
Tree-Search Algorithms

March 30, 2010

1 Tree-Search

• Let G be a graph. If G has a spanning tree T , then G is connected.

• Let T be a tree of G. If V (T) = V (G), then G is connected. If V (T) (V (G), then either [T, G − T] = ∅
or [T,G − T] 6= ∅. In the former case, G is disconnected; in the latter case, for any edge e ∈ [T,G − T] with
end-vertices u ∈ T, v ∈ T c, the subgraph T ∪ e is again a tree of G.

• Using the above idea, one may generate a sequence of trees in G, starting with the trivial tree consisting
of a single vertex v0, and terminating either with a spanning tree of G or with a non-spanning tree T with
[T, G− T] = ∅. The procedure is called a tree-search, and the resulting tree is called a search tree.

• Let (T, v0) be a rooted tree of G. Let P = v0v1 · · · vl be the unique path in T from v0 to a vertex v(= vl). Each
vertex vi of P , including v itself, is called an ancestor of v in T , and v is called a descendant of vi in T .
The vertex u(= vl−1) is called the predecessor (or parent) of v, denoted p(v), and v is called a successor
(or child) of u.

• There are two typical tree-searches: Breath-first search (BFS) and depth-first search (DFS).

Theorem 1.1 (Breath-First Search Tree). Input: a connected graph G = (V, E) with a specified vertex v0.
Output: a rooted tree (T, v0) with the root v0, a vertex sequence P = v0v1 · · · vn with n = |V |, an index

function ind : V → N, a parent function p : V −{v0} → V , and a level function ` : V → N such that `(v) = dG(v0, v)
for all v ∈ V .

Step 1: Start with a vertex sequence Q := v0, a root tree (T, v0) consisting of the single vertex v0,
`(v0, v0) := 0, and a vertex sequence P := ∅.

Step 2: If Q = ∅, Stop.
If Q 6= ∅, delete the initial vertex of Q, say, u, add u to the end of P , and go to Step 3.

Step 3: If there are vertices w1, w2, . . . , wk ∈ G−T adjacent with u by edges e1, e2, . . . , ek respectively, add
the edges e1, e2, . . . , ek to T , the sequence w1w2 · · ·wk to the end of Q, set ind(wi) := ind(u) + i,
`(wi) := `(u) + 1, p(wi) := u, where 1 ≤ i ≤ k, and return to Step 2.
If there are no vertices of G− T adjacent with u, return to Step 2.

Proof. Initially, Q = v0 6= ∅. It is clear that in any step the subgraph T is a tree. The vertices of T can be ordered as
a sequence PQ, where P is a subsequence having no vertices adjacent with a vertex of G−T . Since G is connected,
if V (T) = V , then T is a spanning tree of G.

Now, if V (T) (V , there are always vertices of T adjacent with some vertices of G − T . Let u be the first
vertex in the sequence PQ that joins a vertex of G − T , and u is the initial vertex of Q; we then enter into Step
3. (Thus the algorithm continues, and finally stops when T is a spanning tree.) Note that wi 6∈ Q, wi 6∈ T , and
`(v) = dT (v0, v) ≥ dG(v0, v) for all v ∈ T .

Now, we need only to show that `(wi) = dG(v0, wi). We may assume that `(v) = dG(v0, v) for all v ∈ T . Since
`(u) = dG(v0, u), then dG(v0, wi) ≤ `(u) + 1 = `(wi). Let Pi = v0v1 · · · vd be a shortest path in G from v0 to
vd(= wi), and let vj be the last vertex of Pi such that vj ∈ T , vj+1 6∈ T . Of course, j ≤ d − 1. We claim that
`(vj) ≥ `(u). (Otherwise, if `(vj) < `(u), then by Lemma 1.2, vj enters Q before u. Subsequently, vj leaves Q before
u, and at the time that vj leaves Q, the vertex vj+1 enters Q, i.e., vj+1 ∈ T at the time that u leaves Q. This is a
contradiction.) Thus

d ≥ j + 1 = dG(v0, vj) + 1 = `(vj) + 1 ≥ `(u) + 1 = `(wi).

