
Topics in Graph Theory

April 25, 2019

1 Preliminaries

A graph is a system G = (V, E) consisting of a set V of vertices and a set E (disjoint
from V ) of edges, together with an incidence function End : E → M2(V ), where M2(V )
is set of all 2-element sub-multisets of V . We usually write V = V (G), E = E(G), and
End = EndG. For each edge e ∈ E with End(e) = {u, v}, we called u, v the end-vertices
of e, and say that the edge e is incident with the vertices u, v, or the vertices u, v are
incident with the edge e, or the vertices u, v are adjacent by the edge e. Sometimes it is
more convenient to just write the incidence relation as e = uv. If u = v, the edge e is called
a loop; if u 6= v, the edge is called a link. Two edges are said to be parallel if their end
vertices are the same. Parallel edges are also referred to multiple edges.

A simple graph is a graph without loops and multiple edges. When we emphasize that
a graph may have loops and multiple edges, we refer the graph as a multigraph. A graph
is said to be (i) finite if it has finite number of vertices and edges; (ii) null if it has no
vertices, and consequently has no edges; (iii) trivial if it has only one vertex with possible
loops; (iv) empty if its has no edges; and (v) nontrivial if it is not trivial. A complete
graph is a simple graph that every pair of vertices are adjacent. A complete graph with n
vertices is denoted by Kn. A graph G is said to be bipartite if its vertex set V (G) can be
partitioned into two disjoint nonempty parts X,Y such that every edge has one end-vertex
in X and the other in Y ; such a partition {X,Y } is called a bipartition of G, and such
a bipartite graph is denoted by G[X,Y ]. A bipartite graph G[X,Y ] is called a complete
bipartite graph if each vertex in X is joined to every vertex in Y ; we abbreviate G[X,Y ]
to Km,n if |X| = m and |Y | = n.

Let G be a graph. Two vertices of G are called neighbors each other if they are adjacent.
For each vertex v ∈ V (G), the set of neighbors of v in G is denoted by Nv(G), the number of
edges incident with v (loops counted twice) is called the degree of v in G, denoted deg (v)
or deg G(v). A vertex of degree 0 is called an isolated vertex; a vertex of degree 1 is called
a leaf. A graph is said to be regular if its every vertex has the same degree. A graph is
said to be k-regular if its every vertex has degree k. We always have

2|E(G)| =
∑
v∈V

deg G(v).

The number of vertices of odd degree in any graph is always an even number.
A walk in G from a vertex u to a vertex v is a sequence W = v0e1v1 · · · vl−1elvl of vertices

and edges with v0 = u and vl = v, whose terms are alternate between vertices and edges
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of G, such that the edge ei is incident with the vertices vi−1 and vi, 1 ≤ i ≤ l. The vertex
v0 called the initial vertex, vl the terminal vertex of G, and the number l the length
of W . A walk is said to be closed if its initial and terminal vertices are identical. A walk
is called a trail if its edge terms are distinct. A walk is called a path if its vertex terms
are distinct (so are its edge terms), except possible identical initial and terminal vertices,
for which it is referred to a closed path. A graph is said to be connected if there exists
a path between any two distinct vertices. The maximal connected subgraph of a graph G
is called a connected component (or just component) of G. The number of connected
components of G is denoted by c(G). For a closed path P = v0e1v1 · · · vl−1elv` in a graph G
with v0 = vl. The underlying graph of P is called a cycle, which is a 2-regular connected
subgraph.

Proposition 1.1. A graph is bipartite if and only if its every cycle has even length.

2 Chinese Postman Problem and Traveling Sales Prob-

lem

An Euler trail of a graph G is a walk that uses every edge of G exactly once. A closed
Euler trail is called an Euler tour. A graph having an Euler tour is called an Eulerian
graph. A Hamilton path of a graph G is a path that contains every vertex of G and
whose vertices are distinct. A closed path of G is called a Hamilton cycle if contains every
vertex of G and all its vertices are distinct except the initial and terminal vertices. A graph
is called an even graph if the degree of its every vertex is an even number.

Theorem 2.1. A connected graph is Eulerian if and only if it is an even graph.

Problem 1 (Chinese Postman Problem (CPP)). How to find a closed walk W of shortest
length in a connected graph G so that every edge of G appears in the walk?

Problem 2 (Hamilton Cycle Problem (HCP)). What is a necessary and sufficient condition
for a graph having a Hamilton cycle?

Problem 3 (Traveling Sales Problem (TSP)). How to find a closed walk of shortest length
in a connected graph G so that every vertex of G is visited at least once?

3 Four Color Conjecture/Theorem

A k-vertex-coloring (or just k-coloring) of a graph G = (V, E) is a function f : V → S,
where S is a set of k colors; it can be viewed as an assignment of k colors to the vertices
of G. Usually, the color set S is taken to be {1, 2, . . . , k} or {0, 1, . . . , k − 1}. A coloring
is said to be proper if adjacent vertices are assigned distinct colors. Only loopless graphs
admit proper colorings. Since multiple edges do not effect proper colorings, we only consider
proper colorings for simple graphs.

