (x,y)-cut.

4 Matchings in Bipartite Graphs

Let G = (V, E) be a bipartite graph with vertex set V' = X UY, each edge is between a vertex of X and a vertex
of Y.

e A matching in G is a subset of F such that no two edges share a common vertex in X and Y.



e A complete matching of X into Y is a matching in G such that every vertex x € X is an end-vertex of an
edge.

Theorem 4.1. Let G = (V, E) be a bipartite graph with bipartition V.= X UY. Then there exists a complete
matching of X into Y if and only if for each subset A C X,

Al < [R(A)],
where R(A) CY is set of vertices adjacent to at least one vertex in A.

Proof. The necessity is trivial. We only need to prove sufficiency.

Let X ={z1,...,2m}, Y ={y1,...,yn}. Let N be a network with a source a, a sink z, and intermediate vertex
set V, where (a,z;) and (y;,2) have capacity 1, (x;,y;) € E has capacity M, and M > m. It is clear that there
exists a matching in G if and only if there is a maximum flow in N that uses all arcs (a,x;), 1 < i < m. Then the
value of such a maximum flow is m = |X|. To show that a maximum flow in N uses all arcs (a, z;), it suffices to
show that for any cut [P, P€],

c(P, P°) > |X]|.

Fix a cut [P, P|;let A:=PNX and B:= PNY. Then P° = (X — A)U (Y — B) U{z}. We may relabel the
vertices of X so that A = {z1,...,2;}, 0<i<m. (When i=0, A=10.) note that

(P,P%) = (a,X — A)U(A,Y — B)U (B, z2).
If [A,Y — B] # 0, then (P, P¢) > M > |X|. If [A,Y — B] = 0, then (P, P¢) = [0, X — A]U[B, 2]. Thus
o(P,P°) =|X — Al +|B|.

Since [A,Y — B] = 0, then R(A) C B. Hence ¢(P, P°) > |X — A|+ |R(A)| > | X — A| + |A] = |X|.
Conversely, suppose there is a subset A C X such that |A| > |R(A)|. Consider the cut [P, P¢] with

P:={a}UAUR(A), P°=(X-A)U(XY —R(A)U{z}.
Then (P, P¢) =[a,X — A)U[A,Y — R(A)] U[R(A), z]. Thus
c(P,P°)=|X — Al + |R(A)| < |X — A| + |4] = |X]|.

The cut [P, P¢] has capacity smaller than | X|. O

5 Matchings

e A matching in a graph G is a set of non-loop edges, having end-vertices in common. If M is a matching, the
two end-vertices of each edge of M are said to be matched under M, and each vertex incident with an edge
of M is said to be covered by M.

e A perfect matching in a graph G is a matching that covers every vertex of the graph. A maximum
matching is a matching which cover as many vertices as possible; the number of edges of such a matching
is called the matching number of the graph, denoted o/(G). A graph is said to be matchable if it has a
perfect matching.

Let M be a matching in a graph G. An M-alternating path (cycle) in G is a path (cycle) whose edges are
alternating between M and F — M. An M-alternating path may not start or end with a vertex incident with an
edge of M. An M-augmenting path is an M-alternating path of which neither its initial vertex nor its terminal
vertex is covered by M.

Theorem 5.1 (Berge’s Theorem). A matching M in a graph G is a mazimum matching if and only if G contains
no M -augmenting path.



Proof. “=": Suppose G contains an M-augmenting path P. Then M has more edges of in £ — M than of M, and
the initial and terminal vertices are not covered by M. Set M’ := MAE(P). Then M’ is a matching in G with
|M'| > |M]. So M is not a maximum matching, a contradiction.

“<”: Suppose M is not a maximum matching. Given a maximum matching M*; set H := G(MAM?*). Then H
is a graph whose vertices have degree either 1 or 2. Thus H is a vertex-disjoint union of paths and cycles, alternating
between M and M*. Since |M*| > |M|, the subgraph H contain more edge of M* than of M. Then H has at least
one path component P, whose initial and terminal vertices are not covered by M*, i.e., P is an M-augmenting path
in GG, a contradiction. ]

6 Matching in Arbitrary Graphs

e Let o(G) denote the number of odd components in a graph G. An odd component is a connected component
having odd number of vertices.

e For matching M of a graph G, let U denote the set of vertices that are not covered by M. Then
U] = o(G).
[Each odd component must have a vertex uncovered by M ]

e Let M be a matching in a graph G, and let U be the set of vertices uncovered by M. Then for any proper
subset S C V|
U] = o(G = 5) - [S].

[Let O(G — S) be the set of odd components of G — S. For each H € O(G — 5), if V(H) is covered by M,
then at least one vertex of H must be matched by an edge of M with a vertex in S. Let Sy denote the set of
vertices in S that are matched to the vertices of H by M. Note that {Sy | H € O(G — S)} is a collection of
disjoint subsets of S. There are at most |S| odd components of G — S that are covered by M. Thus there are
at least o(G — S) — |S| odd components of G — S that are not covered by M. So |U| > o(G — S) —|S].]

e Let U be the set of vertices uncovered by a matching M in a graph G. Then |U| = |V (G)| — 2|M]|. If there is
a proper subset B C V such that
V(G| =2|M| = o(G = B) - |B],

the matching M is necessarily to be maximal. Such a vertex set B is a called a barrier of G with respect to
the maximum matching M.

Theorem 6.1 (Tutte-Berge Theorem). Every graph has a barrier. O
Theorem 6.2 (Tutte’s Theorem). A graph G has a perfect matching M if and only if for each subset S C 'V,
o(G—-5)<|S|.

Proof. “=”: Fix a nonempty proper subset S C V. Let O(G — S) be the set of odd components of G — S.
For each H € O(G — S), let S be the set of vertices in S that are matched to the vertices of H by M. Then
{Su | H € O(G — S)} is a collection of disjoint subsets of S. Of course,

o(G—=8)=#{Sg|H e O(G-29}<|S]|.
“«<=": Too long.

Theorem 6.3 (Petersen’s Theorem). Every 3-reqular graph without cut edges has a perfect matching.



7 Matchings and Coverings

e A covering of a graph G is a subset S of V(G) such that every edge of G has at least one end-vertex in S.

A covering S* of G is called a minimum covering if G has no covering S such that |S| < [S*|. The covering
number of G is the number of vertices of a minimum covering of G.

e A covering is said to be minimal if none of its proper subsets is a covering.

If M is a matching and S a covering of GG, then

[ M| < [S].

Proposition 7.1. Let M be a matching and S a covering of a graph G. If |M| = |S|, then is a mazimum matching
and S is a minimum covering of G. O



