Week 3: Connected Subgraphs

September 19, 2016

1 Connected Graphs

Path, Distance:

- A path from a vertex x to a vertex y in a graph G is referred to an xy-path.
- Let $X, Y \subset V(G)$. An (X, Y)-path is an xy-path with $x \in X$ and $y \in Y$.
- The **distance** between two vertices x and y, denoted d(x, y), is the minimal length of all xy-paths. If there is no path between x and y, we define $d(x, y) = \infty$.

Technique of Using Eigenvalues:

Theorem 1.1. Let G be a simple graph with n vertices in which any two vertices have exactly one common neighbor. Then G has a vertex of degree n-1. Consequently, G must be obtained from a family of disjoint triangles by gluing selected vertices, one from each triangle, to a single vertex.

Proof. Suppose it is not true, i.e., the maximal degree $\Delta(G) < n-1$. We first show that G is regular. Consider two non-adjacent vertices x and y. Let $f:N(x)\to N(y)$, where f(v) is defined as the unique common neighbor of v and y. We claim that f is injective. In fact, if f(u)=f(v) for distinct $u,v\in N(x)$, then f(u) is a common neighbor of u,v,y; now u and v have two common neighbors x and f(u), a contradiction. Thus $d(x)=|N(x)|\leq |N(y)|=d(y)$. Likewise, $d(y)\leq d(x)$. So d(x)=d(y). This is equivalent to say that any two adjacent vertices in \bar{G} (the complement simple graph of G) have the same degree. We claim that G is regular.

To this end, it suffices to show that \bar{G} is connected. Note that \bar{G} has no isolated vertices, since the minimal degree $\Delta(\bar{G}) = n - 1 - \Delta(G) > 0$. Suppose \bar{G} has two or more connected components. Take two edges $e_i = u_i v_i$ from distinct components of \bar{G} , i = 1, 2. Then $u_1 u_2 v_1 v_2 u_1$ is a cycle of G. Thus u_1 and v_1 have at least two common neighbors u_2, v_2 , a contradiction.

Let G be k-regular. Consider the number of paths of length 2 in G. Since any two vertices have exactly one common neighbor, there are $\binom{n}{2}$ paths of length 2. For each vertex v, there are $\binom{k}{2}$ paths with the middle vertex v. It follows that $\binom{n}{2} = n\binom{k}{2}$. So $n = k^2 - k + 1$. Let \mathbf{A} be the adjacency matrix of G. The (u, v)-entry of \mathbf{A}^2 is the number of (u, v)-walks

Let **A** be the adjacency matrix of G. The (u, v)-entry of \mathbf{A}^2 is the number of (u, v)-walks of length 2. Then \mathbf{A}^2 has its diagonal entries k and other entries 1. So $\mathbf{A}^2 = (k-1)\mathbf{I} + \mathbf{J}$, where

I is the identity matrix and **J** is a matrix whose entries are 1. Note that **J** has eigenvalue 0 with multiplicity n-1 and simple eigenvalue n. Since $\mathbf{A}^2 - \lambda \mathbf{I} = (k-1-\lambda)\mathbf{I} + \mathbf{J}$ and $n = k^2 - k + 1$, we see that \mathbf{A}^2 has eigenvalue k-1 with multiplicity n-1 and a simple eigenvalue k^2 with eigenvector $(1, \ldots, 1)^T$. Since $\mathbf{A}^2 - \lambda^2 \mathbf{I} = (\mathbf{A} - \lambda \mathbf{I})(\mathbf{A} + \lambda \mathbf{I})$, we see that **A** has the eigenvalues $\pm \sqrt{k-1}$ with multiplicity n-1 and a simple eigenvalue k.

Since the graph G is simple, we have $\operatorname{tr}(\mathbf{A}) = \mathbf{0}$ (the sum of its diagonal entries). Recall that the trace of \mathbf{A} is the sum of its eigenvalues counted with multiplicities. We have $\pm (n-1)\sqrt{k-1} + k = 0$; it forces that $(n-1)\sqrt{k-1} = k$. The only possible choice is that k=2 and n=3, i.e., G is a triangle, where $\Delta(G)=2$. This is contradict to that $\Delta(G) < n-1$.

Remark: The above proof is interesting, but the result is boring.