A graph is said to be k-colorable if it admits a proper k-coloring. A graphs is 1-colorable
if and only if it has no edges, and 2-colorable iff it is bipartite. The chromatic number of
a graph G is the minimum positive integer k such that G is k-colorable.
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Example 3.1 (Examination Scheduling). The students at a university have annual exami-
nations in all courses they take. Naturally, exams for different courses cannot be arranged
at the same time slot if the courses have students in common. How can all the exams be
arranged in as few time slots as possible? To find such a schedule, consider the graph G
whose vertex set is the collection of all courses, two courses being joined by an edge if they
have common students. Now the problem of requiring minimum number of time slots is to
find the chromatic number of the constructed graph G.

Let ∆(G) denote the maximum degree of vertices of G. It is easy to see by the greedy
algorithm that

χ(G) ≤ ∆(G) + 1.

Proof. Trivial.

Theorem 3.1 (Brook’s Theorem). Let G be a connected graph. If G is neither an odd cycle
nor a complete graph, then χ(G) ≤ ∆(G).

Proof. We proceed by induction on ∆ = ∆(G) ≥ 3. For each ∆(G), we apply induction on
|V (G)|. It is obviously true when ∆(G) = |V (G)|. For |V (G)| = ∆(G) + 1, the theorem is
true, since G 6= K∆(G)+1, there is a pair of non-adjacent vertices u, v, the graph G admits
a ∆(G)-coloring by letting u, v receive the same color. Consider the situation |V (G)| ≥
∆(G) + 2.

Case 1. There is a vertex v such that Gr v is disconnected. Let C1, . . . , Ck (k ≥ 2) be
components of Grv. By induction we have proper ∆(G)-colorings for the induced subgraphs
G(V (C1) ∪ v), . . . , G(V (Ck) ∪ v). By rearranging the colors of G(V (Ci) ∪ v) (i = 1, . . . , k),
we may assume that the colors of v are the same in all proper colorings of G(V (Ci)∪ v). We
thus obtain a proper ∆(G)-coloring of G.

Case 2. G r u is connected for all u ∈ V (G), but there two non-adjacent vertices v, w
such that Gr {v, w} is disconnected. Let C1, . . . , Ck (k ≥ 2) be components of Gr {v, w}.
Suppose there is no edge from v to one component Ci; then G r w is disconnected, which
is Case 1. Thus there is at least one edge from v to each Ci, so does w. Set Gi := G r Ci

(i = 1, . . . , k). Since each Gi has fewer vertices than G, by induction each Gi admits a
proper ∆(G)-coloring. Note that the v, w have degree at most ∆(G) − 1. It follows that
Hi := Gi∪ vw has fewer vertices than G and the degrees of v, w in Hi are at most ∆(G). By
induction each Hi admits proper ∆(G)-coloring, unless it is click on ∆(G) + 1 vertices (if it
is an odd cycle, we still have a proper ∆(G)-coloring since ∆(G) ≥ 3). By rearranging the
colors in the coloring of Hi, we may assume that v (w) has the same color in all colorings
of H1, . . . , Hk, and v, w receive distinct colors. Combining the colorings, we obtain a proper
∆(G)-coloring for G.

If one of Hi is a click on ∆(G) + 1 vertices, say H1, then the degree of v, w in G1 are
∆(G) − 1. It follows that the degree of v, w in Gj (j 6= 1) must be 1, and it forces that
k = 2. Now it is clear that G1, G2 admit proper ∆(G)-colorings such that v, w receive the
same color. Combine the two colorings to obtain a proper ∆(G)-coloring for G.

Case 3. G r {v, w} is connected for every pair of non-adjacent vertices v, w. Set n :=
|V (G)|. Choose a vertex u whose degree is ∆(G). Since G 6= Kn, the vertex u has a pair
of non-adjacent neighbors v1, v2. The subgraph H := G r {v1, v2} is connected. Now we
can arrange a sequence of vertices v1v2 . . . vn as follows: vn = u, vi (3 ≤ i < n) is a vertex
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of H r {vi+1, . . . , vn} that is adjacent with one of {vi+1, . . . , vn}. We thus obtain a proper
∆(G)-coloring for G as follows: assign v1, v2 the same color; assign vi (i ≥ 3) a color different
from the colors of those vertices of {v1, . . . , vi−1} adjacent to vi (there are at most ∆(G)− 1
such vertices for i < n and ∆(G) vertices for i = n).

Let χ(G, k) denote the number of k-colorings of a graph G, where k ≥ 1. For a graph
of n vertices without edges, the number of proper colorings by k colors is just kn. For a
complete graph Kn, we have

χ(Kn, k) = k(k − 1) · · · (k − n + 1).

Given an edge e = uv of G, it is easy to see that

χ(G, k) = χ(Gr e, k)− χ(G/e, k).

By induction, one can see that χ(G, k) is a polynomial function of k with degree |V (G)|,
called the chromatic polynomial of G. The chromatic number of G is just the smallest
positive integer k such that χ(G, k) 6= 0, i.e., the smallest positive integer k such that G has
a proper k-coloring.

