Week 1-2: Graphs and Subgraphs

September 19, 2020

1 Graphs
Definition of Graphs:

e A graph G is a system of ordered pair (V, E) of two finite disjoint sets V' of vertices
and F of edges, such that each edge e connects two (possibly identical) vertices u, v
(called the endpoints of e¢). We usually write V = V(G) and E = E(G). For
convenience, we write each edge e with endpoints u,v as e = uv or Endg(e) = {u,v}.

So Endg : E — P12(V) = {{v}, {u,v} :u,v € V}.

e When an edge e connects vertices v and v, we also say that e joins v and v, or, v and
v are incident with e, or, u and v are adjacent by e. We say that e is a link if u # v
and a loop if u = v.

e Two edges are parallel if they have the same endpoints. Parallel edges are also called
multiple edges.

Simple Graphs, Multigraphs, Complete Graphs, Bipartite Graphs:

e A graph is simple if it has no loops and parallel edges. A graph with possible loops
and parallel edges is emphasized as a multigraph.

e The graph with empty vertex set (and hence empty edge set) is a null graph.

e A graph is trivial if it has only one vertex and no edges. All other graphs are non-
trivial.

e An empty graph is a graph with possible vertices but no edges.

e A complete graph is a simple graph that every pair of vertices are adjacent. A
complete graph with n vertices is denoted by K.

e A graph G is bipartite if its vertex set V(G) can be partitioned into two disjoint
nonempty subsets X, Y such that every edge has one endpoint in X and one endpoint
in Y; such a partition {X,Y} is called a bipartition of G, and such a bipartite graph
is denoted by G[X,Y].



e A complete bipartite graph is a bipartite graph G[X, Y] that each vertex in X is
adjacent to every vertex in Y; we abbreviate G[X, Y] to K, ,, if | X| =m and |Y| = n.

Neighbors, Degree:

e Two adjacent vertices are neighbors each other. The set of neighbors of a vertex v in
a graph G is the set of all vertices adjacent with v, denoted N,(G) or G[v].

e The degree of a vertex v in a graph G, denoted dg(v), is the number of edges incident
with the vertex, where each loop at v is counted twice. A vertex is isolated if its
degree is 0. For a simple graph G, dg(v) = |N,(G)|.

e A graph is regular if every vertex has the same degree. A graph is k-regular if every
vertex has degree k.

e A cycle is a connected 2-regular graph. If a graph is connected and its degree is at
least two at every vertex, then the graph contains a cycle.

e For each graph G = (V, E),

2B = 3 de(v)

veV

e The number of odd-degree vertices of a graph is even.

Proposition 1.1. Let G[X,Y] be a bipartite graph without isolated vertices. If d(x) > d(y)
for all edge vy with x € X and y € Y, then |X| < |Y|, and the equality holds if and only if
d(xz) = d(y) for all edges xy with x € X andy €Y.

Proof. Since d(z) > d(y) for all edges xy with € X and y € Y, we have
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It is clear that if d(z) = d(y) for all edges xy with x € X and y € Y then |X| = |Y].
Conversely, if |X| = |Y|, the above middle inequality must be equality. It forces that
d(x) = d(y) for all edges zy with = € X. O

Incidence Matrix, Adjacency Matrix:

e The incidence matrix of a graph G is a matrix M = [m,.], whose rows are indexed
by vertices and whose columns are indexed by the edges of G, such that (i) the entry
mye = 0 at (v, e) if the vertex v is not incident with the edge e, (ii) my. = 1 if v is
incident with e once (i.e., e is a link), and (iii) m,. = 2 if v is incident with e twice
(i.e., e is a loop).

e The adjacency matrix of a graph G is a quare matrix A = [a,,], whose rows and
columns are indexed by vertices of G, where a,, is the number of edges between the
vertices v and v, each loop is counted twice.



Walk, Trail, Path, Cycle, Connectedness:
e A walk from a vertex u to a vertex v in a graph G is a sequence
W = vgejvies - - - Vo100

of vertices and edges with vg = w and v, = v, whose terms are alternate between
vertices and edges of GG, such that the edge ¢; is incident with the vertices v;_; and v;,
1 <4 < (. The vertex vy is the initial vertex, v, is the terminal vertex of G, and
the number ¢ is the length of W. A walk is closed if its initial and terminal vertices
are identical.

e A walks is a trail if its edges are distinct.

e A walk is a path if its vertices are distinct (so are its edges), except possible iden-
tical initial and terminal vertices, for which it is referred to a closed path. If P =
Vpe1V1 - - - Vp_1€pvp 18 a path, then vy, vy, ..., v, are distinct, or, vg = vy, V1, Vo, ..., V1
are distinct; the vertices vy, vo,...,v,_1 are internal vertices of P.

e A graph is connected if there is a path between any two vertices of the graph.

e The underlying graph of a closed path is a cycle. The underlying graph of a closed
trail is connected and has even degree everywhere.

e An Euler trail of a graph G is a trail that uses every edge of G exactly once. An
Euler tour is a closed Euler trail. The underlying graph of an Euler tour is called an
Eulerian graph.

e A graph is called an even graph if it has even degree everywhere.
e A graph is Eulerian if and only if it is a connected even graph.

e A Hamilton path of graph G is a path that uses every vertex of G. A closed Hamilton
path is called a Hamilton cycle.

Theorem 1.2. (Fleury’s Algorithm) Input: Graph G = (V, E).
Output: FEuler tour, or Fuler trail, or no Euler trail.

STEP 1: If there are vertices of odd degree, choose such a vertex v; otherwise, choose any
vertex v. Set SEQ = v.

STEP 2: [f there is no edge remaining at the terminal vertex v of SEQ, then STOP. (There
is an Euler trail. If v is the same as the initial vertex of SEQ, it is an Euler
tour.)

STEP 3: If there is exactly one edge e from v to another vertex w, then remove ve and go
to STEP 5.