1

Therefore d = dG(v0, wi) = `(wi).

Lemma 1.2. Let T be a BFS-tree of a connected graph G. Let Q be the queuing vertex sequence and u, v be two
vertices.

(a) If `(u) < `(v), then u enters Q before v.

(b) If u enters Q before v, then `(u) ≤ `(v).

(c) If u, v are end-vertices of an edge e 6∈ T , then |`(u)− `(v)| ≤ 1.

Proof. (a) We proceed by induction on `(u). When `(u) = 0, then u = v0 and v0 enters Q before every other vertex
of V . Assume it is true when `(u) < l, and consider the case `(u) = l ≥ 1. Let x, y be parents of u, v respectively in
the rooted tree (T, v0). Then `(x) = `(u)− 1 and `(y) = `(v)− 1. Clearly, `(x) < `(y). By induction, the vertex x
enters Q before y; subsequently, x leaves Q before y. Now, note that u enters Q right after x leaves Q, and at that
time the vertex v did not yet enter Q, for it is not yet the turn for y to leave Q. Thus u enters Q before v.

(b) is equivalent to (a).
(c) If `(u) = `(v), nothing is to be proved. If `(u) 6= `(v), we may assume `(u) < `(v). Then u enters Q before

v. At the time when u leaves Q, if v 6∈ Q, then `(v) = `(u) + 1 by definition of `; if v ∈ Q, let y be the parent
of v, then y enters Q before u by definition of Q, hence `(y) ≤ `(u); since `(u) < `(v) = `(y) + 1, we must have
`(u) = `(y); hence `(v) = `(u) + 1.

Theorem 1.3 (Depth-First Search-Tree Algorithm). Input: a connected graph G = (V, E) with a specified vertex
v0.

Output: a rooted tree (T, v0), a closed walk W = v0e1v1 · · · e2n−2v2n−2 with n = |V |, a multi-valued index
function ind : V → N, a parent function p : V − {v0} → V , a degree function d : V → N, and two time functions
f : V → N, l : V → N such that f(v) ≤ l(v) for all v ∈ V .

Step 1: Initialize a vertex variable x and a rooted tree (T, v0) consisting of a single vertex v0; assign v0 to
the variable x; set W := v0, ind(x) := 0, f(v0) := 0; then go to Step 2.

Step 2: If there are edges joining x to some vertices of G − T , select an edge e joining x to a vertex
w ∈ G− T ; add ew to T and ew to the end of W ; set f(w) := ind(x) + 1, p(w) := x; assign w to
x and set ind(x) := f(w); then return to Step 2.
If there is no edge joining x to any vertex of G− T , set l(x) := ind(x); then go to Step 3.

Step 3: If x = v0, set d(x) := #{i | vi = x in W} − 1; then Stop.
If x 6= v0, set d(x) := #{i |vi = x in W}; backtrack from x to its parent u through an edge e in T ;
add the word eu to the end of W , set ind(u) := ind(x)+1; assign u to x and set ind(x) := ind(u);
then return to Step 2.

Proof. It is clear that at any stage the constructed subgraph T is always a tree and the algorithm stops eventually.
When the algorithm reaches the stage l(v0), we have [v0, G−T (v0)] = ∅. Then [Tv0(v0), G−T (v0)] = ∅ by Lemma 1.4.
Since Tv0(v0) = Tv0 , we have [T (v0), G− T (v0)] = ∅. Since G is connected, this means that T (v0) is a spanning tree
of G.

The time functions f, l can be given by the walk W as follows:

f(u) = min{i | v = vi ∈ W}, l(v) = max{i | v = vi ∈ W}, v ∈ V.