Proposition 3.2. Let G be a graph with two subgraphs G1, G2 such that G1 ∪ G2 = G and
G1 ∩G2 = Kn for some n ≥ 1. Then

χ(G, t) = χ(G1, t)χ(G2, t)/χ(Kn, t).

Proof. Since G1 ∩ G2 = Kn, we see that Kn is a subgraph of both G1 and G2. Clearly,
χ(Gi) ≥ n, i = 1, 2. For each proper t-coloring f of Kn, let af denote the number of
proper t-colorings for the remaining vertices of G1. Since each f uses exactly n colors, it
does not matter which n colors are used among t colors, we see that the number af does
not depend on f , i.e., af is a constant. There are χ(Kn, t) ways to properly color Kn by
t colors. So χ(G1, t) = χ(Kn, t)af , i.e., af = χ(G1, t)/χ(Kn, t). Likewise, for each proper
t-coloring f of Kn, the number ways to properly color the remaining vertices of G2 by t
colors is χ(G2, t)/χ(Kn, t). Thus the number of proper t-colorings of G is

χ(G, t) = χ(K,t) · χ(G1, t)

χ(Kn, t)
· χ(G1, t)

χ(Kn, t)
=

χ(G1, t)χ(G2, t)

χ(Kn, t)
.

Lemma 3.3. The chromatic polynomial of every tree Tn with n vertices is

χ(Tn, t) = t(t− 1)n−1.

Lemma 3.4. Every 2-connected graph G has chromatic polynomial of the the form

χ(G, t) = t(t− 1)f(t).
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Let G be a graph whose chromatic number is k. The chromatic polynomial may be
written as

χ(G, t) = tc0(t− 1)c1(t− 2)c2 · · · (t− k)ckf(t) = f(t)
∞∏
i=0

(t− i)ci ,

called the chromatic factorization of χ(G, t), where ci ≥ 0 and ci = 0 for all i > k.

Problem What are the combinatorial interpretations for the powers ci of the term t− i in
χ(G, t)? It is well-known that

c0 = number of connected components of G,

c1 = number of block in the block decomposition of G.

What are ci for i ≥ 2? In particular, what is c2?

4 Flows and Tensions

Let D = (V, A) be a digraph. Let be a function.

• A real-valued function f : A → R is called a flow (or circulation) of D if

∑

a∈(vc,v)

f(a) =
∑

a∈(v,vc)

f(a), i.e., f−(v) = f+(v) for all v ∈ V.

The set of all flows in D is a vector space, called the flow space of D, denoted F (D).

• A real-valued function g : A → R is called a tension if for each directed cycle C in
(V, ~E),

g+(C)− g−(C) = 0,

where
g+(C) :=

∑
a∈C

g(a), g−(C) :=
∑
−a∈C

g(a),

The set of all tension of D is a vector space, called the tension space of D, denoted
T (D).

• If C is a directed in (V, ~E), then fC : A → R, defined by

fC(a) =





1 if a ∈ C
−1 if −a ∈ C,

0 otherwise

is a flow of D, called the flow generated by the directed cycle C.
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• If U is a directed cut in (V, ~E), i.e., either U = (X,Xc) or U = (Xc, X) in (V, ~E) for a
nonempty proper subset X ⊂ V , then gU : A → R, defined by

gU(a) :=





1 if a ∈ U
−1 if −a ∈ U,

0 otherwise

is a tension of D, called the flow generated by the directed cut U .

• Given a directed cycle C and a directed cut U in (V, ~E). Then

〈fC , gU〉 = 0,

where 〈fC , gU〉 :=
∑

a∈A fC(a)gU(a). In fact,

〈fC , gU〉 = |A ∩ C ∩ U | − |A ∩ C− ∩ U | − |A ∩ C ∩ U−|+ |A ∩ C− ∩ U−| = 0,

since |A ∩ C ∩ U | = |A ∩ C ∩ U−| and |A ∩ C− ∩ U | = |A ∩ C− ∩ U−|.
• Let M be incidence matrix of D, i.e., M = [mva], where v ∈ V , a ∈ A, and

mva =





1 if a has its tail at v
−1 if a has its head at v.

0 otherwise

Then
F (D) = kerM, T (D) = Row M,

and
dim T (D) = |V (D)| − c(D), dim F (D) = |A(D)| − |V (D)|+ c(D)|,

where c(D) is the number of connected components of D.

5 Basis Matrices

A basis matrix of an m-dimensional vector subspace of Rn is an m× n matrix whose row
space is the given vector subspace. For a digraph D, we are interested in the integral basis
matrix B of the tension space T (D) and the basis matrix C of the flow space F (D). For an
edge subset S ⊆ A(D), we denote by B|S (or just BS) the submatrix of B consisting of the
columns of B that are labeled by members of S.