STEP 4: If there are more than one edges remaining at v, choose one of these edges, say
an edge e from v to w, in such a way that the removal of e will not disconnect
the remaining graph, then remove e and go to STEP 5. If such an edge can not
be selected, STOP. (There is neither Euler tour nor Euler trail.)
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STEP 5: Add ew to the end of SEQ, replace v by w, and return to STEP 2.

Union, Intersection, Cartesian Product:

e Two graphs are said to be disjoint if they have no common vertices, and to be edge-
disjoint if they have no common edges.

e The union of two graphs G and H is the graph G U H with vertex set V(G) UV (H)
and edge set E(G)U E(H). If G and H are disjoint, we write their union as G + H.

e The intersection of two graphs G and H is the graph G N H with vertex set V(G) N
V(H) and edge set E(G) N E(H). If G and H are disjoint, then G + H is the null
graph.

e The Cartesian product of two simple graphs G, H is the graph GLIH, whose vertex
set is the Cartesian product V(G) x V(H) and whose edge set is

{(u,z)(v,z) :w € E(G),z € V(H)}U{(u,2)(u,y) : u € V(G),zy € E(H)}.

Digraphs, Out-degree, In-degree:

e A directed graph (or digraph for short) is an ordered pair D = (V, A) of disjoint set
V of vertices and a set A of arcs (edges with a direction), such that each arc a € A
is associated with an ordered pair (u,v) of two (possible identical) vertices u and v of
V'; the arc a points from u to v, or, e points away from u and points toward v.

e A tournament is a directed complete graph.

e Let v be a vertex in a digraph D. The out-degree of v is the number of arcs of which
v is tail, denoted d}f,(v). The in-degree of v is the number of arcs of which v is a head,

denoted d,(v).

e Let a be an arc in a digraph D from a vertex u to a vertex v. We call v an in-neighbor
of v, and v an out-neighbor of u. We denote by Nj (v) the set of all out-neighbors
of a vertex v, and by Np(v) the set of all in-neighbors of v.

Orientations and Oriented Incidence Matrix:

e We may think of each graph G embedded in a Euclidean space R?, viewing each edge
e € E(G) with endpoints u,v as a simple path e : [0,1] — R? such that e(0) = u and
e(l) =wv. If e is a loop, then e is a closed simple path with e(0) = e(1).

e An orientation of an edge e with endpoints u, v is either the direction of the simple
paths e : [0,1] — R? from ¢(0) to e(1) or its reverse direction. An orientation of a
graph is an assignment that each edge of the graph is given an orientation. A graph
G is oriented (or directed) if G is given an orientation w, denoted (G, w).



e The oriented incidence matrix of an oriented graph (G,w) is a {—1,0, 1}-valued
matrix M indexed by V(G) x E(G), such that the entry (v, e) has value 0 if e is a loop
or e is not incident with v, and has value +1 (—1) if e is a link pointing toward (away
from) v.

Theorem 1.3. FEvery tournament has a directed Hamilton path.

Proof. Let D be a tournament with n vertices. We proceed by induction on n. It is trivial for
n = 2,3 by inspection. Now remove one vertex v from D to obtain a digraph D’ = D~ v with
n — 1 vertices. By induction hypothesis, D’ has a directed Hamilton path P = vivy ... v,
from vy to v,_1. The situation can be divided into the following cases.

CASE 1. (v,v1) s a directed edge in D. Then P, = vvjvy...v,_; is a directed Hamilton
path for D. Otherwise, (v1,v) is the directed edge.

CASE 2. (v1,v) and (v,vq) are directed edges in D. Then Py = vjvvy ... v, is a directed
Hamilton path for D. Otherwise, (vq,v) is the directed edge.

CASE 3. (v1,v), (v2,v), and (v,v3) are directed edges in D. Then Py = 0109005 ... V1
is a directed Hamilton path for D. Otherwise, (vs3,v) is the directed edge.

CASE k. (v1,v), (v2,v), ..., (v,vx) are directed edges in D. Then P, = vy ... Ug_ 10V . .. Vp_1
is a directed Hamilton path for D. Otherwise, (vg,v) is the directed edge.

CASE n. (v1,v), (v2,v), ..., (v,v,_1) are directed edges in D. Then P, = 010y ...V, 200, 1
is a directed Hamilton path for D. Otherwise, (v,_1,v) is the directed edge.

CASE n+ 1. P,y = v1vy---v,_10 is a directed Hamilton path for D. O

Isomorphism, Automorphism, Homomorphism:
e Two graphs G and H are equal (or identical) if V(G) = V(H) and E(G) = E(H).

e A graph G is isomorphic to a graph H if there exist bijective mappings f : V(G) —
V(H) and g : E(G) — E(H) such that Endg(e) = {u,v} if and only if Endg(g(e)) =
{f(w), f(v)}; such a pair (f, g) of mappings is called an isomorphism from G to H.

e An isomorphism from a graph G to itself if called an automorphism of G. The set
of all automorphisms of G froms a group under the composition of mappings, called
the automorphism group of GG, denoted Aut(G).

e A homomorphism from a graph G to a graph H if there exist maps f : V(G) — V(H)
and g : F(G) — E(H) such that if vertices u,v are adjacent by an edge e then the
vertices f(u), f(v) are adjacent by the edge g(e). [The concept of homomorphism of
graphs is not yet standardized. We rarely use the concept in our course.]

Labeled Graphs:

e Given a finite set V. A simple graph G = (V, E') on V can be considered as a subset of
(‘2/), the set of all 2-element subsets of V. A simple graph whose vertices are labeled,
but whose edges are not labeled, is referred to a labeled simple graph.

e Given a set V of n elements. There are 2(2) labeled simple graphs with the vertex set
V. We denote by G(V) the set of all labeled simple graphs with vertex set V.



e Let G be an unlabeled graph with n vertices. Then the number of labelings of G is
!

22—, where Aut(G) is the automorphism group of G with any labeling. Then

AuTtL(G)
> i =2
Aut(Q)

G unlabeled graph
with n vertices

e The number of unlabeled graphs with n vertices is at least [2(2) /nl].