Lemma 1.4. Let W be a walk resulted by DFS-Tree Algorithm, having the end vertex v assigned to the variable x.
Let T (x) denote the rooted tree produced by W at stage l(x), i.e., [x,G− T (x)] = ∅. For each vertex u of T (x), let
Tu(x) denote the rooted subtree of T (x) at u as the root. Then [Tx(x), G− T (x)] = ∅.
Proof. We proceed by induction on the number of vertices of Tx(x). It is true when Tx(x) contains only the vertex x,
i.e., when x has no children in T (x). Let w1, w2, . . . , wk be all children of x in T (x), been added to W in its current
order. To have the vertex variable x at the vertex v, it must be backtracked from wi to v in the order w1, w2, . . . , wk.
This means that [wi, G − T (wi)] = ∅. By induction, [Twi(wi), G − T (wi)] = ∅. Note that Twi(x) = Twi(wi) and
T (wi) ⊆ T (x). Thus

[Tx(x), G− T (x)] =
k⋃

i=1

[Twi(x), G− T (x)] ⊆
k⋃

i=1

[Twi(wi), G− T (wi)] = ∅.

2

Proposition 1.5. Let (T, v0) be a DFS-tree of a connected graph G. Let u, v be two vertices.

(a) The vertex v is a descendant of u if and only if f(u) < f(v) ≤ l(v) < l(u).

(b) If u, v are end-vertices of an edge e 6∈ T , then u is an ancestor or a descendant of v in T .

(c) If f(u) < f(v), then either l(v) < l(u) or l(u) < f(v).

Proof. (a) Let v be a descendant of u, i.e., v ∈ Tu. Then u enters W before v; so f(u) < f(v). When the vertex
variable x is at v, to reach u again, x must be backtracked from v; so l(v) < l(u). Conversely, if f(u) < f(v) ≤
l(v) < l(u). Then v enters W after u. Suppose v is not a descendant of u, i.e., v 6∈ Tu. Then v enters W after all
vertices of Tu, i.e., after Tu is finished. So l(u) < f(v); this is a contradiction.

(b) We may assume f(u) < f(v), i.e., v enters W after u. Suppose v is not a descendant of u, i.e., v 6∈ Tu. Then
v enters W after all vertices of Tu. At stage l(u), the tree T (u) does not contain v, i.e., v 6∈ T (u). This means that
e ∈ [u,G− T (u)] 6= ∅; the subtree Tu is not yet finished. This is a contradiction.

(c) Note that under the given condition f(u) < f(v), v ∈ Tu if and only if l(v) < l(u). If l(v) < l(u) is not true,
i.e., v 6∈ Tu, then v enters W after Tu is finished; so l(u) < f(v).

Corollary 1.6. Let (T, v0) be a DFS-tree of a connected graph G.

(a) Any leaf of T cannot be a cut vertex of G.

(b) The root v0 is a cut vertex of G if and only if v0 has at least two children in T .

(c) A vertex v is a cut vertex of G if and only if v has a child w in T such that there is no edge between a proper
ancestor of v to a descendant of w.

Proof. Trivially follows from Proposition 1.5(a).

2 Minimum-Weight Spanning Tree

• Let G = (V, E) a graph together with a weight function w : E → R is called a weighted graph, denoted
(G,w). For each e ∈ E, the value w(e) is called the weight of e. The weight of G is the value

w(G) =
∑

e∈E

w(e).

• A minimum-weight spanning tree (MST) of a weighted graph (G,w) is a spanning tree whose weight is
minimum among all spanning trees of G.

Theorem 2.1 (Prim’s Algorithm). Input: a connected graph G = (V, E) with a weight function w : E → R.
Output: a minimum-weight spanning tree T of G.
Step 1: Choose a vertex v of G, initialize a tree T consisting of the single vertex v; and go to Step 2.
Step 2: If V (T) = V , Stop.
Step 3: If V (T) 6= V , choose an edge e from the cut [T, G− T] such that w(e) is minimum in [T, G− T],

add e to T , and go to Step 2.
Proof. It is clear that in Step 3 the subgraph T ∪ e, constructed by adding the edge e from [T, G− T] to the tree
T , is still a tree. Finally, the trees T grow up to a spanning tree when the algorithm Stops. We are left to show
that the produced spanning tree is optimal. It is enough to show that at any stage the tree T is contained in an
optimal spanning tree of G. We proceed by induction on the number of edges of T .

