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1 Planar Graphs

• A graph G is said to be embeddable in a plane, or planar, if it can be drawn in the plane in such a way
that no two edges cross each other. Such a drawing is called a planar embedding of the graph.

• Let G be a planar graph and be embedded in a plane. The plane is divided by G into disjoint regions,
also called faces of G. We denote by v(G), e(G), and f(G) the number of vertices, edges, and faces of G
respectively.

• Strictly speaking, the number f(G) may depend on the ways of drawing G on the plane. Nevertheless, we
shall see that f(G) is actually independent of the ways of drawing G on any plane. The relation between f(G)
and the number of vertices and the number of edges of G are related by the well-known Euler Formula in the
following theorem.

• The complete graph K4, the bipartite complete graph K2,n, and the cube graph Q3 are planar. They can be
drawn on a plane without crossing edges; see Figure 5. However, by try-and-error, it seems that the complete
graph K5 and the complete bipartite graph K3,3 are not planar.

(a) Tetrahedron, K4 (b) K2,5 (c) Cube, Q3

Figure 1: Planar graphs

(a) K5 (b) K3,3

Figure 2: Nonplanar graphs

Theorem 1.1. (Euler Formula) Let G be a connected planar graph with v vertices, e edges, and f faces. Then

v − e + f = 2. (1)

1



(a) Octahedron (b) Dodecahedron (c) Icosahedron

Figure 3: Regular polyhedra

Proof. We prove it by induction on the number of edges. When e = 0, the graph G must be a single vertex, and in
this case the number of faces is one. Clearly, v − e + f = 2.

Suppose it is true for planar graphs with k edges, k ≥ 0. We consider a connected planar graph G with k + 1
edges. The graph G may or may not have cycles. If G has no cycles, i.e., G is a tree, then e = v − 1 (every tree
with v vertices has v − 1 edges), f = 1; so v − e + f = 2. If G has a cycle C, choose an edge x on C and remove x
from G to obtain a new planar graph G′. Since x is on a cycle, G′ is still connected and have the same vertices of
G, but have k edges. By induction we have v′ − e′ + f ′ = 2. Note that x bounds two regions, one inside C and the
other is outside C. So v′ = v, e′ = e− 1, f ′ = f − 1. It is clear that v − e + f = 2.

Planar graphs can be equivalently described as graphs drawn on a sphere with no edges crossing each other.
Note that the boundary of any polyhedron is homeomorphic to a sphere. Then the graph consists of the vertices
and edges of a polyhedron is planar. The graphs for regular polyhedra are the first and third graphs in Figure 5
and the three graphs in Figure 3.

• For a connected planar graph G drawn on a plane, let D1, D2, . . . , Df denote the faces of G, and let e(Di)
denote the number of edges on the boundary of Di, 1 ≤ i ≤ r. If one counts the edges along the boundary of
each region of G, every edge of G is counted exactly twice; we then have

r∑

i=1

e(Di) = 2e(G). (2)

• If G is a simple graph (no loops and no multiple edges joining any two vertices), then e(Di) ≥ 3. Thus

3 f(G) ≤ 2 e(G).

Corollary 1.2. If G is a connected, simple, planar graph with v vertices and e edges, then

e ≤ 3v − 6. (3)

Example 1.1. The complete graph K5 is not planar.

Proof. Notice that K5 has 5 vertices and
(

5
2

)
(= 10) edges. Suppose K5 is planar. Then by Corollary 1.2, we have

10 ≤ 3 · 5− 6 = 9, a contradiction.

Example 1.2. The complete bipartite graph K3,3 is not planar.

Proof. Note that every region of a graph bounds a cycle. Since K3,3 is a bipartite graph, it has only cycles of even
length. Since there is no cycles of length 2, every cycle of K3,3 has length of at least 4. Suppose K3,3 is a planar
graph. Then every region of K3,3 bounds at least 4 edges. By the equation (2), we have

4f ≤ 2e.

Combine this inequality and the Euler formula (1); we obtain

e ≤ 2v − 4.
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Note that K3,3 has 6 vertices and 9 edges. Thus 9 ≤ 2 · 6− 4 = 8 is a contradiction. ¤

Example 1.3. The Petersen graph P5 is not planar; see Figure 4.

Figure 4: Petersen graph P5

Proof. Note that each cycle of the Petersen graph has at least 5 edges. So if it is planar, then 5f ≤ 2e. It
follows from the Euler formula that 3e ≤ 5v − 10. However, the graph has 10 vertices and 15 edges. Thus
45 = 3 · 15 ≤ 5 · 10− 10 = 40, a contradiction.