Intersection Graphs, Interval Graphs, Polyhedral Graphs, Cayley Graphs:

e Let F be a family of subsets of set V. The intersection graph of F is a graph whose
vertex set is F, and two members of F are adjacent if their intersection is nonempty.

e Let V =R and F be a set of some closed intervals of R. The intersection graph of F
is called an interval graph.

e Given a polytope P of R3. The vertices and edges of P form a graph, called a poly-
hedral graph.

e Let I' be a group. Given a subset S C I' such that S does not contain the identity
element of I' and is closed under inverse operation. The Cayley graph of I' with
respect to S is a graph G(I', S) with vertex set I in which two vertices z, y are adjacent
ifzy~'es.

e Each Cayley graph is regular.

Networks, Big Graphs, Infinite Graphs:

2 Subgraphs
Definition of Subgraphs:

e A graph H is called a subgraph of a graph G if V(H) C V(G), E(H) C E(G), and
Endy : E(H) — P12(V(H)) is the restriction of Endg : E(G) — P12(V(G)) to E(H).
We then say that G contains H or H is contained in G.

e A copy of a graph H in a graph G is a subgraph of G which is isomorphic to H. Such
a subgraph is also referred to as an H-subgraph of G.

e An embedding of graph H in a graph G is an isomorphism from H to a subgraph of
G. For each copy of H in G. For each copy of H in G, there are |Aut(H)| embeddings
in G, whose image subgraph is fixed.

e A maximal connected subgraph of G is called a connected component (or just
component) of G. The number of connected components of G is denoted by ¢(G).

Deletion, Contraction:



e Let v be a vertex in a graph G. We denote by G . v the graph obtained from G by
deleting the vertex v and all edges incident with v. Such an operation is referred to as
an vertex deletion, and G \ v as a vertex-deleted subgraph.

e Let e be an edge of graph G. We denote by G ~\ e the graph obtained from G by
deleting the edge e but leaving the endpoints of e. Such an operation is referred to
as an edge deletion, and G \ e as an edge-deleted subgraph. If S C E(G), we
denote by G\ S the graph obtained from G by deleting all edges of S.

e Let e be an edge of a graph G. We denote by G/e the graph obtained from G by deleting
the edge e and gluing the endpoints of e to become one vertex. Such an operation is
called a contraction, and G/e an edge-contracted minor of G. Note that there
are edges (other than e) joining the endpoints of e, then those edges become loops in
G/e. If S C E(G), we denote by G/S the graph obtained from G by contracting all
edges of S.

Theorem 2.1. A graph G whose every vertex has degree at least 2 contains a cycle.

Proof. Let P := vgeqvy - - - epvp be a longest path in G. Such a path does exist since G is
finite. Of course, ¢ > 1. If vy = vy, then the underlying graph of P is already a cycle. If
vy # vy, then the degree of v, in P must be 1. Since the degree of v, in G is at least 2,
there exists an edge e,11 (not in P) joining v, to another vertex vpyq. If vy = v; for some i
with 0 < ¢ < /¢, then the underlying graph of P, := v;e; 1 1v;11€541 - - - €pvgepi1vprq 18 a cycle.
Otherwise, () := Pey1v,41 is a longer path, a contradiction. m

Corollary 2.2. A graph with some edges but no cycles has at least one vertex of degree 1;
actually it has at leat two vertices of degree 1.

Proof. The degree of the initial vertex and the terminal vertex of a longest path P in G have
degree 1. 0

Acyclic Graphs (=Forests):

e A graph is said to be acyclic it it contains no cycles. An acyclic graph is also called
a forest. A tree is a connected forest.

e FEach vertex of degree 1 in a tree is called a leaf of the tree.

e Fach tree with edges contains at least two leaves.
o If 7= (V,FE) is a tree, then |E| = |V| - 1. If F = (V, E) is a forest, then
|E| = [V] = e(F),
where ¢(F) is the number of connected components of F.
Spanning Subgraphs, Induced Subgraphs:

e A spanning subgraph H of a graph G is subgraph such that V/(H) = V(G).



e Let X be a vertex subset of a graph G. An induced subgraph of G by X is a graph
G[X], whose vertex set is X and whose edge set consists of the edges of G having
endpoints in X.

e Let S be an edge subset of a graph G. An induced subgraph of G by S is a graph
G[S] whose edge set is S and whose vertex set consists of the endpoints of edges in S.
The induced spanning subgraph of G by S is the subgraph (V,.5).

Decomposition, Coverings:

e A decomposition of a graph G is a family of edge-disjoint subgraphs of G such that

EG) = | E@#H).

HeF

e A covering or cover of a graph G is a family F of not necessarily edge-disjoint
subgraphs of GG such that

HeF

e A covering F of a graph G is referred to a path (cycle) covering if all members of
F are paths (cycles) of G.

e A covering of a graph G is uniform if each edge of GG is covered the same number of
times by the members of 7. When this number is k, the covering is called a k-cover.
A 2-cover is usually called a double cover.

Theorem 2.3. A graph admits a cycle decomposition if and only if it is an even graph.

Proof. The necessity is trivial, for every cycle is 2-regular and the degree of each vertex in
the graph is a sum of 2’s. The sufficiency is as follows.

Let G be an even graph. If G contains some edges, then G contains a cycle Cj by
Theorem 2.1. Remove the edge of C'} from G to obtain a graph G, which is still even. Then
by Theorem 2.1 again there is a cycle C in G;. Remove the edges of C5 from G to obtain
a graph Go, which is still even. Continue this procedure, we obtain a family of edge-disjoint
cycles C,Cy, ..., Cy whose edge union is F(G); the family forms a cycle decomposition of
G. m

Theorem 2.4. Let F = {F,...,Fy} be a family of complete bipartite graphs. If F is a
decomposition of K,,, then k > n — 1.

