Tree-Search Algorithms

March 30, 2010

1 Tree-Search

e Let G be a graph. If G has a spanning tree T, then G is connected.

e Let T be a tree of G. If V(T') = V(G), then G is connected. If V(T') C V(G), then either [T,G —T] = 0
or [T,G —T] # (). In the former case, G is disconnected; in the latter case, for any edge e € [T, G — T with
end-vertices u € T, v € T, the subgraph T'U e is again a tree of G.

e Using the above idea, one may generate a sequence of trees in G, starting with the trivial tree consisting
of a single vertex vy, and terminating either with a spanning tree of G or with a non-spanning tree T" with
[T,G — T] = (). The procedure is called a tree-search, and the resulting tree is called a search tree.

e Let (T, vp) be arooted tree of G. Let P = vgvy - - - v; be the unique path in 7" from vy to a vertex v(= v;). Each
vertex v; of P, including v itself, is called an ancestor of v in 7', and v is called a descendant of v; in T
The vertex u(= v;_1) is called the predecessor (or parent) of v, denoted p(v), and v is called a successor
(or child) of u.

e There are two typical tree-searches: Breath-first search (BFS) and depth-first search (DFS).

Theorem 1.1 (Breath-First Search Tree). INPUT: a connected graph G = (V, E) with a specified vertex vy.
OuTPUT: a rooted tree (T,vg) with the root vy, a vertex sequence P = wvgvy ---v, with n = |[V], an index
function ind : V' — N, a parent function p : V —{vg} — V, and a level function ¢ : V' — N such that ¢(v) = dg(vo, v)
for allv e V.
STEP 1: Start with a vertexr sequence QQ := vy, a root tree (T,vy) consisting of the single vertex vy,
L(vg,vg) := 0, and a vertex sequence P := ().

STEP 2: If Q = (), STOP.

If Q # 0, delete the initial vertex of Q, say, u, add u to the end of P, and go to STEP 3.
STEP 3: If there are vertices wi,ws, ..., wr € G—"T adjacent with u by edges ey, ea, . .., e respectively, add

the edges eq, e, ... e, to T, the sequence wiws - - - wy to the end of Q, set ind(w;) := ind(u) + 1,
L(w;) = L(u) + 1, p(w;) :== u, where 1 <1i <k, and return to STEP 2.
If there are no vertices of G — T adjacent with u, return to STEP 2.

Proof. Initially, Q = vg # 0. It is clear that in any step the subgraph T is a tree. The vertices of T' can be ordered as
a sequence P(Q), where P is a subsequence having no vertices adjacent with a vertex of G —T'. Since G is connected,
if V(T') =V, then T is a spanning tree of G.

Now, if V(T) € V, there are always vertices of T adjacent with some vertices of G — T. Let u be the first
vertex in the sequence PQ that joins a vertex of G — T', and w is the initial vertex of @); we then enter into STEP
3. (Thus the algorithm continues, and finally stops when T is a spanning tree.) Note that w; € @, w; ¢ T, and
l(v) = dp(vg,v) > dg(vg,v) for all v e T.

Now, we need only to show that ¢(w;) = dg(vo, w;). We may assume that £(v) = dg(vg,v) for all v € T. Since
(u) = dg(vo,u), then dg(vo,w;) < (u) +1 = l(w;). Let P; = wvovy---vg be a shortest path in G from vy to
vg(= w;), and let v; be the last vertex of P; such that v; € T, vjy1 € T. Of course, j < d — 1. We claim that
l(vj) > l(u). (Otherwise, if £(v;) < ¢(u), then by Lemma 1.2, v; enters @) before u. Subsequently, v; leaves @) before
u, and at the time that v; leaves), the vertex v; 1 enters @, i.e., vj41 € T" at the time that u leaves). This is a
contradiction.) Thus

d>j+1=dg(vy,vj) +1="L(vj)+1>l(u)+1="Llw).

Therefore d = dg(vo, w;) = £(w;). O

Lemma 1.2. Let T be a BFS-tree of a connected graph G. Let @ be the queuing verter sequence and u,v be two
vertices.

(a) If (u) < £(v), then u enters @Q before v.
(b) If u enters Q before v, then £(u) < £(v).
(¢) If u,v are end-vertices of an edge e € T, then |[¢(u) — £(v)| < 1.