2 Euler Tour

- A trail in a connected graph is called an **Euler tail** if it traverses every edge of the graph.
- Let G be a connected graph. A **tour** of G is a closed walk that traverses each edge at least once. An **Euler tour** is a tour that traverses each edge exactly once. A graph is said to be **Eulerian** if it admits an Euler tour.

Theorem 2.1. A connected graph G has an Euler tour iff G has even degree at every vertex.

Proof. " \Rightarrow " Let $T = v_0 e_1 v_1 e_2 \dots e_n v_n$ be an Euler tour of G. When one travels along the Euler tour and passes by a vertex v, the person must come towards v through one edge and depart from v through another edge. Then the number of times coming towards v equals the number times departing from v. Thus the degree of v must be even.

"\(=" \) Consider a longest trail $T = v_0 e_1 v_1 e_2 \dots e_n v_n$ in G. We show that T is an Euler tour.

- (a) Claim $v_0 = v_\ell$. Suppose $v_0 \neq v_\ell$. Let v_ℓ be appeared k times in the vertex sequence $(v_0, v_1, \ldots, v_{\ell-1})$, say, $v_{i_1} = \cdots = v_{i_k} = v_\ell$, $i_1 < \cdots < i_{i_k} < \ell$. Then the degree of v_ℓ in T is 2k+1. Since the degree of v_ℓ in G is even, there is an edge e in G but not in T incident with v_ℓ and another vertex v. Thus T' = Tev is a longer trail in G, a contradiction.
- (b) Claim that G E(T) has no edges incident with a vertex in T. Suppose there is an edge $e \in E(G) E(T)$ incident with a vertex $v_i \in V(T)$ and another vertex v. Then

$$T' = vev_1e_{i+1}v_{i+1}\cdots e_{\ell}v_{\ell}(v_0)e_1v_1\cdots v_{i-1}e_iv_i$$

is a longer trail in G, a contradiction.

(c) Claim that T uses every edge of G. Suppose there exists an edge e not used in T. Let e be incident with vertices u, v. Then $u, v \notin V(T)$. Since G is connected, there is a shortest path $P = u_0x_1u_1\cdots x_mu_m$ from T to u, where $u_0 = u_i$ and $u_m = u$. We claim that $x \in E(T)$. Suppose $x_1 \in E(T)$, then $u_1 \in V(T)$; thus $P' = u_1x_2u_2\cdots x_mu_m$ is a shorter path from T to u, a contradiction. Now since $x_1 \notin E(T)$, we have a longer trail

$$T' = u_1 x_1(u_0) v_i e_{i+1} v_{i+1} \cdots e_{\ell} v_{\ell}(v_0) e_1 v_1 e_2 \cdots v_{i-1} e_i v_i.$$

Again this is a contradiction.

Since T is a closed trail that uses every edge of G, we see that T is an Euler tour.

Corollary 2.2. A connected graph G has an Euler trail iff G has even degree at all vertices or G has exactly two vertices of odd degree.

Proof. " \Rightarrow " Let $T := v_0 e_1 v_1 \cdots e_\ell v_\ell$ be an Euler trail of G. If $v_0 = v_\ell$, then T is an Euler tour. By Theorem 2.1 G, G is an even graph. If $v_0 \neq v_\ell$, we add a new edge e_0 between v_0 and v_ℓ . Then $T' := Te_0 v_0$ is an Euler tour of the graph $G' := G \cup e_0$. Again by Theorem 2.1, G' is an even graph. It follows that G has exactly the two vertices v_0, v_ℓ of odd degree.

" \Leftarrow " It is Theorem 2.1 when G is an even graph. Let G have exactly two vertices u and v of odd degree. We add a new edge between u and v to G to obtain a new graph G'. Then G' is a connected even graph. Thus G' has an Euler tour by Theorem 2.1. Remove the edge e from the Euler tour for G', we obtain an Euler trail for G.

A **cut edge** of a graph G is an edge e such that $G \setminus e$ has more connected components than G.

Lemma 2.3. let G be a connected graph with a specified vertex v. Assume that G is either an even graph (former case) or G has exactly two vertices u and v of odd degree (latter case).