Initially, the tree T := v0 is obviously contained in an optimal spanning tree of G. Assume that in Step 3 the
tree T is contained in an optimal spanning tree T ∗. Note that w(e) ≤ w(x) for all x ∈ [T, G − T]. If e 6∈ T ∗, then
T ∗ ∪ e contains a cycle Ce and e ∈ Ce. Since Ce intersects the cut [T,G− T], there is an edge e′ ∈ Ce ∩ [T,G− T]
other than e. Clearly, the spanning tree T ∗∗ := (T ∗ ∪ e)\e′ contains T ∪ e, and

w(T ∗∗) = w(T ∗) + w(e)− w(e′) ≤ w(T ∗).

The optimality of T ∗ implies that w(T ∗∗) = w(T ∗). Hence T ∗∗ is an optimal spanning tree which contains T ∪e.

3

Theorem 2.2 (Kruskal’s Algorithm). Input: a connected graph G = (V, E) with a weight function w : E → R,
|V | = n.

Output: a minimum-weight spanning tree T of G.
Step 1: Choose an edge e of G such that w(e) is minimum in E, initialize a subgraph T consisting of the

single edge e, and go to Step 2.
Step 2: If |E(T)| = n− 1, Stop.
Step 3: If |E(T)| < n− 1, choose an edge e from E −E(T) such that w(e) is minimum in E −E(T) and

T ∪ e contains no cycle, add e to T , and go to Step 2.

Proof. It is enough to show that at any stage the subgraph T is contained in an optimal spanning tree of G. We
proceed by induction on the number of edges of T .

Initially, the subgraph T := e0 contains the single edge e0 whose weight is minimum in E. Let T ∗ be an optimal
spanning tree of G. If e0 6∈ T ∗, then T ∗ ∪ e0 contains a cycle Ce0 . Select an edge e1 from Ce0 other than e0; the
spanning tree T ∗∗ := (T ∗ ∪ e0)\e1 contains e0. Since w(e0) ≤ w(x) for all x ∈ E, we have

w(T ∗∗) = w(T ∗) + w(e0)− w(e1) ≤ w(T ∗).

The optimality of T ∗ implies that w(T ∗∗) = w(T ∗). So T ∗∗ is an optimal spanning tree of G and contains T .
Assume that in Step 3 the subgraph T is contained in an optimal spanning tree T ∗. Note that w(e) ≤ w(x)

for all x ∈ E − E(T). If e 6∈ T ∗, then T ∗ ∪ e contains a unique cycle Ce and e ∈ Ce. Since T ∪ e contains no cycle,
the cycle Ce cannot be contained in T ∪ e. Thus there exists an edge e′ ∈ Ce such that e′ 6∈ T and e′ 6= e. Set
T ∗∗ := (T ∗ ∪ e)\e′; then T ∗∗ contains T ∪ e and

w(T ∗∗) = w(T ∗) + w(e)− w(e′) ≤ w(T ∗).

The optimality of T ∗ implies that w(T ∗∗) = w(T ∗). Hence T ∗∗ is an optimal spanning tree of G and contains
T ∪ e.

3 Branching-Search

Theorem 3.1 (Dijkstra’s Algorithm, Directed Breadth-First Search). Input: a digraph D = (V, A) with a specified
vertex v0 and a positive weight function w : E → R+.

Output: a v0-branching (T, v0) in D, a vertex sequence P = v0v1 · · · vn with n = |V (T)|, an index function
ind : V (T) → N, a level function ` : V (T) → N such that `(v) = dG(v0, v) for all v ∈ V (T), and a parent function
p : V (T)− {v0} → V .