Proof. (a) We proceed by induction on ¢(u). When ¢(u) = 0, then u = vg and vy enters @ before every other vertex
of V. Assume it is true when ¢(u) < [, and consider the case ¢(u) =1 > 1. Let =,y be parents of u, v respectively in
the rooted tree (T,v9). Then ¢(x) = ¢(u) — 1 and £(y) = ¢(v) — 1. Clearly, ¢(x) < ¢(y). By induction, the vertex z
enters () before y; subsequently, x leaves) before y. Now, note that u enters Q) right after x leaves @), and at that
time the vertex v did not yet enter (), for it is not yet the turn for y to leave). Thus u enters) before v.

(b) is equivalent to (a).

(c) If £(u) = £(v), nothing is to be proved. If £(u) # ¢(v), we may assume £(u) < £(v). Then u enters @ before
v. At the time when u leaves Q, if v € @, then ¢(v) = ¢(u) + 1 by definition of ¢; if v € @, let y be the parent
of v, then y enters @ before u by definition of @, hence ¢(y) < ¢(u); since (u) < ¢(v) = £(y) + 1, we must have
0(u) = £(y); hence £(v) = £(u) + 1. O

Theorem 1.3 (Depth-First Search-Tree Algorithm). INPUT: a connected graph G = (V, F) with a specified vertex
V0.

OuTPUT: a rooted tree (T, vg), a closed walk W = wgev; -« - eap_2v2n—2 with n = |V, a multi-valued index
function ind : V' — N, a parent function p : V — {vo} — V, a degree function d : V' — N, and two time functions
f:V —=N,1:V — Nsuch that f(v) <l(v) for all v e V.

STEP 1: Initialize a vertex variable x and a rooted tree (T, vg) consisting of a single vertex vy; assign vy to

the variable x; set W := v, ind(z) := 0, f(vg) := 0; then go to STEP 2.
STEP 2: If there are edges joining x to some vertices of G — T, select an edge e joining x to a vertex
w€ G—=T; add ew to T and ew to the end of W ; set f(w) :=ind(x) + 1, p(w) := x; assign w to
x and set ind(z) := f(w); then return to STEP 2.
If there is no edge joining = to any vertex of G — T, set l(x) := ind(z); then go to STEP 3.
STEP 3: If x = wo, set d(x) := #{i|vi =2 in W} — 1; then STOP.
If x # vo, set d(x) := #{i|v; = x in W}; backtrack from x to its parent u through an edge e in T';
add the word eu to the end of W, set ind(u) := ind(z) +1; assign u to x and set ind(x) := ind(u);
then return to STEP 2.
Proof. 1t is clear that at any stage the constructed subgraph T is always a tree and the algorithm stops eventually.
When the algorithm reaches the stage I(vg), we have [vg, G—T(vg)] = 0. Then [Ty, (vo), G—T(vg)] = 0 by Lemma 1.4.
Since Ty, (vg) = Ty, we have [T'(vg), G — T'(vg)] = 0. Since G is connected, this means that T'(vg) is a spanning tree
of G. O

The time functions f,l can be given by the walk W as follows:
fw)=min{i|v=v, e W}, (v)=max{i|lv=v, € W}, veW

Lemma 1.4. Let W be a walk resulted by DFS-Tree Algorithm, having the end vertex v assigned to the variable x.
Let T(x) denote the rooted tree produced by W at stage l(x), i.e., [x,G —T(x)] = 0. For each vertex u of T(x), let
T.(z) denote the rooted subtree of T(x) at u as the root. Then [Ty(z),G — T(x)] = 0.

Proof. We proceed by induction on the number of vertices of T,,(x). It is true when T, (z) contains only the vertex x,
i.e.,, when x has no children in T'(z). Let wy,ws,...,wy be all children of x in T'(z), been added to W in its current
order. To have the vertex variable x at the vertex v, it must be backtracked from w; to v in the order wy, wa, ..., wg.
This means that [w;, G — T'(w;)] = 0. By induction, [Ty, (w;),G — T'(w;)] = 0. Note that Ty, () = Ty, (w;) and
T(w;) € T(x). Thus

k k
[T2(2),G = T(2)] = ([T, (2), G = T(2)] € |JTw: (wi), G = T(wy)] = 0.

i=1 =1

Proposition 1.5. Let (T,vo) be a DFS-tree of a connected graph G. Let u,v be two vertices.
(a) The vertex v is a descendant of w if and only if f(u) < f(v) <l(v) <l(u).