Proof. Tt is trivially true for n = 1,2 (for n = 1, there is no edges so the family is empty;
for n = 2, at least one bipartite graph is required). Suppose n > 3 is the smallest positive
integer such that the statement is not true, i.e., K,, = (V, F) can be partitioned into complete
bipartite graphs Fy, ..., Fy with k < n—1, where F; = [ X}, Y;]. Note that E(K,,) = | |[X;, Yi].
Consider the system of linear equations:

> w=0, Y z,=0, i=1...k

veV veEX;



There are n variables and k41 equations with £+ 1 < n. The system has a nonzero solution
Ty = ¢y, v € V (not all zero). Since E(K,) = | |[X;,Y:], we have

S =y (Sa)(Se)

wEE(Kn) i=1 ueX; veY;
Thus
2
1= (a) - Sae ¥ e
veV veV weE(Ky)
k
- Yy (Ta)(Xe)
veV k=1 ueX; veY;
= Z 2 >0,
veV
which is a contradiction. ]

Cuts, Bonds, Even Graphs:

e Let X and Y be vertex subsets of a graph G or digraph D. We introduce the edge
subset and the arc subset of the form

[X,Y]: = set of edges with one vertex in X and the other vertex in Y,
(X,Y): = set of arcs having the head in X and the tail in Y.

We view each cut [X, X¢] of G as a spanning bipartite subgraph of G.

e An edge cut or just a cut of a graph G is a nonempty edge subset of the form [X, X¢],
where X is a vertex subset and X¢ is its complement in V(G). We also write

X =dcX = [X, X9
If X is a cut, then X, X must be proper subsets of V(G).

e For each vertex subset X of a graph G,

HIX, X+ 24X, X] = da(v).

veX

e A bond of a graph G is a minimal cut, i.e., an edge cut none of whose proper subset
is an edge cut.

e Deleting the edges of a cut increases the number of connected components. Deleting
the edges of a bond increases exactly by one the number of connected components.

e An even graph is a graph whose every vertex has even degree.



e Every even graph can be decomposed into a family of edge-disjoint cycles. This why
even graphs are also called algebraic cycles.

Theorem 2.5. A graph G is even if and only if every cut of G has even number of edges.

Proof. Let G be an even graph. For each proper subset X C V(G), it is clear that [X, X¢|
contains even number of edges:

HIX, X = 24X, X]+ D de(v).

veX
Conversely, for each v € V(G), it is clear that dg(v) = #[v, V \ v] + 2#][v, v] is even. O

Proposition 2.6 (Bond Charcaterization). Let B be an edge subset of a connected graph
G. Then B is a bond if, and only if, there exist disjoint connected vertex subsets X,Y such
that B = [X,Y] = [X, X¢].

Proof. “=" Let B be a minimal cut. Being a cut, there exists a proper vertex subset
X' such that B = [X’, X’]. Let X' be decomposed into connected vertex subsets X;.
Then each [X;, X’°] is a cut and B = [X', X"] = | |[Xi, X"]. Since B is minimal, only
one of [X;, X'] is nonempty, say [Xi, X"]. Set X = Xj, we have B = [X, X’]. Let
X’® be decomposed into connected vertex subsets Y;. Likewise, each [X,Y]] is a cut, and
B = | |[X,Y;]. Since B is minimal, only one of [X, Y]] is nonempty, say [X, Y1]. Set Y =Y,
we have B = [X,Y] = [X, X¢].

“<” Let B = [X,Y] = [X, X¢] be a cut, where X, Y are connected vertex subsets. Note
that G[X U Y] is connected. Suppose B is not minimal, i.e., there exists a proper subset
B’ C B such that B’ is a cut. Then ¢(G \ B’) > ¢(G) as B’ is a cut. However, the
edges of B ~. B’ are between X and Y, and both X,Y are connected vertex subsets. So
c¢(G N B') = ¢(QG), contradictory to ¢(G \ B') > ¢(G). O

Proposition 2.7 (Bond Decomposition of Cut). Fach cut of a graph G is an edge-disjoint
union of bonds of G.

Proof. Given a cut [X, X of G. Let X be decomposed into disjoint connected vertex
subsets X;. Then [X, X¢| is decomposed into edge-disjoint (possibly empty) cuts [X;, X¢].
Let X¢ be decomposed into disjoint connected vertex subsets Y;. Each nonempty [X;, X|
is decomposed into edge-disjoint (possibly empty) cuts [X;,Y;] = [Y;, X;]. Since Y}, X, are

connected vertex subsets, each nonempty [V}, X;| = [V}, Y] is a bond by Proposition 2.6. [

Definition 2.8. The symmetric difference of two spanning subgraphs G; = (V, E;) (i =
1,2) of a graph G = (V, E) is a spanning subgraph G1AG, of G, whose edge set is

ElAEQ = E1 U E2 - E1 N EQ.

We view each edge subset E’ of G as a spanning subgraph with the edge set E’.
The class P(G) of all spanning subgraphs of G forms an abelian group under the sym-
metric difference A. We sometimes write

Gl + G2 = GlAGQ = (V, ElAEz)

The zero (or identity) element of P(G) is the spanning subgraph (V, @) with the empty edge
set. The negative (or inverse) of a subgraph (V, E') is (V, E') itself.
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Proposition 2.9. The symmetric difference of two cuts is a cut or the empty set of edges.
For vertex subsets X, Y of a graph G,

X, X9A[Y, Y] = [XAY, (XAY)e].

Proof. Note that V(@) is partitioned into four disjoint parts X NY, X NY° X°NY and
XeNnYe. The identity follows clearly from Figure 1. The identity can be also verified logically

M
XY XY
X oo P A ( ,,,,,,,, B ISPEI0N X
XY® XEY©
ve

Figure 1: Symmetric difference of two cuts, where XY = X NY.

as follows:

(X, X] = [XNY, XTU[XNY X
XNY, XNYJU[XNY,X°NY‘U
XNy XnYu[XnYyeXenYe;

YV,Y9] = [XNY,YIU[X°NY,Y"]
XNy, XNnYJuXnYy, XnY‘u
(XNY, XNYJU[X°NY,X°NnY“.
Note that [XNY*, X°NY] = [X°NY, XNY*“], which is canceled in [X, X¢|A[Y,Y]. The cuts
(X NY, X°NY], [XNY* X°NY*] are disjoint from both [ X NY, XNY*] and [X°NY, X°NY*|.
Thus [X, X°|A[Y, Y] is the disjoint union
(XNY, XNnYJulXnNnY, XNY|JU[XNY  XNYTUX°NY,X°NY"
= [XNY, (XNY)Uu (X NY)U[(XNY)U(X°NY), XNY“]
= [(XNY)U(XNY),(XNY)U(X°NY“)].