Step 1: Start with a vertex sequence Q := v0, a v0-branching (T, v0) consisting of the single vertex v0, a
vertex sequence P := ∅, ind(v0) := 0, `(v0, v0) := 0; and go to Step 2.

Step 2: If Q = ∅, Stop.
If Q 6= ∅, delete the initial vertex of Q, say, u, add u to the end of P , and go to Step 3.

Step 3: If (u,D − T) has arcs a1, a2, . . . , ak with heads w1, w2, . . . , wk in D − T respectively, add
a1, a2, . . . , ak to T , the sequence w1w2 · · ·wk to the end of Q; set ind(wi) := ind(u) + i,
`(wi) := `(u) + 1, p(wi) := u, where 1 ≤ i ≤ k; and go to Step 2.
If (u,D − T) = ∅, go to Step 2.

Proof. Similar to the proof of Theorem 1.1.

Theorem 3.2 (Directed Depth-First Search). Input: a digraph D = (V, A).
Output: a spanning branching forest F of D with a root set R, a closed walk W = v0e1v1 · · · e2n−r−1v2n−r−1,

where n = |V | and r = |R|, a multi-valued index function ind : V → N, a parent function p : V − R → V , a degree
function d : V → N, and two time functions f : V → N, l : V → N such that f(v) ≤ l(v) for all v ∈ V .

Step 1: Initialize F := ∅, R := ∅, W := ∅, x := ∅; ind(x) = −1, f(x) := −1; then go to Step 2.
Step 2: If G− F = ∅, Stop.

If G−F 6= ∅, choose a vertex u ∈ G−F ; add u to F, R, and to the end of W ; set f(u) := ind(x)+1;
assign u to the vertex variable x and set ind(x) := f(u); then go to Step 3.

4

Step 3: If (x,G− F) 6= ∅, select an arc a from x to w ∈ G− F ; add a to F and the word aw to the end
of W ; set p(w) := x, f(w) := ind(x) + 1; assign w to the vertex variable x, set ind(x) := f(w);
then return to Step 3.
If (x,G− F) = ∅, set l(x) := ind(v); then go to Step 4.

Step 4: If x = u, set d(x) := #{i | vi = x in W} − 1; go to Step 2.
If x 6= u, set d(x) := #{i | vi = x in W}, backtrack from v to its parent p(x) through an arc a
in F , then add the word a p(x) to the end of W ; set ind(p(x)) := ind(x) + 1; assign p(x) to the
vertex variable x, set ind(x) := ind(p(x)); and then go to Step 3.

23
15

11 13
691

5

2
4

3

14

24188

17 27
25

29

40

41

30

32

33

35
34

37

31

28
38 42

7

12

36
0

10
16

39

21

20 22

26

19

Lemma 3.3. Let W be a walk resulted by the Directed DFS-Branching Forest algorithm, with the end vertex v
assigned to the variable x. Let F (x) denote the branching forest produced by W at stage l(x), i.e., the directed cut
(x,G− F (x)) is empty. For each vertex u of F (x), let Fu(x) denote the branching of F (x) at u as the root. Then
the directed cut (Fx(x), G− F (x)) is also empty.

Proof. We proceed by induction on the number of vertices of Fx(x). It is true when Fx(x) has the only vertex x,
i.e., when x has no children in Fx(x). Let x have children w1, w2, . . . , wk in Fx(x), been added to W in its current
order. For the variable to reach the vertex v, it must be backtracked from wi to v in the order w1, w2, . . . , wk. This
means that the direct cuts (wi, G − F (wi)) are empty. By induction, the directed cuts (Fwi(wi), G − F (wi)) are
empty. Note that Fwi(x) = Fwi(wi) and F (wi) ⊆ F (x). Thus we have directed cut

(
Fx(x), G− F (x)

)
=

k⋃

i=1

(
Fwi(x), G− F (x)

) ⊆
k⋃

i=1

(
Fwi(wi), G− F (wi)

)
= ∅.