(b) If u,v are end-vertices of an edge e € T, then u is an ancestor or a descendant of v in T.
(c) If f(u) < f(v), then either [(v) < I(u) orl(u) < f(v).

Proof. (a) Let v be a descendant of u, i.e., v € T,,. Then u enters W before v; so f(u) < f(v). When the vertex
variable z is at v, to reach u again, x must be backtracked from v; so l(v) < l(u). Conversely, if f(u) < f(v) <
[(v) < l(u). Then v enters W after u. Suppose v is not a descendant of u, i.e., v € T,,. Then v enters W after all
vertices of Ty, i.e., after T, is finished. So I(u) < f(v); this is a contradiction.

(b) We may assume f(u) < f(v), i.e., v enters W after u. Suppose v is not a descendant of u, i.e., v &€ T,,. Then
v enters W after all vertices of T,,. At stage [(u), the tree T'(u) does not contain v, i.e., v & T'(u). This means that
e € [u,G — T(u)] # 0; the subtree T}, is not yet finished. This is a contradiction.

(c) Note that under the given condition f(u) < f(v), v € Ty, if and only if I(v) < I(u). If I(v) < l(u) is not true,
i.e., v & T,, then v enters W after T, is finished; so l(u) < f(v). O

Corollary 1.6. Let (T,vg) be a DFS-tree of a connected graph G.
(a) Any leaf of T cannot be a cut vertex of G.

(b) The root vy is a cut vertex of G if and only if vy has at least two children in T.

(c) A vertex v is a cut vertex of G if and only if v has a child w in T such that there is no edge between a proper
ancestor of v to a descendant of w.

Proof. Trivially follows from Proposition 1.5(a). O

2 Minimum-Weight Spanning Tree

e Let G = (V, E) a graph together with a weight function w : E — R is called a weighted graph, denoted
(G,w). For each e € E, the value w(e) is called the weight of e. The weight of G is the value

ecE

¢ A minimum-weight spanning tree (MST) of a weighted graph (G,w) is a spanning tree whose weight is
minimum among all spanning trees of G.

Theorem 2.1 (Prim’s Algorithm). INPUT: a connected graph G = (V, E) with a weight function w : £ — R.

OUTPUT: a minimum-weight spanning tree T" of G.

STEP 1: Choose a vertex v of G, initialize a tree T consisting of the single vertex v; and go to STEP 2.

StEP 2: If V(T) =V, STOP.

STEP 3: If V(T) # V, choose an edge e from the cut [T, G — T such that w(e) is minimum in [T,G — T,

add e toT', and go to STEP 2.
Proof. 1t is clear that in STEP 3 the subgraph T U e, constructed by adding the edge e from [T, G — T to the tree
T, is still a tree. Finally, the trees T' grow up to a spanning tree when the algorithm SToPs. We are left to show
that the produced spanning tree is optimal. It is enough to show that at any stage the tree T is contained in an
optimal spanning tree of G. We proceed by induction on the number of edges of T'.

Initially, the tree T := vg is obviously contained in an optimal spanning tree of G. Assume that in STEP 3 the
tree T' is contained in an optimal spanning tree 7. Note that w(e) < w(z) for all z € [T,G —T]. If e ¢ T*, then
T* U e contains a cycle C, and e € C,. Since C, intersects the cut [T, G — T}, there is an edge ¢/ € C. N [T, G — T]
other than e. Clearly, the spanning tree T** := (T* U e)\e’ contains T U e, and

w(T*) = w(T*) + w(e) —w(e) < w(T*).

The optimality of 7™ implies that w(T**) = w(T™*). Hence T™* is an optimal spanning tree which contains T'Ue. [J

Theorem 2.2 (Kruskal’s Algorithm). INPUT: a connected graph G = (V, E) with a weight function w : £ — R,
V| =n.
OUTPUT: a minimum-weight spanning tree T" of G.
STEP 1: Choose an edge e of G such that w(e) is minimum in E, initialize a subgraph T consisting of the
single edge e, and go to STEP 2.
STEP 2: If |E(T)| =n —1, STOP.
STEP 3: If |[E(T)| < n—1, choose an edge e from E — E(T) such that w(e) is minimum in E — E(T') and
T Ue contains no cycle, add e to T, and go to STEP 2.