Since XAY = (X NY°) U (X°NY) and

(XAY) = (XUY)N(XUY®)
= [(XUY)NnX]JU[(X°uY)nY¥
= (XNY)U(X°NY"),

we see that [ X, X°|A[Y, Y] = [XAY, (XAY)“]. O
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Proposition 2.10. For spanning subgraphs G; = (V, E;) of a graph G = (V, E), i = 1,2
and each proper vertex subset X C V', we have
5G1AG2X = 5G1XA8G2X, i.e., [ ]GlAGg = [X, XC]GlA[X, XC]G2
Proof. 1t follows that g, ac, X = [X, X N (E1AE,) = [X, XN (£, U Ey — Ey; N Ey) and
0, XAdg, X = ([X, XN E)A([X, XINE,)
- ([ ]ﬂEl) ([X,XC]QEQ)—[X,XC]OElﬂEg
- [X,X] (E1UE2)—[X,XC]QE1HE2
]

Theorem 2.11. The symmetric difference of two spanning even subgraphs of a graph G is
an even spanning subgraph of G.

Proof. Let G; = (V, E;) be spanning even subgraphs of G = (V, E), i = 1,2. Let X be a
proper vertex subset. By Proposition 2.10,

#H0c, 06, X = #(06, X Adg, X) = #56, X + #g, X — 2#(0¢, X N g, X),
which is an even number. Then by Theorem 2.5, G;AGs is a spanning even subgraph. [

Corollary 2.12. The class C(G) of spanning even subgraphs of a graph G is closed under
the symmetric difference. So C(QG) is a subgroup of P(G), called the cycle group of G.

Corollary 2.13. The class B(G) of cuts of a graph G is closed under symmetric difference.
So B(G) is a subgroup of P(G), called the bond group (or cut group) of G.

Vector Spaces Associated to Graphs:

e Let S be a nonempty set and F a field. Let F° denote the set of all functions from
S to F. Then F° becomes a vector space over F under the addition and the scalar
multiplication of functions: For functions f, g € F¥ and a scalar a € F,

(f +9)(s) = f(s) +g(s), (af)(s)=af(s), s€S

If |S| =nand S = {s1,...,8,}, then F¥ = F" and the isomorphism is given by
f— (f(s1),..., f(sn)). If you don’t like an arbitrary field F, just assume that F is the
field R of real numbers.

e Let S be a nonempty set and Fy = {0,1} = Z/27Z, the field of two elements, where
1+1=0 (so—1=1). The power set P(S) is an abelian group under the symmetric
difference, which is written as plus ‘+” now as follows: For subsets A, B C S, define
the addition

A+B:=AUB—-ANB.
The zero element of P(S) is the empty set &; the negative element of A € P(S) is A
itself. Moreover, for each a € Fy, we define the scalar multiplication

A ifa=1,
aA—{ @ ifa=0.

Then P(S) becomes a vector space over Fy under the addition and scalar multiplication.
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e There is a bijection ¢ : P(S) — F5, defined by

1 ifseA,
©(A) =14, where 1A(s):{0 fseS_ A

The bijection ¢ preserves the addition and scalar multiplication:

©(A+B) = laup-ans =1la—p+1p-a (laus — lang)
= a4+ 1lans+ 1+ 1lans (la+ 15 — 1anp — lann)
= la+15=p(A)+ ¢(B);

14 ifa=1 _ [ ap(A) ifa=1
“0(‘“4)_{ =0 ifa=0 _{cup(A) fa=0 @A)

So ¢ is a vector space isomorphism from P(S) to Fs.

e A basis of P(S) is the set of singletons {s} : s € S. A basis of 5 is the set of indicator
functions of singletons 15 : s € S. If [S| =n and S = {s1,...,s,}, the vector space
F$ is isomorphic to Fy with 1,3 «~ (0,...,1,...,0) (all coordinates are zero except
1 for the ith coordinate).

e For a graph G = (V, E), the vector space FY is called the vertex space of GG, and F¥
is called the edge space of GG, whose dimension is |E|.

e The class of edge sets of even subgraphs of a graph G is a vector subspace of its edge
space, called the cycle space of G.

e The class of edge sets of cuts of a graph G is a vector subspace of its edge space, called
the bond space of G.

Theorem 2.14. Let T' be a spanning tree of a connected graph G. Let C(T,e) denote the
unique cycle (called the fundamental cycle of G with respect to T') contained in T U e for
each edge e of the co-tree T® := E(G) ~ E(T'). Then the cycle group C(G) is generated by

the cycles C(T,e) with e € T. Moreover, if C(GQ) is viewed a vector space over Fq, then
{C(T,e):e €T} is a basis of C(G).

Proof. The fundamental cycles of G with respect to T" are linearly independent: Assume

> 2.C(T,e)=0(=2) with €.

ecTe

For each e € T, we have e € C(T,e) and C(T,e) e C T; we see that e cannot be canceled
in the LHS if . = 1. So 2. = 0 for all e € 7. This means that C(T,e),e € T° are linearly
independent over Fy.

Let C' be an even spanning subgraph of G. Then C'is an addition of edge-disjoint cycles.
Consider the following even spanning subgraph

C'=C+ Y C(Te).

eeCNTe
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We claim that C" = 0 (= @). Note that C” is contained in T" (the edges in T are canceled
by definition). Suppose C” is nonempty. Then C’ is an edge disjoint union of cycles C;
contained in 7', which is a contradiction. Thus " =0 and C = > s C(T,e). We have
shown that {C(T,e) : e € T°} is a basis of C(G). O

Theorem 2.15. Let T be a spanning tree of a connected graph with G. Let B(T°, e) denote
the unique bond (called a fundamental bond of G with respect to T') contained in T¢U e
for each edge e € T'. Then the bond group B(G) is generated by the bonds B(T¢, e), where
e € T. Moreover, if B(G) is viewed as a vector space over Fa, then {B(Te):e € T} is a
basis of B(G).