• Let F be a branching spanning forest of a digraph D. An arc a with tail u and head v, written a = (u, v), is
called a forward arc if u is an ancestor of v in F , a back arc if u is a descendant of v in F , and a cross arc
if u is neither an ancestor nor a descendant of v in F .

• Cross arcs can be happened inside a branching tree component of a DFS-branching forest F .

• The branching components of F can be linearly ordered as T1, T2, . . . , Tr so that (Ti, Tj) = ∅ for all i < j.

Proposition 3.4. Let F be a DFS-branching forest of a digraph D. Let u, v ∈ V (D), Fu := Fu(u), and (x, y) be
an arc in D. Then

(a) v ∈ Fu ⇔ f(u) < f(v) ≤ l(v) < l(u).

(b) Fu ∩ Fv = ∅ ⇔ f(u) ≤ l(u) < f(v) ≤ l(v) or f(v) ≤ l(v) < f(u) ≤ l(u).

(c) (x, y) is a forward arc ⇔ f(x) < f(y) ≤ l(y) < l(x).

(d) (x, y) is a back arc ⇔ f(y) < f(x) ≤ l(x) < l(y).

(e) (x, y) is a cross arc ⇔ f(y) ≤ l(y) < f(x) ≤ l(x).

Proof. (a) and (b) follow from Lemma 3.3; and (c), (d), (e) follow from (a) and (b).

5

Proposition 3.5. Let F be a DFS-branching forest of a digraph D. If C is a strong component of D, then F ∩ C
is a spanning branching of C.

Proof. Let x be a vertex of C such that f(x) is smallest in C. Let Fx be the sub-branching of F generated by x.
We first claim that Fx ∩C is a branching with the root x. In fact, for each vertex v ∈ Fx ∩C, let Pxv be the unique
directed path from x to v in Fx. Since C is a strong component of D, then C ∪ Pxv is also strong. Thus Pxv is
contained in C; subsequently, Pxv is contained in Fx ∩C. So v is connected to x in Fx ∩C. This means that Fx ∩C
is a branching.

Now it suffices to show that V (Fx∩C) = V (C). Suppose V (Fx∩C) 6= V (C). Take a vertex y ∈ V (C)−V (Fx∩C);
clearly, y ∈ C and y 6∈ Fx. We claim that C has no arc from Fx to D− Fx. In fact, there is no arc in C from Fx to
F (x)− Fx, where F (x) is the branching forest generated by the Directed DFS Algorithm at time l(x). (Otherwise,
if (u, v) ∈ C is an arc from Fx to F (x)−Fx, then the vertex v enters W before x; thus v ∈ C and f(v) < f(x); this
is contradict to the choice of x.) By virtue of the Directed DFS Algorithm, there is no arc from Fx to D−F (x); of
course C has no arc from Fx to D − F (x). It follows that C has no arc from Fx to D − Fx. Since x, y ∈ C, there
is a directed path P in C from x to y. Since x ∈ Fx and y 6∈ Fx, P has an arc from Fx to D − Fx; so is C. This is
contradict to that C has no arc from Fx to D−Fx. Hence V (Fx∩C) = V (C). This means that Fx∩C = F ∩C.

Remark. Let D be a digraph. (a) Applying Directed DFS to find a spanning forest F of D.
(b) Delete all cross edges of D between branching components of F and reverse the orientations of all remaining

edges to produce a subdigraph D̃.
(c) For each branching component (T, v) of F with the root v, let D̃(T) denote the subdigraph of D̃, induced

by V (T). Applying Directed BFS or DFS to find a branching (T̃ , v) rooted at v. Then the subdigraph D(V (T̃)) is
a strong component of D containing the vertex v.

(d) Delete D̃(V (T̃)) from D̃, select another branching of D̃ − D̃(V (T̃)); repeating the above procedure to find
another strong component of D.

6