Proof. 1t is enough to show that at any stage the subgraph T is contained in an optimal spanning tree of G. We
proceed by induction on the number of edges of T

Initially, the subgraph T' := ey contains the single edge ep whose weight is minimum in E. Let T™ be an optimal
spanning tree of G. If eg ¢ T, then T™ U ey contains a cycle C¢,. Select an edge e; from C,, other than eg; the
spanning tree T** := (T* U eg)\e1 contains ey. Since w(eg) < w(x) for all z € E, we have

w(T*) = w(T*) + w(eg) —w(er) < w(T™).

The optimality of T* implies that w(T**) = w(T*). So T** is an optimal spanning tree of G and contains T'.

Assume that in STEP 3 the subgraph 7T is contained in an optimal spanning tree T%. Note that w(e) < w(x)
forallz € E— E(T). If e ¢ T*, then T™* U e contains a unique cycle C. and e € C,. Since T'U e contains no cycle,
the cycle C, cannot be contained in T'U e. Thus there exists an edge ¢’ € C, such that ¢’ ¢ T and ¢ # e. Set
T := (T* Ue)\e; then T** contains T'U e and

w(T*) = w(T*) + w(e) —w(e) < w(T).

The optimality of 7% implies that w(7T**) = w(T*). Hence T** is an optimal spanning tree of G and contains
TUe. t

3 Branching-Search

Theorem 3.1 (Dijkstra’s Algorithm, Directed Breadth-First Search). INPUT: a digraph D = (V, A) with a specified
vertex vg and a positive weight function w : E — R,.

OUTPUT: a wp-branching (T, vp) in D, a vertex sequence P = vyv; - - v, with n = |V(T)|, an index function
ind : V(T') — N, a level function ¢ : V(T') — N such that ¢(v) = dg(vo,v) for all v € V(T'), and a parent function
p:V(T)—{v} — V.

STEP 1: Start with a vertex sequence Q := vy, a vo-branching (T,vg) consisting of the single verter vy, a

vertex sequence P := (), ind(vg) := 0, £(vg,vo) := 0; and go to STEP 2.

STEP 2: If Q =0, STOP.

If Q # 0, delete the initial vertex of Q, say, u, add u to the end of P, and go to STEP 3.
STEP 3: If (u,D — T) has arcs ai,az,...,ar with heads wy,ws,...,wi in D — T respectively, add

ap,az,...,a to T, the sequence wiws---wy to the end of Q; set ind(w;) := ind(u) + 1,
L(w;) = L(u) + 1, p(w;) := u, where 1 <1i < k; and go to STEP 2.
If (uy,D—T) =10, go to STEP 2.

Proof. Similar to the proof of Theorem 1.1. O

Theorem 3.2 (Directed Depth-First Search). INPUT: a digraph D = (V, A).

OUTPUT: a spanning branching forest F' of D with a root set R, a closed walk W = vgeqvy - - €92p—p—_1V2pn—r—_1,
where n = |V| and r = |R|, a multi-valued index function ind : V' — N, a parent functionp:V — R — V, a degree
function d : V — N, and two time functions f : V — N, 1 : V — N such that f(v) <I(v) for allv e V.

STEP 1: Initialize F :=0, R:=0, W :=(, x := 0; ind(z) = —1, f(z) := —1; then go to STEP 2.

STEP 2: If G — F = (), STOP.

IfG—F # 0, choose a vertexu € G—F; add u to F, R, and to the end of W ; set f(u) := ind(z)+1;
assign u to the vertex variable x and set ind(x) := f(u); then go to STEP 3.

STEP 3: If (z,G — F) # (), select an arc a from x to w € G — F; add a to F and the word aw to the end
of W3 set p(w) := z, f(w) := ind(x) + 1; assign w to the vertex variable x, set ind(z) := f(w);
then return to STEP 3.
If (2,G — F) =0, set [(x) := ind(v); then go to STEP 4.

STEP 4: If © = u, set d(z) := #{i |v; = x in W} — 1; go to STEP 2.
If © # u, set d(x) := #{i | v; = x in W}, backtrack from v to its parent p(x) through an arc a
in F, then add the word ap(z) to the end of W; set ind(p(z)) := ind(z) + 1; assign p(z) to the
vertex variable z, set ind(x) := ind(p(x)); and then go to STEP 3.