Proof. The fundamental bonds of G with respect to T are linear independent: Assume
> wB(T%e)=0(=2) with =z, €TF,.
ecT

For each e € T', we have e € B(T°, e) and B(T*°, e)~e C T¢; we see that e cannot be canceled
in the LHS if 2. = 1. So 2. = 0 for all e € T'. This means that B(T* e),e € T are linearly
independent over FFs.

Let U be a cut of G. Consider the following additions of cuts

U':=U+ > B(Te).
ecUNT

We claim that U’ = 0 (= @). Note that U’ is contained in 7 (the edges in T" are canceled in
the RHS). Suppose U’ # 0, i.e., U’ is a nonempty cut contained 7, which is a contradiction,
since each cut contains at least one edge of 7. Thus G’ =0 and U = ) __;p B(T°,e). We
have shown that {B(T* e) : e € T} is a basis of B(G). O

Corollary 2.16. For each even subgraph H and each cut U of a graph G, we have
|[HNU|=|E(H)NE(U)| = even.

Proof. Let H be decomposed into edge-disjoint cycles C. Then |[H NU| =) ,|CNU|. It
suffices to show that |[C' N U]J is even. Let U = [X, X¢] and C be arranged as a closed path
W = vgeqvy . .. ey, with v, = vy. Then W goes through U between X and X¢ even number
of times. So |[C N U] is even. O

Question: Is the group P(G) a direct sum of the cycle group C(G) and the bond group
B(G), i.e., P(E) =C(P)® B(G)?

3 Flow space and tension space

Let G = (V, E) be a graph and let A an abelian group.

e Recall that orientation of an edge e = uv with endpoints u, v is one of the two arcs
(directed edges) w0 and v (= vu). If an orientation of e is denoted by €, say, & = u,
then the other (opposite) orientation of e is denoted by —¢, i.e., —€ = wv. Let E(G)
denote the set of all oriented edges from the edge set E(G). Then

[E(G)| = 2|E(G)].

14



Recall that an orientation w of GG is an assignment that each edge of GG is given one
of its two orientations. We may view w as an arc subset w C E(G) such that

wN(—w) =2, wU(—w)=EG).
A graph G with an orientation w is called a directed graph, denoted (G,w).

A flow valued in A or A-flow of a digraph (G,w) is a function f € A” such that for

each vertex v € V,
Y fle)= > fley=0, (3.1)

e€ET(v) e€E~(v)
where ET(v) is the set of arcs of w pointing to v, and E~(v) the set of arcs of w pointing
away from v. The A-flow group of G with respect to w, denoted F(G,w; A), is the
group of all A-flows of (G, w).

A sink (source) of a digraph (G, w) is a vertex v such that all arcs of w with endpoint
v point to (away from) v.

A circuit of a graph G is a minimal spanning even subgraph. Circuit is just another
name for cycle in graphs. A direction of a circuit C' is an orientation we on C' such
that the directed subgraph (C,w) has neither a sink nor a source. Each circuit has
exactly two directions.

Given an orientation w of G. For each directed circuit (C,we) of G, the function

lw,we| 1 E — Z, defined by

1 if e € C and w,we have the same orientation on e,
lw,wel(e) = ¢ —1 if e € C' and w,we have opposite orientations on e,
0 ifegC,

is an integer-valued flow of the digraph (G,w), called a circuit flow generated by C.

A tension valued in A or A-tension of a digraph (G,w) is a function g € AF such
that for each directed circuit (C,we),

<[waw0]7g> = Z[w,wc](e)g(e) =0.
eeC
The A-tension group of G with respect to w, denoted T'(G,w; A), is the group of all
A-tensions of (G,w).

Let U = [X, X¢] be a cut of G. A direction of U is an orientation wy on B such that
the arcs of wy have heads all in X or all in X¢. Each cut has exactly two directions.

Given an orientation w of G. For each directed cut (U,wy) of G, the function [w,wy] :
E — Z, defined by

1 if e € U and w,wy have the same orientation on e,

[w,wyl(e) =< —1 if e € U and w,wy have opposite orientations on e,
0 ifegU,

is an integral tension of the digraph (G,w), called a cut tension generated by U. The
cut tension is called a bond tension if the cut is a bond.
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e A function f € A% is a flow of (G,w) if, and only if, for each directed bond (B,wp),
<[W7WB]5 f> = Z [wawB](e)f(e) = 0.
ecwp

In particular, a digraph (G, w) is even (i.e., in-degree equals out-degree at every vertex)
if, and only if, for each directed bond (B,wg),

> [w,wg(e) = 0.

ecwp

e A local direction of a cut U = [X, X¢] of a graph G is an orientation wy such that
(U,wy) can be decomposed into an edge-disjoint directed bonds. Local directions of a
cut are not necessarily unique up to sign.

e Let U be a nonempty edge subset of GG, and let wy be an orientation on U. If the
function |[w,wy] : £ — Z, defined by

1 if e € U and w,wy have the same orientation on e,

[w,wyl(e) =< —1 if e € U and w,wy have opposite orientations on e,
0 ifegU,

is an integral tension of G,w), then U is a cut, i.e., U = [X, X¢] for a vertex subset X
of GG, and wy is a local direction of U.

The flow groups F(G,w;Z), F(G,w;R) are called flow lattice, flow space of (G,w)
respectively. Likewise, the tension groups T(G,w;Z), T(G,w; R) are called tension lattice,

tension space of (G,w) respectively. Sometimes we abbreviate F'(G,w;R) to F(G,w), and
T(G,w;R) to T(G,w)

Theorem 3.1. Let T be a spanning tree of a connected graph G with an orientation w.