Given a maximal spanning forest F of G. For each edge e ∈ F , F c ∪ e contains a unique
bond Be, which must contain the edge e. For each edge e′ ∈ F c, F ∪ e′ contains a unique
cycle Ce′ , which must contain the edge e′. It is well-know that the bond vectors gBe , e ∈ F ,
form an integral basis of the tension lattice of D, and the cycle vectors fCe′ , e′ ∈ F c, form
an integral basis of the flow lattice of G. Let the members of F be listed as e1, . . . , m, and
the members of F c as e′1, . . . , e

′
n. We obtain integral basis matrices

B =

e1

e2
...

em




e1 e2 · · · em e′1 e′2 · · · e′n
1 0 · · · 0 ∗ ∗ · · · ∗
0 1 · · · 0 ∗ ∗ · · · ∗
...

...
. . .

...
...

...
. . .

...
0 0 · · · 1 ∗ ∗ · · · ∗


,
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C =

e′1
e′2
...
e′n




e1 e2 · · · em e′1 e′2 · · · e′n
∗ ∗ · · · ∗ 1 0 · · · 0
∗ ∗ · · · ∗ 0 1 · · · 0
...

...
. . .

...
...

...
. . .

...
∗ ∗ · · · ∗ 0 0 · · · 1


,

called integral basis matrices of the tension lattice and flow the lattice relative to the
maximal spanning forest F respectively.

Theorem 5.1. Let B be a basis matrix of the tension T (D) of a digraph D, and C the basis
matrix of the flow space F (D). Given a nonempty subset S ⊂ A(D).

(a) The columns of B|S are linearly independent iff S does not contain cycle.

(b) The columns of C|S are linearly independent iff S does not contain bond.

Proof. (a) Let b(a) denote the column vector of B corresponding to the arc a ∈ A(D). We
may write b(a) = [b1(a), . . . , bm(a)]T , where m = dim T (D). The columns b(a) for a ∈ S are
linearly dependent iff there exists a nonzero function f : A → R such that f |ArS = 0 and

∑
a∈A

f(a)b(a) = 0, i.e., 〈f, bi〉 = 0 for 1 ≤ i ≤ m,

which means that f is a flow of D and its support is contained in S. Now if there is such a
flow f whose support is contained in S, then the support of f contains a cycle, so does S. If
S contains a cycle C, then fC is a nonzero flow whose support is C, which is contained in S.

(b) Let c(a) denote the column vector of C corresponding to the arc a ∈ A(D). The
columns c(a) for a ∈ S are linearly independent iff there exists a nonzero function g on A
such that

∑
a∈A f(a)c(a) = 0, i.e., there exists a nonzero tension whose support is contained

in S. Now if there is such a tension g whose support is contained in S, then the support of
g contains a bond, so does S. If S contains a bond B, then gB is a nonzero tension whose
support is B, which is contained in S.

A rectangular matrix is said to be unimodular if its full square submatrices have de-
terminates 1, −1, or 0; and to be totally unimodular if its all square submatrices have
determinates 1, −1, or 0.

Lemma 5.2. Let B be a basis matrix of the tension of a connected digraph D, and C the
basis matrix of the flow space. Given a maximal spanning forest F of D.

(a) Then B is uniquely determined by B|F , and C is uniquely determined by C|F c.

(b) If B,C are basis matrices with respect to the maximal spanning forest F , then any basis
matrices B′,C′ of the tension and flow spaces respectively, we have

B′ = (B′|F )B, C′ = (C′|F c)C.

Proof. (a) Since F contains no cycle, we see the columns of B|F are linearly independent
by Lemma 5.2(a). For each arc a ∈ F c, the set F ∪ a contains a cycle, it follows that the
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columns of B|F∪a are linearly dependent; so the column b(a) is a unique linear combination
of columns of B|F . So B is uniquely determined by B|F .

Analogously, the set F c contains no bond, it follows from Lemma 5.2(b) that the columns
of C|F c are linearly independent. Since F c ∪ a contains a unique bond for each a ∈ F , the
columns of C|F c∪a are linearly dependent, so the column c(a) is a unique linear combination
of the columns of C|F c . So C is uniquely determined by C|F c .

(b) We order the members of A as F, F c. Since B,C are respective to the maximal
spanning forest F , we have the form

B =
[
B|F B|F c

]
=

[
I A

]
, C =

[
C|F C|F c

]
=

[
G I

]
.

Write the basis matrices B′,C′ in the same order F, F c as the form

B′ =
[
B′|F B′|F c

]
, C′ =

[
C′|F C′|F c

]
.

It is clear that there exist square matrices P,Q such that

B′ = PB, C′ = QC.

Then
B′ = P[I A] = [P,PA], C′ = Q[G I] = [QG,Q]

It follows that P = B′|F and Q = C′|F . Hence B′ = (B′|F )B and C′ = (C′|F )C.

Theorem 5.3. Let B be an integral basis matrix of the tension space, and C an integral
basis matrix of the flow space of a graph G. Then both B and C are unimodular.

Proof. Given a maximal spanning forest F of G. Let B′,C′ be basis matrices of the tension
space and the flow space of G relative to F respectively. There exists unimodular matrices
P and Q such that B′ = PB and C′ = QC. Restrict both sides to F ′, F ′c respectively, we
obtain

B′|F ′ = P(B|F ′), C′|F ′c = Q(C′|F ′c).
Since B′|F ′ ,C′|F ′c are identity matrices by definition, we see that

det(P) det(B|F ′) = 1, det(Q) det(C′|F ′c) = 1.

