Trees

March 2, 2010

1 Forests and Trees

e A graph is said to be acyclic if it does not contain cycle. An acyclic graph is also called a forest. A connected
acyclic graph is called a tree. A tree is said to be trivial if it contains a single vertex.

e Every nontrivial tree has at least two leaves, i.e., two vertices of degree 1.
e Any two vertices in a tree are connected by a unique path.
e If T is a tree, then |E(T)| = |V(T)| — 1. If F is a forest, then |E(F)| = |V(F)| — ¢(F), where ¢(F) is the

number of connected components of F.

2 Rooted Trees

e A tree T with a specified vertex x is called a rooted tree with the root z, denoted T'(z). A tree with a root
x is referred to an z-tree.

e A branching is a rooted tree with an orientation such that every vertex but the root has in-degree 1. A
branching with a root x is referred to an xz-branching.

e Let D be a digraph and = a vertex of D. Let X be the set of vertices reachable from x in D. Then there
exists an z-branching 7'(x) in D with V(T') = X.

3 Spanning Trees

e A spanning subgraph H of a graph G is a subgraph such that V(H) = V(G). A spanning tree T of a
connected graph G is a tree and is also a spanning subgraph of G.

e Every connected graph has a spanning tree.

e If T is a spanning tree of a graph G, then for any edge e € E(G) — E(T), there exists a unique cycle C, in
T Ue. Such a cycle is called a fundamental cycle of G with respect to T'.

Proof. Let u,v be end-vertices of e. There are two internal-vertex disjoint paths between v and v in T U e,
i.e., uev and the unique path between u and v in T'. The two paths form a cycle C, in T' U e.

Suppose C. is a cycle other than C, in T'Ue. Then C.AC’ is a nontrivial even graph contained 7. This is a
contradiction for T' contains no cycle. O

e If T is a spanning tree of a graph G, then for any edge e € E(T'), there exists a unique bond B, of G which
is contained in 7T¢ U e. Such a bond is called a fundamental bond of G with respect to T.



Proof. Remove the edge e from T to obtain two disjoint trees 71 and T5. Then the edge set between the vertex
sets V(T1) and V (T») is a bond of G.

Suppose B! is a bond of G other than B, and is contained in 7¢Ue. Then the symmetric difference B.ABY. is
an edge cut of G and is contained in 7. Clearly, E(T) is contained in E(G) — B;ABL. Since T is connected,
so is E(G) — B.AB.. This a contradict to that B;ABY. is an edge cut of G. O

Theorem 3.1. The collection of fundamental cycles of a connected graph G with respect to a spanning tree T' forms
basis of the cycle space of G. So the cycle space has dimension |E(G)| — |V(G)| + 1.

Proof. Let {C. | e € E(G—T)} be the collection of fundamental cycles of G with respect to 7. We first show that
{1¢c, | e € E(G —T)} is linearly independent over Fa.

Assume ) cpg_) delc, = 0 for some coefficients a. in Fy. For a particular edge eg € E(G — T'), we have
eo € C¢, and €9 € C. for all e € E(G — T) such that e # e. So the left-hand side of 3 c p(_1) aelc. = 0 is ae,.
Thus a., = 0. This proves the linear independence.

To show that {l1¢, | e € E(G — T)} spans the cycle space of G, given a cycle C of G. We claim that 1o =

ZeGE(C—T) 1057 Le.,
lo+ > lg =0 (1)
e€E(CNT*)
It is clear that the left-hand side of (1) is zero on all edges of E(T¢ — C). The left-hand side of (1) also cancels to
zero on the edges of E(C'NT°). Thus the left-hand side of (1) is the characteristic function of an even graph on T
Since T' does not contain cycle, it follows that the left-hand side of (1) is zero on all edges of G. Ul

Theorem 3.2. The collection of fundamental bonds of a connected graph G with respect to a spanning tree T forms
basis of the bond space of G. So the bond space has dimension |V (G)| — 1.

Proof. Let {B. | e € E(T)} be the collection of fundamental bonds of G with respect to 7. We first show that
{1p, | e € E(T)} is linearly independent over [Fy.

Assume ) . B(T) Gelc. = 0 for some coefficients a. in Fy. For a particular edge eg € E(T), we have ey € B,
and eg & B, for all e € E(T) such that e # ep. So the left-hand side of ZeeE aelBe = 01is a¢,. Thus ae, = 0.
This proves the linear independence.

To see that {1¢, | e € E(G — T)} spans the bond space of G, given a bond B of G. We claim that 15 =

ZeeE(BfTC) lp., ie.,
1+ Z 1, = 0. (2)
c€E(BNT)
It is clear that the left-hand side of (2) is zero on all edges of E(T — B). The left-hand side of (2) also cancels to
zero on the edges of E(BNT). Thus the left-hand side of (2) is the characteristic function of an edge cut U on T*.