Lemma 3.3. Let W be a walk resulted by the Directed DFS-Branching Forest algorithm, with the end verter v
assigned to the variable x. Let F(x) denote the branching forest produced by W at stage l(x), i.e., the directed cut
(x,G — F(x)) is empty. For each vertex uw of F(x), let F,(x) denote the branching of F(x) at w as the root. Then
the directed cut (Fy(z),G — F(x)) is also empty.

Proof. We proceed by induction on the number of vertices of Fj(x). It is true when Fj(z) has the only vertex =z,
i.e., when z has no children in Fj(z). Let x have children wy,ws,...,w; in F,(x), been added to W in its current
order. For the variable to reach the vertex v, it must be backtracked from w; to v in the order wy,wo,...,wy. This
means that the direct cuts (w;, G — F(w;)) are empty. By induction, the directed cuts (F,, (w;),G — F(w;)) are
empty. Note that Fy,(z) = Fy,(w;) and F(w;) C F(x). Thus we have directed cut

k k
(Fu(2),G = F(2)) = | (Fu, (), G = F(x)) € | (Fuy (wi), G — F(w;)) = 0.

=1 =1

O]

e Let F' be a branching spanning forest of a digraph D. An arc a with tail v and head v, written a = (u,v), is
called a forward arc if v is an ancestor of v in F, a back arc if u is a descendant of v in F', and a cross arc
if u is neither an ancestor nor a descendant of v in F.

e Cross arcs can be happened inside a branching tree component of a DFS-branching forest F'.

e The branching components of F' can be linearly ordered as 11,75, ..., T, so that (T;,7;) = 0 for all ¢ < j.

Proposition 3.4. Let F' be a DFS-branching forest of a digraph D. Let u,v € V(D), F, := Fy,(u), and (z,y) be
an arc in D. Then

(a) vEF, & fu) < fv) <) < l(u).
(b) FuNF, =0 flu) <l(u) < f(v) <1(v) or f(v) < 1(v) < fu) < I(u).
(c) (2,y) is a forward are & f(x) < f(y) < Uy) < ().

(d) (z,y) is a back arc & f(y) < f(z) < U(z) < i(y).

(¢) (z,y) is a cross arc & f(y) <I(y) < f(z) <(x).

Proof. (a) and (b) follow from Lemma 3.3; and (c), (d), (e) follow from (a) and (b). O

Proposition 3.5. Let F' be a DFS-branching forest of a digraph D. If C is a strong component of D, then FNC
18 a spanning branching of C.

Proof. Let = be a vertex of C' such that f(x) is smallest in C. Let F, be the sub-branching of F' generated by x.
We first claim that F, N C' is a branching with the root z. In fact, for each vertex v € F,, N C, let P,, be the unique
directed path from x to v in F,. Since C' is a strong component of D, then C' U P,, is also strong. Thus P, is
contained in C'; subsequently, P, is contained in F, NC. So v is connected to x in F,, N C. This means that F,NC
is a branching.

Now it suffices to show that V(F,NC) = V(C). Suppose V(F,NC) # V(C). Take a vertex y € V(C)—V (F,NC);
clearly, y € C' and y € F,,. We claim that C has no arc from F, to D — F,. In fact, there is no arc in C from F} to
F(z) — Fy, where F'(z) is the branching forest generated by the Directed DFS Algorithm at time {(z). (Otherwise,
if (u,v) € C is an arc from F, to F'(z) — F}, then the vertex v enters W before x; thus v € C and f(v) < f(z); this
is contradict to the choice of z.) By virtue of the Directed DFS Algorithm, there is no arc from F, to D — F(z); of
course C' has no arc from F, to D — F(z). It follows that C' has no arc from F, to D — F,. Since z,y € C, there
is a directed path P in C from x to y. Since z € F,; and y ¢ Fy, P has an arc from F, to D — Fy; so is C'. This is
contradict to that C' has no arc from F, to D — F,. Hence V(F,NC) = V(C). This means that F,NC = FNC. O

Remark. Let D be a digraph. (a) Applying Directed DFS to find a spanning forest F' of D.

(b) Delete all cross edges of D between branching components of F' and reverse the orientations of all remaining
edges to produce a subdigraph D.

(¢) For each branching component (T,v) of F with the root v, let D(T") denote the subdigraph of D, induced
by V(T). Applying Directed BFS or DFS to find a branching (7', v) rooted at v. Then the subdigraph D(V(T)) is
a strong component of D containing the vertex v.

(d) Delete D(V(T)) from D, select another branching of D — D(V(T)); repeating the above procedure to find
another strong component of D.