(a) For each e € T¢, let C(T,e) denote the unique circuit contained in T'Ue with a direction
we such that w,w, have the same orientation on e. Then {[w,w.| : € € T} is a basis of

F(G,w;Z), and for each f € F(G,w;Z),
F=Y" fle)w,w.

ecTc

(b) For each e € T, let B(T, e) denote the unique bond contained in T°U e with a direction

we such that w,w, have the same orientation on e. Then {{w,w.| : e € T} is basis of
T(G,w;Z), and for each g € T(G,w;Z),

g= Z gle)w,we.

ecT

(c) Vector spaces F(G,w;R) and T(G,w;R) are orthogonal complement each other in RE;
i particular,

T(G,w;R)® F(G,w;R) = RE.
However, T(G,w;Z) ® F(G,w;Z) C ZF and
|ZE )(T(G,w;Z) ® F(G,w;Z))| = #{spanning forests of G}.
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Proof. (a) Consider the equation ) ;. #c[w,we] = 0. Note that [w,w,] is supported on
T Ue. For each eq € T, we have

0= (X selovsod ) ) = X il l(en) =

ecT*e ecTe

We see that [w,w,] : e € T are linearly independent.
Let f € F(G,w; R). Consider the flow

=f=>_ fle)w,wl.
ecTe

For each ey € T, note that f'(eg) = f(eo) =Y . cre f(€)[w,we](eo) = f(eo) — f(eo) = 0. Then
f'|re = 0. Note that T is a tree and f’ is a flow of (G,w). For each edge ¢/ € T at a leaf v
of T, the net flow of f’ at v is & f’(¢’), which must be zero by definition of flow. Then f is
zero on edges of T\ €’ at its leaves. Continue this procedure, we see that f’|r = 0. We have
show that f =" 7. f(e)lw,we]. Thus {[w,w.] : e € T} is basis of F(G,w;Z).

(b) Likewise, consider the equation ) _,x.[w,w,] = 0. Note that [w,w,] is supported on
T°Ue. For each eq € T, we have

0= (X uloniad ) o) = 3 o lca) =

ecT ecTc

ecT

We see that [w,w,] : e € T are linearly independent.
Let g € T(G,w; R). Consider the tension

g=9-> gle)w,we.
ecT
For each ey € T', note that ¢'(eg) = f(eo) — D_.cr 9(e)|w,wel(eo) = g(eo) — g(eg) = 0. Then
g'|r = 0. For each ¢ € T, consider the direction w. of C(T,€’) in the former part of the
theorem. By definition of tension, we have

9(e") = ([w,we], g) = 0.

We see that ¢'|pe = 0. We have shown that g = ) ., g(e)[w,we]. Thus {[w,w.] : e € T} is
basis of T'(G,w;Z).

(c) Since tensions are orthogonal to circuit flows, and flows are spanned by circuit flows,
it follows that all tensions are orthogonal to flows by (a). Since dim F(G,w;R) = |T| and
dimT(G,w;R) = |T'|, we see that

|E| = dim F(G,w; R) + dim T'(G, w; R).

It follows that F'(G,w;R) and T(G, w; R) are orthogonal complement each other in R¥”. Thus
R” is a direct sum of F(G,w;R) and T(G,w;R). O
The incidence matrix of a digraph (G, w) is the V' x E matrix
1 ife=ud €w, u#v,

M = M(G,w) = [Mye], Mpe=4¢ —1 if&=0w0 € w, v#w,
0 otherwise.



For each v € V(G), we have the flow equation:

Z Lo — Z z.=0 <& vae:ce—O

ecET(v) ecE— eckE

Let € = (z,: e € E) € RE. Then the flow space F'(G,w;R) is the solution set of the matrix
equation
Mz =0

Since the the row space of M is the orthogonal complement of ker M, we have

F(G,w;R) =kerM, T(G,w;R)=RowM.

4 Chain group

Given an abelian A. The flow groups F(G,w;A) depend on the chosen orientations w,
though all of them are isomorphic. Likewise, the tension groups T'(G,w; A) also depend on
the chosen orientations w, and all of them are isomorphic. It is desired to obtain a unique
flow group of GG in some intrinsic way, so that it is independent of the chosen orientations.
For this purpose we need to introduce so-called chains groups.

Boundary Operator and Co-boundary Operator:

e Each vertex of a graph G is referred to a 0-cell, and each edge of G is referred to a
1-cell. So a graph G can be viewed as a 1-dimensional cell complex.

e A 0-chain of G valued in A is a function p : V' — A, also called a potential function.
A 1-chain or just chain of G valued in A is a function f : E(G) — A satisfying

f(—e)=—fle) Yee EQG).

This means that the two orientations of each edge are coupled by opposite values. Let
C;(G, A) denote the group of i-chains of G, i = 0, 1, called the ith chain group of G.

e The support of a chain f is the edge set suppf = {e € E(G) : f(€) # 0}. We usually
write a chain f as

e€suppf
Here we do not care which oriented edge € is selected: since f(—€) = —f(€), we have
> oo ¥ Coenier- Y e
e€suppf ecsuppf e€suppf

The chain group C4 (G, A) is generated by the arcs € € E(G) Each member of C} (G, A)
is of the form ) __,az¢; with € € E(G) and az € A.

e Choose an orientation w of G. The chain group C(G, A) can be identified to the group
AE of functions from FE to A as follows: Cy(G, A) = AF each f: F — A is identified
as a function f : £ — A given by

fle) = f(€) for ee E(G), whereé € w.
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e There is a canonical pairing (,) : C1(G,Z) x C1(G, A) — A, defined by

(f.9)=Y_ f(@)g(e).

c€E(G)
Again, here it does not matter which oriented edge € is selected in the sum, since
f(=&)g(=€) = (=f(@))(—g(€)) = f(&)g(€).
e The boundary operator of GG is the group homomorphism
9:01(G,A) — Co(G,A), 0€=v—u, €=uv,

extended by linearity (homomorphism is uniquely determined by its values on genera-
tors). More specifically, for each f € C1(G, A),

@ONW) =D _f@O==>_f@= > f@),

e=uv E=vW EewnE(v)

where w is an orientation of G and E(v) is the set of arcs having v as an endpoint.