Since T'= G — T is connected, thus G — U is also connected. This implies that U must be empty. So left-hand side
of (2) is identically zero. O

4 Flow Space and Tension Space of an Oriented Graph

Let G = (V, E) be a graph. Recall that an orientation of G is a multi-valued function € : V- x £ — {0, —1,1} such
that (i) e(v,e) = {£1} if e is a loop at v and (ii) if e = wv is a non-loop at its end-vertices u,v then e(u,e),e(v,e)
are single-valued and ¢(u, e)e(v,e) = —1. A graph with an orientation is called an oriented graph. The incidence
matrix of an oriented graph (G, ¢) is a matrix M = [my,], where mye = 0 if e is a loop at v and mye = (v, e) if e
is a non-loop at v.

Let (G, ¢) be an oriented graph throughout. A real-valued flow of (G, ¢) is a function f: E'— R such that the
flow-in equals the flow-out at every vertex v, i.e.,

dYoofle)= D" fle), (3)

ecE~(v) ecE~*(v)



where E~(v) and E™(v) are the sets of edges whose arrows have heads and tails at v respectively. The set of all
real-valued flows of (G, ¢) forms a subspace of the Euclidean R”, called the flow space of (G, ¢), denoted F(G,¢).
A real-valued tension of (G, ¢) is a function ¢g : E — R such that for any directed cycle (C,e¢) of G,

3 [eccl(e) gle) = 0.

ecE(C)

The set T(G,¢) of all real-valued tensions of (G, ¢) forms a subspace of R”, called the tension space of (G,¢).
The inner product of R¥ is defined by

(f,9) = fle)g(e).

eckE

Let G; (i = 1,2) be subgraphs of G with orientations ¢;. The coupling of (G1,e1) and (G2,¢e2) is a function
[e1,e2] : E — {0,—1,1}, defined by

if e € E(G1) N E(G2) is at v and £1(v,e) = e2(v, €),
[e1,e2](e) :== ¢ —1 ifee E(G1)NE(Ge) is at v and €1(v,e) = e2(v, e), (4)
otherwise.

If we view ¢; as the extended functions ¢; : E — {0,—1,1} by setting ¢;(v,e) = 0 for edges e ¢ E(G;) at their
end-vertices v, then for any edge e at its end-vertex v,

[e1,e2](e) = €1(v, e) ea(v, €).

Let C be a cycle of G. A direction of C is an orientation ec of C' such that the digraph (C,e¢) has a head
and a tail at every vertex of C; and (C,e¢) is called a directed cycle. The indicator function I of C is the
characteristic function of the edge set E(C).

Proposition 4.1. Let (C,ec) be a directed cycle of an oriented graph (G,e). Then the coupling [e,e¢] is a flow of
(G,e).

Proof. For any vertex not in the cycle C, it is clear that (3) is satisfied. For a vertex v € V(C), let e and €’ be
edges of C at v such that ec(v,e) = —1 and e¢(v,e’) = 1. It is routing to check

Y Eec@) — Y [eecl@) =0

zeE~(v) z€ET(v)

for the cases: (1) e(v,e) = ec(v,e), e(v,€') = ec(v,€); (2) e(v,e) # ec(v,e), e(v,e) = ec(v,€e); (3) e(v,e) =
ec(v,e), e(v,e') #ec(v,€); and (4) e(v,e) # ec(v,e), e(v,€') # ec(v, ). O

Let U = [X, X¢] be an edge cut of G. A direction of U is an orientation ey on U such that every arc of the
digraph (U, ep) has its tail in X and head in X¢; and (U, ey) is called a directed cut of G.

Proposition 4.2. Let (U,ey) be a directed cut of an oriented graph (G,e). Then [e,ey] is a tension of (G,¢).
Proof. For any edge e at its end-vertex v, we have
[e,ec](e) [e,ev](e) = e(v,e) ec(v,e) e(v,e) ep(v, e) = [ec, ev](e).

To see that [e,ep] is a tension, it suffices to show that

Y leec@elle)= Y loell)= Y, [lc.evle)

e€E(C) e€E(C) e€E(C)NE(U)

is zero. Since C'is a cycle and U = [X, X€] is a cut, the number of edges having agreed orientations with respect to
ec and ey equals the number of edges having opposite orientations. Hence the above right-hand side is zero. ]

Remark. The flows [¢,e¢] and tensions [, ] are orthogonal in the Euclidean space RE.