2 Classification of Regular Polyhedra

A convex polygon is said to be regular if all its sides are of equal length and all its internal angles are equal. A
polyhedron is said to be regular if (i) all its faces (convex polygons) are regular and have the same number of sides;
(ii) all vertices have the same number of edges joining them. The Platonic solids are the five regular polyhedra:
tetrahedron, cube, octahedron, dodecahedron, and icosahedron.

Theorem 2.1. The only regular convex polyhedra are the five Platonic solids.

Proof. Let P be a regular polyhedron with v vertices, e edges, and f faces. Let n be the number of sides of a face,
and d the number of edges joining a vertex. Then

2e = nf,

[It follows from the counting of the number of ordered pairs (ε, σ), where ε is an edge, σ is a face, and ε bounds σ.]

2e = dv.

[It follows from the counting of the number of ordered pairs (ν, ε), where ν is a vertex, ε is an edge, and ε joins ν.]
Thus

f =
2e

n
, v =

2e

d
.

Recall the Euler formula v − e + f = 2; we have 2e
d − e + 2e

n = 2. Dividing both sides by 2e, we have

1
d

+
1
n

=
1
e

+
1
2
. (4)

Note that n ≥ 3, as a convex polygon must have at least 3 sides; likewise d ≥ 3, since it is geometrically clear that
in a polyhedron a vertex must belong to at least 3 edges. Since the right hand side of (4) is at least 1

2 , it follows
that we cannot have both d ≥ 4 and n ≥ 4. So we have either d ≤ 3 or n ≤ 3, and subsequently either d = 3 or
n = 3.

Case d = 3. Then (4) becomes
1
n

=
1
e

+
1
6
.

Since e is positive, it follows that 3 ≤ n ≤ 5. So (n, e) = (3, 6), (4, 12), (5, 30); i.e., (v, e, f) = (4, 6, 4), (8, 12, 6), (20, 30, 12).
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Case n = 3. Then (4) becomes
1
d

=
1
e

+
1
6
.

Since e is positive, it follows that 3 ≤ d ≤ 5. So (d, e) = (3, 6), (4, 12), (5, 30); i.e., (v, e, f) = (4, 6, 4), (6, 12, 8), (12, 30, 20).
We thus have five regular polyhedra: tetrahedron (4, 6, 4); cube (8, 12, 6); octahedron (6, 12, 8); dodecahedron

(20, 30, 12); icosahedron (12, 30, 20).

Example. The surface graph on a football is known as the football graph, denoted C60. It is easy to see that
C60 has only faces of pentagons (5-sided polygons) and hexagons (6-sided polygons), each vertex is joined by three
edges, each pentagon is surrounded by five hexagons, and each hexagon is surrounded by three pentagons and three
hexagons. Find the number of vertices, edges, and faces of the football graph.

Let v, e, f5, f6 be the number of vertices, edges, pentagons, hexagons of G respectively. Counting the number of
pairs (u, x), where u is a vertex incident with an edge x; the number of pairs (P, X), where P is a pentagon, X is
a hexagon, and P, X share a common edge; and the number of pairs (x, F ), where x is an edge bounding a face F ;
we obtain the following equations:

3v = 2e, 5f5 = 3f6, 2e = 5f5 + 6f6.

The Euler formula, v − e + f5 + f6 = 2, is another equation. Substitute v = 2 + e− f5 − f6 into 3v = 2e; we obtain

3(2 + e− f5 − f6) = 2e; i.e., e = 3f5 + 3f6 − 6.

Substitute e = 3f5 + 3f6 − 6 into 2e = 5f5 + 6f6; we obtain f5 = 12. Thus f6 = 20, e = 90, v = 60. We have

(v, e, f5, f6) = (60, 90, 12, 20).

3 Kuratowski’s Characterization of Planar Graphs

• A subdivision of an edge e in a graph G is to delete the edge e and introduce a new vertex x and joins x to
the end-vertices of x.

• A subdivision of a graph G is a graph obtained from G by a sequence of edge subdivisions.

• A minor of a graph G is any graph obtained from G by means of a sequence of vertex and edge deletions and
edge contractions.

• The Peterson graph P5 has both K5 and K3,3 as minors. However, P5 contains a subdivision of K3,3; but P5

does not contain any subdivision of K5.

(a) Petersen graph P5 (b) Subdivision of K3,3 (c) Complete graph K5

Figure 5: Nonplanar graphs

Theorem 3.1 (Kuratowski Theorem). A graph G is planar if and only if G contains no subdivision of K5 and
K3,3.

Proof. To be continued.

The Kuratowski Theorem can be stated equivalently as follows.

Theorem 3.2 (Kuratowski). A graph G is planar if and only if G has no minor of K5 and K3,3.
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