The flow group F(G, A) of G with coefficients in A is ker . Each member of F(G, A)
is called a flow of G valued in A or A-flow.

e The co-boundary operator of GG is the group homomorphism

§: Co(G,A) — C1(G,A),  (0p)(€) = p(u) — p(v), &= ud.
Circuit Chains, Cut Chains, Bond Chains:

e A circuit chain of a graph G, associated with a directed circuit (C,w¢), is a chain

a . 1 if@ewc’a
loo 1 B — Z, Iwc(e>_{0 if e ¢ we U (—we).

Sometimes we simply write I, as w¢, since

Lo = Y Loo(@) 8= 1-é=) &

eck ecwe Ecwe

e A direction of a cut U = [X, X¢] of a graph G is an orientation wy on U such that its
oriented edges have tails in X and heads in X¢. A cut U with a direction wy is called
a directed cut, denoted (U,wy).

e A cut chain of G, associated with a directed cut (U,wy), is a chain

. ] 1 ifecwy,
I, : F—7Z, IWU<€>_{O if e & wo U (—wy).

Likewise, we sometimes simply write I, as wy. A cut chain is called a bond chain if

the cut is a bond.

wu
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Definition 4.1. A tension of a graph G with values in an abelian group A is a chain
g € C1(G, A) such that for each directed circuit (C,w¢),

Z gle) =0, ie, (lu.,9)=0.
ecwo

The tension group 7'(G, A) of G with coefficients in A is the group of all tensions of G
with values in A.

Proposition 4.2. For each potential p € Co(G, A), 0p is a tension of G.

Proof. Let C be a circuit with a direction we. We may arrange the vertices and directed edge
of (C,we) as a directed walk W = vpejvieqvs ... v,_1€,0,, Where v, = vy and the direction
of e; is pointing from v; _; to v;, i =1,2,...,n — 1. Then

—

n—

(6, Lue) 2529 e) = Z p(vi) = plvi)] = D_p(v) = 3 _p(v

i=1 i=0
[

Theorem 4.3. Let F' be a spanning forest of a graph G = (V, E). Let C(F,e) denote the
unique circuit contained in F'Ue with a direction w(F,e), where e € F°. Let B(F€,e) denote
the unique bond contained in F°U e with a direction w(F¢, e), where e € F. Then

}7((;714) = 6}) lew(Fkﬂ & qum and f 2{: f Fe),

ecFec eckFc
= @ Aly(pee) = AP and qg= Zg(e)lw(pae);
ecF eeF

F(G,A)+T(G,A) CC(G,A) = A

However, F(G, A)+T (G, A) is not necessarily a direct sum. The vector spaces F(G,R), T(G,R)
are orthogonal complement each other in C1(G,R), and

F(G,2) & T(G,Z) C C1(G,Z), F(G,R)&T(G,R)=C\(G,R).

Proof. Consider the chain " = f — > _pc f(€)Ly(re) With € € w(F,e), which is a member
of F(G,A). It is clear by definition that f’ = 0 on Fe. So f" is only possibly nonzero
on F. Since F is a forest, each component T' of F' is a tree. For each nontrivial tree T
of F, let ¢ = uv be an edge at a leaf v of T and let ¢’ = wi. Since df' = 0, we have
0= (0f")(v ) f'(€"). Continue this procedure by selecting leaves of T'\ e, we conclude that
f'=0onT. Subsequently, f'=0on F. Thus f = Y cere J(€)u(re), where € € w(F,e).

Likewise, set ¢’ = g — > cp 9(€)Ly(pee) With € € w(F*, e), which is a member of T'(G, A).
It is clear by definition that ¢’ = 0 on F. For each ¢’ € F¢, we have g(€") = (g, Lyren) = 0.
Thus ¢’ = 0 on F¢. Therefore g = Y ecr 9(€)]u(pe ), where & € w(F€ e).

Let G be the graph with two vertices connected by two parallel edges. Then C}(G, Z,) =
Z3 and F(G,Zs) = T(G,Zsy) = Zsy. Of course F(G,Zs) + T(G,Zy) cannot be a direct sum,
and F(G,Zs) + T(G,Zs) # C1(G,Zsy). More complicated examples can be constructed in a
similar fashion. O
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Theorem 4.4. Let ¢(G) denote the number of connected components of a graph G. Then
for each abelian group A,

Co(G,A) = T(G,A) ® A“D,

Proof. Given a tension g € T(G). Fix a vertex vy in a component of G, and let p(vy) be any
member of A. For each v € V(Gy), let P = vpeqv; « - - evm(v) be a directed path from vy to
v. Define

p(v) = p(vm) = p(vo) + Z g(e:), e =10

Let P' = woe}v) ... € v,(v) be a another directed path from vy to v. Let P'~!' denote the
reversal of P’ having ¢/, pointing away from v. Then PP'~! is a directed closed path. Thus

(9, 1ppr1) = Zg(ei) - 29(69) =0.
i=1 j=1
This means that p(v) is well-defined. For a directed edge e := e, = U,_10,,,. We have

OOp)(e) = p(vm) = p(vm-1)

= (oo + Do gte) = (oo + o)

= glem) = g(e).
[l

Proposition 4.5. Let X be a proper verter subset of a graph G = (V,E). Let w(X, X°)
denote the direction of the cut [X, X¢] such that all arcs of w(X, X¢) have heads in X and
tails in X°. Then

51)( = Iw(X,XC)-
This explains again why we adopt the notation 6X = [X, X¢].
Proof. For each & = ut € w(X, X¢), we have v € X and u € X¢; then (61x)(€) = 1x(v) —

Ix(u) = 1. Clearly, (61x)(e) = 0 for € = ud € [X¢, X and (01x)(¢) =1 —1 = 0 for
€=uv € [X, X]. O

Exercises
Chl: 1.1.21; 1.1.22; 1.2.8; 1.4.2; 1.5.6; 1.5.7; 1.5,12.
Ch2: 2.1.2; 2.1,11; 2.2.12; 2.4.1; 2.4.2; 2.4.9; 2.5.2; 2.5.4; 2.5.7; 2.6.2; 2.6.4.
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