- (a) If $d_G(v) = 1$ and e is a link joining v to a vertex w, then G is the latter case. Moreover, $G \setminus v$ is connected, either having all vertices of even degree or having exactly two vertices v and w of odd degree.
- (b) If $d_G(v) \geq 2$ and $d_G(v)$ is even, then G is the former case. Moreover, for each edge e joining v to a vertex w, $G \setminus e$ is connected, either having all vertices of even degree or having exactly two vertices v and w of odd degree.
- (c) If $d_G(v) \geq 2$ and $d_G(v)$ is odd, then G is the latter case. Moreover, there exists an edge e joining v to a vertex w such that $G \setminus e$ is connected, either having all vertices of even degree or having exactly two vertices v and w of odd degree.
- *Proof.* (a) It is clear the latter case. If w = u, i.e., $d_G(w)$ is odd, then $G \setminus v$ is a connected even graph. If $w \neq u$, i.e., $d_G(w)$ is even, then $G \setminus v$ has exactly two vertices u and w of odd degree.
- (b) Since $d_G(v)$ is even, it turns out that G is the former case. If e is a loop at v, then $G \setminus e$ have the same property as G. If e is a link, then $G \setminus e$ has exactly two odd-degree vertices v and w. We still need to show that $G \setminus e$ is connected. Suppose $G \setminus e$ has two connected components G_1 and G_2 with $v \in V(G_1)$ and $w \in V(G_2)$. Then G_1 has exactly one vertex v of odd degree. This is impossible because the number of odd-degree vertices is always even.
- (c) It is clear that G is the latter case. If G has no cut edge at v, then for any edge e at v joining to a vertex w, $G \setminus e$ is an even graph if w = u or $G \setminus e$ has exactly two vertices u and w of odd degree.

Let G have a cut edge e' at v. Then $G \setminus e'$ has two connected components G_1 and G_2 with $v \in V(G_1)$, $d_{G_1}(v)$ is even, and $d_G(v) \geq 3$. If $u \in V(G_1)$, then G_1 has exactly one odd-degree vertex u; this is a contradiction. So $u \notin V(G_1)$, and G_1 is a connected even graph and $d_{G_1}(v) \geq 2$. Then by (b) for any edge $e \in E(G_1)$ at v joining to a vertex w, $G_1 \setminus e$

is connected, either having all vertices of even degree or having exactly two vertices v and w of odd degree. Consequently, $G \setminus e$ is connected, either having all vertices of even degree or having exactly two vertices u and w of odd degree.

Theorem 2.4. (Fleury's Algorithm) Input: a connected graph G = (V, E). Output: an Euler tour, or an Euler trail, or no Euler trail for G.

- Step 1 If there are vertices of odd degree, then start at one such vertex u. Otherwise, start at any vertex u. Set T := u and G' := G.
- Step 2 Let v be the terminal vertex of T. If there is no edge remaining at v in G', stop. (Now T is an Euler tour if v = u and an Euler trail if $v \neq u$.)
- Step 3 If there is exactly one edge e remaining at v in G', joining v to another vertex w, set T := Tew, $G' := G' \setminus e$; and return to Step 2.
- Step 4 If there are more than one edge remaining at v in G', choose one of these edges, say, an edge e with end-vertices v to w, in such a way that $G' \setminus e$ is still connect; T := Tew, $G' := G' \setminus e$, and return to Step 2. If such an edge can not be selected, stop. (There is no Euler trail.)

Proof. Consider the pair (T, G'), called an **Eulerian pair** of G, where T is a trail of G, G' is a connected subgraph of G such that G' is either an even graph or has exactly two vertices of odd degree, the terminal vertex v of T is a vertex of G', and if G' is the case of having exactly two vertices of odd degree then v is one of the two odd-degree vertices. Such a pair is said to be **complementary** if $E(G) = E(T) \sqcup E(G')$ (disjoint union). The initial pair (T, G') in Fleury's algorithm is an Eulerian complementary pair.

Let (T, G') bean Eulerian complementary pair with the terminal vertex v of T in the process of Fleury's algorithm before entering Step 2. Now in Step 2, if there is no edge at v in G', then $E(G') = \emptyset$ (since G' is connected). It is clear that T is an Euler trail of G. In Step 3, we have $d_{G'}(v) = 1$; then by Lemma 2.3(c), $(Tew, G' \setminus e)$ is an Eulerian complementary pair. In Step 4, we have $d_{G'}(v) \geq 2$; then by Lemma 2.3(b) and Lemma 2.3(c), $(Tew, G' \setminus e)$ is an Eulerian complementary pair.