It follows that det(B|F ′) = ±1 and det(C|F ′c) = ±1.
Given edge subsets S ⊂ A(D). If |S| = |V (D)| − 1 and S is not spanning tree, then S

contains a cycle. Thus det(B|S) = 0 by Lemma 5.2. If |S| = |A(D)| − |V (D)|+ 1 and Sc is
a not spanning tree, then S contains a bond, then det(C|S) = 0 by Lemma 5.2.

Proposition 5.4. The incidence matrix M of an digraph D = (V, A) is totally unimodular.

Proof. Let S ⊆ V and F ⊆ E be such that |S| = |F |. If there exists a vertex v ∈ S such
that v 6∈ V (F ), then the v-row of M|S×F is a zero row; clearly, det(M|S×F ) = 0. We may
assume that S ⊆ V (F ). We see that M|S×F is the incidence matrix of the subgraph (S, F )
with possible half-edges. If (S, F ) contains a cycle, then the columns indexed by the edges
of the cycle are linearly dependent; thus det(M|S×F ) = 0. If (S, F ) contains no cycles, we
claim that S is a proper subset of V (F ). Otherwise, S = V (F ), then (V (F ), F ) is a forest;
thus |F | = |V (F )| − c(F ) = |S| − c(F ) < |S|, which is a contradiction.
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Now let e = uv ∈ F be an edge such that one of u, v is not in S, say, v 6∈ S. Then the
e-column of MS×F has 1 or −1 at (u, e) and 0 elsewhere. Thus by the expansion along the
e-column,

det(M|S×F ) = ± det(M|(Sru)×(Fre)) = ±1.

The second equality above follows from the fact that (S r u, F r e) contains no cycles and
by induction on the size of the matrix.

6 The Matrix-Tree Theorem

In many occasions one needs to compute the determinant of a product matrix AB, where A
is an m× n matrix and B an n×m matrix. If m > n, note that

rank (AB) ≤ min{rank (A), rank (B)} ≤ n,

then det(AB) = 0. If m ≤ n, we have the following Cauchy-Binet formula.
The equality rank AB ≤ min{rank A, rank B} can be argued as follows: The rank of AB

is the dimension of the column space Col AB. Note that

Col AB = Col [Ab1, . . . , Abn] ⊆ Col [Ae1, . . . , Aen] = Col AIn = Col A;

Row AB = Row




a1B
...

amB


 ⊆ Row




e1B
...

emB


 = Row ImB = Row B.

Proposition 6.1 (Cauchy-Binet Formula). Let A be an m × n matrix and B an n × m
matrix. If m ≤ n, then

det(AB) =
∑

S⊆[n], |S|=m

det(A|S) det(B|S), (6.1)

where A|S is the m×m submatrix of A whose column index set is S, and B|S is the m×m
submatrix of B whose row index set is S.

Proof. Let A = [aik]m×n, B = [bkj]n×m, and C = AB = [cij]m×m, where cij =
∑n

k=1 aikbkj.
Then

det(C) = det




∑n
k1=1 a1k1bk11 · · · ∑n

km=1 a1kmbkmm
...

. . .
...∑n

k1=1 amk1bk11 · · · ∑n
km=1 amkmbkmm




=
n∑

k1=1

· · ·
n∑

km=1

det




a1k1bk11 · · · a1kmbkmm
...

. . .
...

amk1bk11 · · · amkmbkmm




=
n∑

k1,...,km=1

det




a1k1 · · · a1km

...
. . .

...
amk1 · · · amkm


 bk11 · · · bkmm.
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Rewrite the nonzero terms in the above expansion of det(C), we obtain

det(C) =
∑

1≤k1,...,km≤n, ki 6=kj

det(A|{k1,...,km}) bk11 · · · bkmm

=
∑

1≤t1<···<tm≤n

∑
σ∈Sm

det(A|{tσ(1),...,tσ(m)}) btσ(1)1 · · · btσ(m)m

=
∑

1≤t1<···<tm≤n

det(A|{t1,...,tm})
∑

σ∈Sm

sin (σ)btσ(1)1 · · · btσ(m)m,

where Sm is the set of all permutations of {1, . . . , m}. Set S = {t1, . . . , tm}, we have
det(C) =

∑
S⊆[n], |S|=m det(A|S) det(B|S).

Theorem 6.2 (Matrix-Tree Theorem). Let B be an integral basis matrix of the tension
space, and C an integral basis matrix of the flow space of a graph G. Then the number of
maximal spanning forests of G is

det(BBT ) = det(CCT ).

Proof. Let t(G) denote the number of maximal spanning forests of G. Note that an edge
subset S ⊆ E(G) is a maximal forest of G iff S contains no cycles and |S| is the dimension
of the tension space of G. By the Cauchy-Binet formula, we have

det(BBT ) =
∑

S⊆E, |S|=m
S ayclic

det(BS) det(BT
S ) =

∑
S⊆E, |S|=m

S ayclic

(detBS)2 = t(G),

det(CCT ) =
∑

S⊆E, |S|=m
S ayclic

det(CSc) det(CT
Sc) =

∑
S⊆E, |S|=m

S ayclic

(detCSc)2 = t(G).