Theorem 4.3. Let F' be a forest of an oriented graph (G,e). For each edge e € E(F°), let C, be the fundamental
cycle of G and e, a direction of Ce such that orientations € and €. agree on e. Then the set of flows [e,e.], where
e € E(F°), forms a basis for the flow space F(G,¢). Moreover, for each flow f € F(G,¢),

f= Z fe) [, eel-

e€E(F*)

Proof. We first show that {[e,e.| : e € E(F°)} is linearly independent. In fact, set

Z ae[e,6¢) =0

e€E(F°)

for some real numbers a.. Note that for a particular edge ey € E(F¢) and an arbitrary edge e € E(F€), we have
[e,ee](e0) = 1 if e = ep and [e,e.](eg) = 0 if e # eg. Thus the above left-hand side at eg is ar,. Hence a., = 0. We
proved linear independence.

Let f be a flow of (G,¢). We claim that the function g := f — ZeeE(FC) f(e) [e,ee] is identically zero. It is clear
that ¢ is a flow of (G, ¢), for it is a linear combinations of flows. Note that for eg, e € E(F°), we have [,e.](eg) = 1
if e = eg and [g,ec](e0) = 0 if e # eo. It follows that g(eg) = 0, i.e., g|gre) = 0. Since F' is a forest, if F' is not
trivial (i.e. F' contains some edge), then F has a leaf v incident with an edge e of F. For each edge e € E(F°) at a
leaf v, we must have g(e) = 0, for g is conservative at v. Continue this procedure; we see that g|gm = 0. So g is
identically zero. O

Theorem 4.4. Let F be a forest of an oriented graph (G,e). For each edge e € E(F), let B be the fundamental
bond of G and ¢, a direction of B, such that orientations € and . agree on e. Then the set of flows [e,¢e.], where
e € E(F), forms a basis for the tension space T(G,e). Moreover, for each tension g € T(G,¢),

g= > gle)[e <.

e€E(F)

Proof. We first show that {[e,e.] : e € E(F°)} is linearly independent. In fact, set

Z ae [g,6) =0

e€E(F)

for some real numbers a.. Note that for a particular edge eg € E(F€) and an arbitrary edge e € E(F€), we have
[e,ee](e0) = 1 if e = ep and [e,ec](eg) = 0 if e # eg. Thus the above left-hand side at eg is ae,. Hence a, = 0. We
proved linear independence.

Let g be a tension of (G,g). We claim that the function h := g — > cpp) 9(€) [€, €] is identically zero. It is
clear that h is a tension of (G,¢), for it is a linear combinations of tensions. Note that for eg,e € E(F'), we have
[,€e](e0) = 1 if e = eg and [g, ec](eg) = 0 if e # eg. It follows that h(eg) = 0, i.e., h|g) = 0.

Now for each edge © € E(F°¢), let £, be the orientation of the fundamental cycle C, such that the orientations
e and &, agree on x. Since h|gpy = 0, then by definition of tension,

Y [eedd(e) hle) = [e,e.](x) h(x) = h(x)
ecE(Cy)

is zero. Thus h|g(pe) = 0. Hence h is identically zero. O

Corollary 4.5. Let (G,e) be an orientated graph. Then the flow space F(G,e) and the tension space T'(G,¢) are
orthogonal complements in RE, and

dim F(G,¢) = |E(GQ)| — |[V(G)| + ¢(G), dimT(G,e) = |V(GQ)| — ¢(G).



5 Cayley’s Formula

Theorem 5.1. The number of labeled trees on n vertices is n" 2.

Proof. Recall that a labeled branching is an oriented rooted tree such that there is exactly one edge tail at each
vertex, except the root. We show that the number of labeled branchings on n vertices is n"~!. Then Cayley’s
formula follows directly because each labeled tree gives rise to n labeled branchings, one for each choice of the root
vertex.

Note that each labeled branching on n vertices can be build up, one at a time to add an edge, starting with the
empty graph on n labeled vertices. In order to end up with a branching, the subgraph constructed at each stage
must be a branching forest (each of its component is a branching). Initially, this branching forest has n components,
each consists of a isolated vertex. At each stage, we add a new edge joining a root of one branching to a vertex of
another branching; the number of components decreases by one. If there are k components, the number of ways to
add a new edge e = uv is n(k — 1): each of the n vertices may be the vertex u, there are n choices for u; whereas v
must be the root of a branching that does not contain the vertex u, there are k — 1 choices for v. The total number
of ways of constructing a branching on n vertices in this way is thus

n

[[nk—1)=@m-1)n""

k=2

On the other hand, any individual branching on n vertices is constructed exactly (n — 1)! times by this procedure,
once for each of the order of n — 1 added edges. It follows that the number of labeled branchings is n” 1. O

Proposition 5.2. Let G be a graph and e be a non-loop edge. Let t(G) denote the number of spanning trees of a
labeled graph G. Then
t(G) = t(G\e) + t(G/e).

Proof. The spanning trees of G that do not contain the edge e are exactly the spanning trees of G'\\e. The spanning
trees T' that contain the edge e correspond to the spanning trees T'/e of G/e. O



