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1 Forests and Trees

• A graph is said to be acyclic if it does not contain cycle. An acyclic graph is also called a forest. A connected
acyclic graph is called a tree. A tree is said to be trivial if it contains a single vertex.

• Every nontrivial tree has at least two leaves, i.e., two vertices of degree 1.

• Any two vertices in a tree are connected by a unique path.

• If T is a tree, then |E(T )| = |V (T )| − 1. If F is a forest, then |E(F )| = |V (F )| − c(F ), where c(F ) is the
number of connected components of F .

2 Rooted Trees

• A tree T with a specified vertex x is called a rooted tree with the root x, denoted T (x). A tree with a root
x is referred to an x-tree.

• A branching is a rooted tree with an orientation such that every vertex but the root has in-degree 1. A
branching with a root x is referred to an x-branching.

• Let D be a digraph and x a vertex of D. Let X be the set of vertices reachable from x in D. Then there
exists an x-branching T (x) in D with V (T ) = X.

3 Spanning Trees

• A spanning subgraph H of a graph G is a subgraph such that V (H) = V (G). A spanning tree T of a
connected graph G is a tree and is also a spanning subgraph of G.

• Every connected graph has a spanning tree.

• If T is a spanning tree of a graph G, then for any edge e ∈ E(G) − E(T ), there exists a unique cycle Ce in
T ∪ e. Such a cycle is called a fundamental cycle of G with respect to T .

Proof. Let u, v be end-vertices of e. There are two internal-vertex disjoint paths between u and v in T ∪ e,
i.e., uev and the unique path between u and v in T . The two paths form a cycle Ce in T ∪ e.

Suppose C ′
e is a cycle other than Ce in T ∪ e. Then Ce∆C ′

e is a nontrivial even graph contained T . This is a
contradiction for T contains no cycle.

• If T is a spanning tree of a graph G, then for any edge e ∈ E(T ), there exists a unique bond Be of G which
is contained in T c ∪ e. Such a bond is called a fundamental bond of G with respect to T .
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Proof. Remove the edge e from T to obtain two disjoint trees T1 and T2. Then the edge set between the vertex
sets V (T1) and V (T2) is a bond of G.

Suppose B′
e is a bond of G other than Be and is contained in T c ∪ e. Then the symmetric difference Be∆B′

e is
an edge cut of G and is contained in T c. Clearly, E(T ) is contained in E(G)−Be∆B′

e. Since T is connected,
so is E(G)−Be∆B′

e. This a contradict to that Be∆B′
e is an edge cut of G.

Theorem 3.1. The collection of fundamental cycles of a connected graph G with respect to a spanning tree T forms
basis of the cycle space of G. So the cycle space has dimension |E(G)| − |V (G)|+ 1.

Proof. Let {Ce | e ∈ E(G− T )} be the collection of fundamental cycles of G with respect to T . We first show that
{1Ce | e ∈ E(G− T )} is linearly independent over F2.

Assume
∑

e∈E(G−T ) ae1Ce = 0 for some coefficients ae in F2. For a particular edge e0 ∈ E(G − T ), we have
e0 ∈ Ce0 and e0 6∈ Ce for all e ∈ E(G − T ) such that e 6= e0. So the left-hand side of

∑
e∈E(G−T ) ae1Ce = 0 is ae0 .

Thus ae0 = 0. This proves the linear independence.
To show that {1Ce | e ∈ E(G − T )} spans the cycle space of G, given a cycle C of G. We claim that 1C =∑

e∈E(C−T ) 1Ce , i.e.,

1C +
∑

e∈E(C∩T c)

1Ce = 0. (1)

It is clear that the left-hand side of (1) is zero on all edges of E(T c − C). The left-hand side of (1) also cancels to
zero on the edges of E(C ∩ T c). Thus the left-hand side of (1) is the characteristic function of an even graph on T .
Since T does not contain cycle, it follows that the left-hand side of (1) is zero on all edges of G.

Theorem 3.2. The collection of fundamental bonds of a connected graph G with respect to a spanning tree T forms
basis of the bond space of G. So the bond space has dimension |V (G)| − 1.

Proof. Let {Be | e ∈ E(T )} be the collection of fundamental bonds of G with respect to T . We first show that
{1Be | e ∈ E(T )} is linearly independent over F2.

Assume
∑

e∈E(T ) ae1Ce = 0 for some coefficients ae in F2. For a particular edge e0 ∈ E(T ), we have e0 ∈ Be0

and e0 6∈ Be for all e ∈ E(T ) such that e 6= e0. So the left-hand side of
∑

e∈E(T ) ae1Be = 0 is ae0 . Thus ae0 = 0.
This proves the linear independence.

To see that {1Ce | e ∈ E(G − T )} spans the bond space of G, given a bond B of G. We claim that 1B =∑
e∈E(B−T c) 1Be , i.e.,

1B +
∑

e∈E(B∩T )

1Be = 0. (2)

It is clear that the left-hand side of (2) is zero on all edges of E(T − B). The left-hand side of (2) also cancels to
zero on the edges of E(B ∩ T ). Thus the left-hand side of (2) is the characteristic function of an edge cut U on T c.
Since T = G−T c is connected, thus G−U is also connected. This implies that U must be empty. So left-hand side
of (2) is identically zero.