The second equality follows from the fact that an set S ⊆ E(G) is a maximal edge set
containing no bonds of G iff Sc is a maximal edge set containing no cycles.

Lemma 6.3 (Farkas’ Lemma). Let A be a real m×n matrix and b ∈ Rn. Then exactly one
of the following two statements is valid.

(a) There exists a vector x ∈ Rn such that Ax = b and x ≥ 0.

(b) There exists a vector y ∈ Rm such that ATy ≥ 0 and bTy < 0, i.e., such that

yTA ≥ 0T , yTb < 0.

Proof. Farkas’s Lemma is just the geometric interpretation: Let a1, . . . , an denote the columns
of A. Let Cone(A) denote the convex cone generated by a1, . . . , an. Let xT = (x1, . . . , xn) ≥
0. Then Ax = b means that b = x1a1 + · · · + xnan. The first statement means that
b ∈ Cone(A).

Let yT = (y1, . . . , ym). Consider the hyperplane H = {z ∈ Rm : 〈z,y〉 = 0}. Then
yTA ≥ 0 means that 〈ai,y〉 ≥ 0, i = 1, . . . , n, i.e., Cone(A) lies in one side of H. While
the strictly inequality bTy < 0 means that b lies in the other side of H. In other words, H
separates the vector b and the cone Cone(A), which is equivalent to b 6∈ Cone(A).
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Assume that the first statement is true, i.e., there exists a vector x̄ ≥ 0 such that Ax̄ = b.
Suppose the second statement is also true, i.e., there exists a vector ȳ such that AT ȳ ≥ 0
and bT ȳ < 0. Then

0 > bT ȳ = (Ax̄)T ȳ = x̄AT ȳ ≥ 0,

which is a contradiction.

Lemma 6.4 (Farkas’ Lemma – a variant version). Let A be a real m×n matrix and b ∈ Rn.
Then exactly one of the following two statements is valid.

(a) There exists a vector x ∈ Rn such that Ax = 0 and x ≥ b.

(b) There exists a vector y ∈ Rm such that yTA ≥ 0 and yTAb > 0.

Proof. Let b′ = −Ab. The second statement becomes that there exists a vector y such that
yTA ≥ 0T and yTb′ < 0. Let x = x′ + b. The first statement becomes that there exists a
vector x′ such that Ax′ = b′ and x′ ≥ 0.

Lemma 6.5 (Farkas’ Lemma – another variant version). Let A be a real m× n matrix and
b ∈ Rn. Then exactly one of the following two statements is valid.

(a) There exists a vector x ∈ Rn such that Ax = 0 and x ≤ b.

(b) There exists a vector y ∈ Rm such that yTA ≥ 0T and yTAb < 0.

Proof. Let b′ = Ab. The second statement becomes that there exists a vector y such that
yTA ≥ 0T and yTb′ < 0. Let x = −x′ + b. The first statement becomes that there exists a
vector x′ such that Ax′ = b′ and x′ ≥ 0.

7 Graph Laplacian

Let G = (V, E) be a connected graph. Given an orientation ω so that (G,ω) is a digraph.
Let M the incidence matrix of (G,ω). For each vertex v ∈ V , let Mv denote the matrix
obtained from M by deleting the row corresponding to the vertex v. A Kirchhoff matrix
of (G,ω) is the matrix K := Mv for a vertex v. The Laplace matrix of G is the matrix

L := MMT .

Let A be the adjacency matrix of G, whose (u, v)-entry is the number of edges incident with
u and v, each loop is counted twice. Let D be the diagonal matrix whose diagonal (v, v)-entry
is deg (v) in G, which is the number of edges at v, each loop is counted twice. Then

L = D−A.

In fact, let e1, . . . , er be the links and e′1, . . . , e
′
s the loops at v. Recall that (v, ei)-entry in

M, denoted m(v, ei), is either 1 or −1, and (v, e′j)-entry in M is always 0. So the (v, v)-entry
of L is

r∑
i=1

m(v, ei)
2 +

s∑
j=1

m(v, e′j)
2 = r = number of links at v.
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The (v, v)-entry of D is deg (v), which is the number of edges incident with v, where each
loop is counted twice. The (v, v)-entry of A is the twice number of loops at v. Then the
(v, v)-entry of D−A is also the number of links at v.

For distinct vertices u, v ∈ V , let e′′1, . . . , e
′′
t be the edges between u and v. The (u, v)-entry

of L is

t∑
i=1

m(u, e′′i )m(v, e′′i ) = −t = −auv = −(number of edge between u and v).

We thus have L = D−A.
Recall the boundary operator ∂ and co-boundary operator δ. The Laplace operator is

defined as ∂δ : RV → RV .
Assume that G is an Eulerian graph. Let P = v0e1v1 · · · envn be a directed Eulerian tour

of G such that ~ei = −−−→vi−1vi, and let v be appeared in P as vi1 , . . . , vik . Then for f ∈ RV , the
difference of δf (the second order difference of f at v along the path P ) is

(∆f)(v) : =
k∑

j=1

[
(δf)(eij+1)− (δf)(eij)

]

=
k∑

j=1

[(
f(vij+1)− f(vij)

)− (
f(vij)− f(vij−1)

)]

=
k∑

j=1

[
f(vij+1) + f(vij−1)− 2f(vij)

]
.