Since all pair (T, G') constructed in Fleury's algorithm are Eulerian complementary pairs, and edges of G' are reducing when iterates, Fleury's algorithm stops at (T, \emptyset) with T an Euler train of G after finite number of iterates.

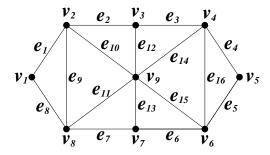


Figure 1: A graph with an Euler trail.

Example 2.1. An Euler trail for the graph in Figure 1 is given as

 $v_3e_3v_4e_4v_5e_5v_6e_6v_7e_7v_8e_8v_1e_1v_2e_2v_3e_{12}v_9e_{14}v_4e_{16}v_6e_{15}v_9e_{10}v_2e_9v_8e_{11}v_9e_{13}v_7.$

3 Connection in Digraphs

- A directed walk in a digraph D is an alternating sequence of vertices and arcs $W := v_0 a_1 v_1 \dots a_\ell v_\ell$ such that the arc a_i has the tail v_{i-1} and head v_i , $i = 1, \dots, \ell$. We call v_0 the initial vertex and v_ℓ the terminal vertex of W. Such a walk is referred to a directed (v_0, v_ℓ) -walk; the subwalk of W from a vertex v_i to a vertex v_j is referred to a (v_i, v_j) -segment of W.
- A directed trail is a directed walk with distinct arcs. A directed path is a directed walk with distinct arcs and distinct vertices, except the possible case that the initial vertex equals the terminal vertex.
- Let D be a digraph. A vertex y is said to be **reachable** from a vertex x in D if there is a directed (x,y)-path from x to y in D. Two vertices x and y of D are said to be **strongly connected** if y is reachable from x and x is reachable from y in x. Strongly connectedness is an equivalence relation on x0. A sub-digraph of x0 induced by an equivalence class of the strong connectedness is called a **strongly connected component** or **strong component** of x0.
- A directed Euler trail in a digraph D is a directed trail that uses every arc of D. A closed directed Euler trail is called a directed Euler tour. A digraph is said to be Eulerian if it has a directed Euler tour.

Theorem 3.1. Let x and y be two vertices of a digraph D. Then y is reachable from x in D iff $(X, X^c) \neq \emptyset$ for every subset $X \subset V(D)$ such that $x \in X$ and $y \notin X$.

Proof. For necessity, let P be a directed path from x to y. For each proper subset $X \subset V(D)$ with $x \in X$ and $y \in X^c$, the path P passes between X and X^c . The first arc of P from X to X^c ; so $(X, X^c) \neq \emptyset$.

Conversely, for sufficiency, suppose that y is not reachable from x. Let X be the set of vertices reachable from x. Then $y \in X^c$. Since every vertex of X^c is not reachable from x, there is no arc from X to X^c . So $(X, X^c) = varnothing$, a contradiction.

Theorem 3.2. A connected digraph D is Eulerian iff the in-degree equals the out-degree at every vertex of D.

Proof. \Box

4 Cycle Double Cover

Cycle Cover, Cycle Double Cover

- A cycle cover of a graph G is a family \mathcal{F} of subgraphs of G such that $E(G) = \bigcup_{H \in \mathcal{F}} E(H)$ and each member of \mathcal{F} is a cycle.
- A cycle double cover of a graph G is a cycle cover such that each edge of G belongs to exactly two members of \mathcal{F} , i.e., each edge of G is covered exactly twice by \mathcal{F} .

Proposition 4.1. Let G be a graph having a cycle covering C that each edge of G is covered at most twice. Then G has a cycle double cover.

Proof. Let $E_1 \subset E(G)$ be the edge subset whose edges are covered exactly one by \mathcal{C} . Since \mathcal{C} is a covering and each edge of G is covered at most twice by \mathcal{C} , we see that $G[E_1]$ is an Eulerian graph (i.e. even graph). So $G[E_1]$ is a union of edge disjoint cycles, i.e., $G[E_1]$ has a covering \mathcal{C}_1 that each edge of $G[E_1]$ is covered exactly once. Thus $\mathcal{C}_2 = \mathcal{C} \cup \mathcal{C}_1$ is a cycle double covering. of G.

Cycle Double Cover Conjecture

Conjecture 4.2. Every graph (i.e. having no cut edge) has a cycle double cover.