4 Flow Space and Tension Space of an Oriented Graph

Let G = (V, E) be a graph. Recall that an orientation of G is a multi-valued function ε : V ×E → {0,−1, 1} such
that (i) ε(v, e) = {±1} if e is a loop at v and (ii) if e = uv is a non-loop at its end-vertices u, v then ε(u, e), ε(v, e)
are single-valued and ε(u, e)ε(v, e) = −1. A graph with an orientation is called an oriented graph. The incidence
matrix of an oriented graph (G, ε) is a matrix M = [mve], where mve = 0 if e is a loop at v and mve = ε(v, e) if e
is a non-loop at v.

Let (G, ε) be an oriented graph throughout. A real-valued flow of (G, ε) is a function f : E → R such that the
flow-in equals the flow-out at every vertex v, i.e.,

∑

e∈E−(v)

f(e) =
∑

e∈E+(v)

f(e), (3)
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where E−(v) and E+(v) are the sets of edges whose arrows have heads and tails at v respectively. The set of all
real-valued flows of (G, ε) forms a subspace of the Euclidean RE , called the flow space of (G, ε), denoted F (G, ε).

A real-valued tension of (G, ε) is a function g : E → R such that for any directed cycle (C, εC) of G,
∑

e∈E(C)

[ε, εC ](e) g(e) = 0.

The set T (G, ε) of all real-valued tensions of (G, ε) forms a subspace of RE , called the tension space of (G, ε).
The inner product of RE is defined by

〈f, g〉 :=
∑

e∈E

f(e)g(e).

Let Gi (i = 1, 2) be subgraphs of G with orientations εi. The coupling of (G1, ε1) and (G2, ε2) is a function
[ε1, ε2] : E → {0,−1, 1}, defined by

[ε1, ε2](e) :=





1 if e ∈ E(G1) ∩ E(G2) is at v and ε1(v, e) = ε2(v, e),
−1 if e ∈ E(G1) ∩ E(G2) is at v and ε1(v, e) = ε2(v, e),

0 otherwise.
(4)

If we view εi as the extended functions εi : E → {0,−1, 1} by setting εi(v, e) = 0 for edges e 6∈ E(Gi) at their
end-vertices v, then for any edge e at its end-vertex v,

[ε1, ε2](e) = ε1(v, e) ε2(v, e).

Let C be a cycle of G. A direction of C is an orientation εC of C such that the digraph (C, εC) has a head
and a tail at every vertex of C; and (C, εC) is called a directed cycle. The indicator function IC of C is the
characteristic function of the edge set E(C).

Proposition 4.1. Let (C, εC) be a directed cycle of an oriented graph (G, ε). Then the coupling [ε, εC ] is a flow of
(G, ε).

Proof. For any vertex not in the cycle C, it is clear that (3) is satisfied. For a vertex v ∈ V (C), let e and e′ be
edges of C at v such that εC(v, e) = −1 and εC(v, e′) = 1. It is routing to check

∑

x∈E−(v)

[ε, εC ](x)−
∑

x∈E+(v)

[ε, εC ](x) = 0

for the cases: (1) ε(v, e) = εC(v, e), ε(v, e′) = εC(v, e′); (2) ε(v, e) 6= εC(v, e), ε(v, e′) = εC(v, e′); (3) ε(v, e) =
εC(v, e), ε(v, e′) 6= εC(v, e′); and (4) ε(v, e) 6= εC(v, e), ε(v, e′) 6= εC(v, e′).

Let U = [X, Xc] be an edge cut of G. A direction of U is an orientation εU on U such that every arc of the
digraph (U, εU ) has its tail in X and head in Xc; and (U, εU ) is called a directed cut of G.

Proposition 4.2. Let (U, εU ) be a directed cut of an oriented graph (G, ε). Then [ε, εU ] is a tension of (G, ε).

Proof. For any edge e at its end-vertex v, we have

[ε, εC ](e) [ε, εU ](e) = ε(v, e) εC(v, e) ε(v, e) εU (v, e) = [εC , εU ](e).

To see that [ε, εU ] is a tension, it suffices to show that
∑

e∈E(C)

[ε, εC ](e) [ε, εU ](e) =
∑

e∈E(C)

[εC , εU ](e) =
∑

e∈E(C)∩E(U)

[εC , εU ](e)

is zero. Since C is a cycle and U = [X, Xc] is a cut, the number of edges having agreed orientations with respect to
εC and εU equals the number of edges having opposite orientations. Hence the above right-hand side is zero.

Remark. The flows [ε, εC ] and tensions [ε, εU ] are orthogonal in the Euclidean space RE .
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Theorem 4.3. Let F be a forest of an oriented graph (G, ε). For each edge e ∈ E(F c), let Ce be the fundamental
cycle of G and εe a direction of Ce such that orientations ε and εe agree on e. Then the set of flows [ε, εe], where
e ∈ E(F c), forms a basis for the flow space F (G, ε). Moreover, for each flow f ∈ F (G, ε),

f =
∑

e∈E(F c)

f(e) [ε, εe].