(∂δf)(v) =
k∑

j=1

[(f(vij)− f(vi1−1))− (f(vij+1)− f(vij))]

=
k∑

j=1

[
2f(vij)− f(vij−1)− f(vij+1)

]
= −(∆f)(v).

Lemma 7.1. Let G be a graph with n vertices and c connected components. Then the
Laplacian L(G) has rank n− c.

Proof. Since rank (M) = n− c, it suffices to show that rank (L) = rank (M). Given a vector
v. If MMTv = 0, then vTMMTv = 0, i.e., ‖MTv‖ = 0, thus MTv = 0. Clearly, MTv = 0
implies MMTv = 0. So L and MT have the same kernel. Hence rankL = rankMT =
rankM.

Since L is a symmetric square matrix, all eigenvalues of L are real. Since vTLv =
‖MTv‖2 ≥ 0 for each vector v ∈ RE(G). We see that L is semi-positive definite. If v is
an eigenvector for the eigenvalue λ, i.e., Lv = λv, then vTLv = λvTv = λ‖v‖2 ≥ 0, thus
λ ≥ 0. So all eigenvalues L are nonnegative, and 0 is always an eigenvalue, since L is
singular. It is easy to see that the multiplicity of the zero eigenvalue is c(G), the number of
components of G. Let G1, . . . , Gk be the connected components of G. Then the eigenspace
of L for the eigenvalue 0 is the vector space generated by 1V (Gi), 1 ≤ i ≤ k. Let λ2(G)
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denote the smallest positive eigenvalue of G, called the second smallest eigenvalue of L.
The eigenvalues of L(G) are ordered as

0 = λ1 ≤ λ2 ≤ · · · ≤ λn, n = |V (G)|.
Lemma 7.2. For two n× n matrices A and B, the determinant of A + B is given by

det(A + B) =
∑

S⊆[n]

det(AS ∪BSc),

where AS ∪ BSc is the matrix obtained from A by replacing the rows with indices not in S
with the corresponding rows of B.

Proof. Write the rows of A as a1, . . . , an, and the rows of B as b1, . . . , bn. The formula
follows from the following direct calculation:

det(A + B) =
∑

σ

sin (σ)
n∏

i=1

(aiσ(i) + biσ(i))

=
∑

σ

sin (σ)
∑

ci σ(i)∈{ai σ(i), bi σ(i)}n
i=1

n∏
i=1

ciσ(i)

=
∑

ci∈{ai,bi}n
i=1

∑
σ

sin (σ)
n∏

i=1

ciσ(i)

=
∑

S⊆[n]

det(AS ∪BSc).

Theorem 7.3. The characteristic polynomial of the Laplacian L of a graph G with n vertices
is

det(tI− L) =
n−1∑

k=0

(−1)kckt
n−k,

where ck is the number of rooted spanning forests of G with k edges. In particular, when G
is connected, cn−1 is the n times of the number of spanning trees of G.

Proof. Write (tI− L) as (tI + (−L)) and L = MMT , where M is the vertex-edge incidence
matrix of G. Applying Lemma 7.2,

det(tI− L) = tn +
n−1∑

k=1

(−1)ktn−k
∑

S⊆V (G), |S|=k

det
(
MSM

T
S

)

=
n−1∑

k=0

(−1)kckt
n−k.

Since M is totally unimodular, applying Cauchy-Binet formula, we see that

det
(
MSM

T
S

)
= #{F ⊆ E : |F | = |S|, det(MS×F ) 6= 0}.
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Note that det(MS×F ) 6= 0 implies that |S| = |F |, S ⊆ V (F ), and the subgraph (S, F ) (with
possible half-edges) contains no cycle. Let (S, F ) be decomposed into connected components
(Si, Fi). Then det(MS×F ) =

∏
i det(MSi×Fi

), which implies |Si| = |Fi|, Si ⊆ V (Fi), and
det(MSi×Fi

) 6= 0 for all i. Likewise, det(MSi×Fi
) 6= 0 implies that (Si, Fi) (with possible

half-edges) contains no cycle. We claim that each graph (V (Fi), Fi) is a tree. Suppose
(V (Fi), Fi) is not a tree, i.e., it contains a cycle. Then its number of independent cycles is

n(Fi) := |Fi| − |V (Fi)|+ 1 ≥ 1.

Consequently, |V (Fi)| ≤ |Fi| = |Si|. Since Si ⊆ V (Fi), we have (Si, Fi) = (V (Fi), Fi), which
contains a cycle, contradictory to that (Si, Fi) contains no cycle.

Now each (V (Fi), Fi) is a tree and |V (Fi)|− |Si| = |V (Fi)|− |Fi| = 1. Then V (Fi)rSi is
a single vertex, which can be viewed as a root of the tree (V (Fi), Fi). So each (Si, Fi) may be
considered as a rooted tree (V (Fi), Fi) with the root v such that {v} = V (Fi)rSi. Conversely,
if Si ⊆ V (Fi), |Si| = |Fi|, and (V (Fi), Fi) is a tree, then it is clear that det(MSi×Fi

) 6= 0 by
expansion along its v-row with v a leaf. Thus we obtain

ck = #{acyclic (S, F ) : F ⊆ E, S ⊆ V (F ), |S| = |F | = k},
where each such (S, F ) is identified as a rooted spanning forest F with k edges, i.e., each
component of F is specified a root. In particular, cn−1 is the number of rooted spanning
trees, which is n times of the number of spanning trees of G.

Corollary 7.4. Let G be a graph with n vertices. If the eigenvalues of L(G) are linearly
ordered as 0 = λ1 ≤ λ2 ≤ · · · ≤ λn (multiply listed with multiplicities). Then the number of
spanning trees of G equals

1

n

n∏
i=2

λi.

Proof. Let φ(t) denote the characteristic polynomial of L, i.e., φ(t) = det(tI − L). Then
φ(t) = t(t− λ2) · · · (t− λn). The coefficient of t in φ(t) is (−1)n−1λ2 · · ·λn, which is also the
number of spanning trees of G times (−1)n−1n by Theorem 7.3.

8 Tree Encoding

Let T be a tree with n vertices labeled 1, 2, . . . , n, where n ≥ 2. We can encode T as a
sequence (v1, v2, . . . , vn−2) of 1, 2, . . . , n of length n− 2 as follows: Find a leaf u1 of T1 := T
with minimal label. Then u1 is adjacent with a unique vertex v1 in T1. Delete u1 and its
edge from T1 to obtain a tree T2 := T1 − u1. In general, for the tree Ti with minimal label
leaf ui with i ≤ n − 2, find the vertex vi adjacent with ui in Ti. Set Ti+1 := Ti − ui. We
have a sequences (u1, . . . , un−2) and (v1, . . . , vn−2), where ui 6∈ {u1, . . . , ui−1}∪{vi, . . . , vn−2}.
Moreover, for Tn−1 which has exactly two vertices, we still have vertices un−1, vn−1 ∈ Tn−1

and un−1 6∈ {u1, . . . , un−2} ∪ {vn−1}.
Given a sequence (v1, v2, . . . , vn−2) of 1, 2, . . . , n of length n− 2. We may recover the tree

T back from the sequence as follows: Find the minimal element u1 from [n]−{v1, . . . , vn−2}.
Make u1 and v1 adjacent, and delete u1 from [n] and v1 from (v1, v2, . . . , vn−2). In general,
find the minimal element ui ∈ [n] − {u1, . . . , ui−1} − {vi, . . . , vn−2}, connect ui and vi, i =
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1, . . . , n − 2. At i = n − 2, we must have un−2 ∈ [n] − {u1, . . . , un−3} − {vn−2}, which has
exactly two vertices, and these two vertices must be adjacent.

For the complete graph Kn, each spanning tree is encoded into a sequence (v1, . . . , vn−2)
of 1, . . . , n, each vi has n choices. So Kn has nn−2 spanning trees.

Let ω be an orientation ω on a graph G = (V, E). If ω is acyclic, the vertices can be
linearly ordered as v1, . . . , vn so that each directed edge is like of the form (vi, vj) with i < j.
Let Ui = [Xi, X

c
i ], where Xi = {v1, . . . , vi}, i = 1, . . . , n− 1. Then g :=

∑n−1
i=1 IUi

is a tension
of (G,ω) such that g(e) > 0 for all e ∈ ω. If ω totally cyclic, for each edge e ∈ E there is
a directed circuit Ce of (G,ω) such that e ∈ Ce. Then f :=

∑
e∈E ICe is a flow such that

f(e) > 0 for all e ∈ ω.
Exercises

1. Let G = (V, E) be a connected graph, and let T be a spanning tree of G. Show that
the number of vertices of T is |V | − 1.

2. A graph G is said to be even if the degree of every vertex is even. Show that each even
graph can be decomposed into edge-disjoint cycles.

3. Let M be the signed vertex-edge incidence matrix of a connected graph G with an
orientation. (a) Given an edge subset S ⊆ E(G). Show that column vectors of M
indexed by members of S are linearly dependent if and only if the subgraph G(S)
induced by S contains a cycle. (b) Show that the rank of M is |V | − 1. (c) Show that
MMT = D − A, where D is the diagonal matrix whose vth entry is the degree of v,
and A is the adjacency matrix.

4. Let M be the signed vertex-edge incidence matrix of a connected graph G with an
orientation. (a) Show that the solution space of Mx = 0 is isomorphic to the flow
space of G. (b) show that the rank of M is |V | − 1. (c) Show the cycle space (=flow
space) of G is |E|− |V |+1. (d) Show that the tension space of G is |V |− 1. (e) If G is
not necessarily connected, say, G has c(G) components, then the tension space of G has
dimension |V (G)|−c(G), and the cycle space of G has dimension |E(G)|−|V (G)|+c(G).
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