Proof. We first show that {[ε, εe] : e ∈ E(F c)} is linearly independent. In fact, set
∑

e∈E(F c)

ae [ε, εe] = 0

for some real numbers ae. Note that for a particular edge e0 ∈ E(F c) and an arbitrary edge e ∈ E(F c), we have
[ε, εe](e0) = 1 if e = e0 and [ε, εe](e0) = 0 if e 6= e0. Thus the above left-hand side at e0 is ae0 . Hence ae0 = 0. We
proved linear independence.

Let f be a flow of (G, ε). We claim that the function g := f −∑
e∈E(F c) f(e) [ε, εe] is identically zero. It is clear

that g is a flow of (G, ε), for it is a linear combinations of flows. Note that for e0, e ∈ E(F c), we have [ε, εe](e0) = 1
if e = e0 and [ε, εe](e0) = 0 if e 6= e0. It follows that g(e0) = 0, i.e., g|E(F c) ≡ 0. Since F is a forest, if F is not
trivial (i.e. F contains some edge), then F has a leaf v incident with an edge e of F . For each edge e ∈ E(F c) at a
leaf v, we must have g(e) = 0, for g is conservative at v. Continue this procedure; we see that g|E(F ) ≡ 0. So g is
identically zero.

Theorem 4.4. Let F be a forest of an oriented graph (G, ε). For each edge e ∈ E(F ), let Be be the fundamental
bond of G and εe a direction of Be such that orientations ε and εe agree on e. Then the set of flows [ε, εe], where
e ∈ E(F ), forms a basis for the tension space T (G, ε). Moreover, for each tension g ∈ T (G, ε),

g =
∑

e∈E(F )

g(e) [ε, εe].

Proof. We first show that {[ε, εe] : e ∈ E(F c)} is linearly independent. In fact, set
∑

e∈E(F )

ae [ε, εe] = 0

for some real numbers ae. Note that for a particular edge e0 ∈ E(F c) and an arbitrary edge e ∈ E(F c), we have
[ε, εe](e0) = 1 if e = e0 and [ε, εe](e0) = 0 if e 6= e0. Thus the above left-hand side at e0 is ae0 . Hence ae0 = 0. We
proved linear independence.

Let g be a tension of (G, ε). We claim that the function h := g −∑
e∈E(F ) g(e) [ε, εe] is identically zero. It is

clear that h is a tension of (G, ε), for it is a linear combinations of tensions. Note that for e0, e ∈ E(F ), we have
[ε, εe](e0) = 1 if e = e0 and [ε, εe](e0) = 0 if e 6= e0. It follows that h(e0) = 0, i.e., h|E(F ) ≡ 0.

Now for each edge x ∈ E(F c), let εx be the orientation of the fundamental cycle Cx such that the orientations
ε and εx agree on x. Since h|E(F ) ≡ 0, then by definition of tension,

∑

e∈E(Cx)

[ε, εx](e) h(e) = [ε, εx](x) h(x) = h(x)

is zero. Thus h|E(F c) ≡ 0. Hence h is identically zero.

Corollary 4.5. Let (G, ε) be an orientated graph. Then the flow space F (G, ε) and the tension space T (G, ε) are
orthogonal complements in RE, and

dimF (G, ε) = |E(G)| − |V (G)|+ c(G), dimT (G, ε) = |V (G)| − c(G).
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5 Cayley’s Formula

Theorem 5.1. The number of labeled trees on n vertices is nn−2.

Proof. Recall that a labeled branching is an oriented rooted tree such that there is exactly one edge tail at each
vertex, except the root. We show that the number of labeled branchings on n vertices is nn−1. Then Cayley’s
formula follows directly because each labeled tree gives rise to n labeled branchings, one for each choice of the root
vertex.

Note that each labeled branching on n vertices can be build up, one at a time to add an edge, starting with the
empty graph on n labeled vertices. In order to end up with a branching, the subgraph constructed at each stage
must be a branching forest (each of its component is a branching). Initially, this branching forest has n components,
each consists of a isolated vertex. At each stage, we add a new edge joining a root of one branching to a vertex of
another branching; the number of components decreases by one. If there are k components, the number of ways to
add a new edge e = uv is n(k − 1): each of the n vertices may be the vertex u, there are n choices for u; whereas v
must be the root of a branching that does not contain the vertex u, there are k− 1 choices for v. The total number
of ways of constructing a branching on n vertices in this way is thus

n∏

k=2

n(k − 1) = (n− 1)!nn−1.

On the other hand, any individual branching on n vertices is constructed exactly (n− 1)! times by this procedure,
once for each of the order of n− 1 added edges. It follows that the number of labeled branchings is nn−1.

Proposition 5.2. Let G be a graph and e be a non-loop edge. Let t(G) denote the number of spanning trees of a
labeled graph G. Then

t(G) = t(G\e) + t(G/e).

Proof. The spanning trees of G that do not contain the edge e are exactly the spanning trees of G\e. The spanning
trees T that contain the edge e correspond to the spanning trees T/e of G/e.
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