Week 1-2: Graphs and Subgraphs

September 19, 2020

1 Graphs

Definition of Graphs:

- A graph G is a system of ordered pair (V, E) of two finite disjoint sets V of vertices and E of edges, such that each edge e connects two (possibly identical) vertices u, v(called the endpoints of e). We usually write V = V(G) and E = E(G). For convenience, we write each edge e with endpoints u, v as e = uv or $\operatorname{End}_G(e) = \{u, v\}$. So $\operatorname{End}_G : E \to \mathcal{P}_{1,2}(V) = \{\{v\}, \{u, v\} : u, v \in V\}.$
- When an edge e connects vertices u and v, we also say that e joins u and v, or, u and v are incident with e, or, u and v are adjacent by e. We say that e is a link if $u \neq v$ and a loop if u = v.
- Two edges are **parallel** if they have the same endpoints. Parallel edges are also called **multiple edges**.

Simple Graphs, Multigraphs, Complete Graphs, Bipartite Graphs:

- A graph is **simple** if it has no loops and parallel edges. A graph with possible loops and parallel edges is emphasized as a **multigraph**.
- The graph with empty vertex set (and hence empty edge set) is a **null graph**.
- A graph is **trivial** if it has only one vertex and no edges. All other graphs are **non-trivial**.
- An **empty graph** is a graph with possible vertices but no edges.
- A complete graph is a simple graph that every pair of vertices are adjacent. A complete graph with n vertices is denoted by K_n .
- A graph G is **bipartite** if its vertex set V(G) can be partitioned into two disjoint nonempty subsets X, Y such that every edge has one endpoint in X and one endpoint in Y; such a partition $\{X, Y\}$ is called a **bipartition** of G, and such a bipartite graph is denoted by G[X, Y].

• A complete bipartite graph is a bipartite graph G[X, Y] that each vertex in X is adjacent to every vertex in Y; we abbreviate G[X, Y] to $K_{m,n}$ if |X| = m and |Y| = n.

Neighbors, Degree:

- Two adjacent vertices are **neighbors** each other. The set of neighbors of a vertex v in a graph G is the set of all vertices adjacent with v, denoted $N_v(G)$ or G[v].
- The **degree** of a vertex v in a graph G, denoted $d_G(v)$, is the number of edges incident with the vertex, where each loop at v is counted twice. A vertex is **isolated** if its degree is 0. For a simple graph G, $d_G(v) = |N_v(G)|$.
- A graph is **regular** if every vertex has the same degree. A graph is *k*-regular if every vertex has degree *k*.
- A cycle is a connected 2-regular graph. If a graph is connected and its degree is at least two at every vertex, then the graph contains a cycle.
- For each graph G = (V, E),

$$2|E| = \sum_{v \in V} d_G(v).$$

• The number of odd-degree vertices of a graph is even.

Proposition 1.1. Let G[X, Y] be a bipartite graph without isolated vertices. If $d(x) \ge d(y)$ for all edge xy with $x \in X$ and $y \in Y$, then $|X| \le |Y|$, and the equality holds if and only if d(x) = d(y) for all edges xy with $x \in X$ and $y \in Y$.

Proof. Since $d(x) \ge d(y)$ for all edges xy with $x \in X$ and $y \in Y$, we have

$$|X| = \sum_{x \in X} \sum_{\substack{y \in Y \\ xy \in E}} \frac{1}{d(x)} = \sum_{\substack{x \in X, y \in Y \\ xy \in E}} \frac{1}{d(x)} \le \sum_{\substack{x \in X, y \in Y \\ xy \in E}} \frac{1}{d(y)} = \sum_{y \in Y} \sum_{\substack{x \in X \\ xy \in E}} \frac{1}{d(y)} = |Y|.$$

It is clear that if d(x) = d(y) for all edges xy with $x \in X$ and $y \in Y$ then |X| = |Y|. Conversely, if |X| = |Y|, the above middle inequality must be equality. It forces that d(x) = d(y) for all edges xy with $x \in X$.

Incidence Matrix, Adjacency Matrix:

- The incidence matrix of a graph G is a matrix $\mathbf{M} = [m_{ve}]$, whose rows are indexed by vertices and whose columns are indexed by the edges of G, such that (i) the entry $m_{ve} = 0$ at (v, e) if the vertex v is not incident with the edge e, (ii) $m_{ve} = 1$ if v is incident with e once (i.e., e is a link), and (iii) $m_{ve} = 2$ if v is incident with e twice (i.e., e is a loop).
- The adjacency matrix of a graph G is a quare matrix $\mathbf{A} = [a_{uv}]$, whose rows and columns are indexed by vertices of G, where a_{uv} is the number of edges between the vertices u and v, each loop is counted twice.

Walk, Trail, Path, Cycle, Connectedness:

• A walk from a vertex u to a vertex v in a graph G is a sequence

$$W = v_0 e_1 v_1 e_2 \cdots v_{\ell-1} e_\ell v_\ell$$

of vertices and edges with $v_0 = u$ and $v_{\ell} = v$, whose terms are alternate between vertices and edges of G, such that the edge e_i is incident with the vertices v_{i-1} and v_i , $1 \leq i \leq \ell$. The vertex v_0 is the **initial vertex**, v_{ℓ} is the **terminal vertex** of G, and the number ℓ is the **length** of W. A walk is **closed** if its initial and terminal vertices are identical.

- A walks is a **trail** if its edges are distinct.
- A walk is a **path** if its vertices are distinct (so are its edges), except possible identical initial and terminal vertices, for which it is referred to a **closed path**. If $P = v_0 e_1 v_1 \cdots v_{\ell-1} e_\ell v_\ell$ is a path, then v_0, v_1, \ldots, v_ℓ are distinct, or, $v_0 = v_\ell, v_1, v_2, \ldots, v_{\ell-1}$ are distinct; the vertices $v_1, v_2, \ldots, v_{\ell-1}$ are **internal vertices** of P.
- A graph is **connected** if there is a path between any two vertices of the graph.
- The underlying graph of a closed path is a cycle. The underlying graph of a closed trail is connected and has even degree everywhere.
- An Euler trail of a graph G is a trail that uses every edge of G exactly once. An Euler tour is a closed Euler trail. The underlying graph of an Euler tour is called an Eulerian graph.
- A graph is called an **even graph** if it has even degree everywhere.
- A graph is **Eulerian** if and only if it is a connected even graph.
- A **Hamilton path** of graph *G* is a path that uses every vertex of *G*. A closed Hamilton path is called a **Hamilton cycle**.

Theorem 1.2. (Fleury's Algorithm) Input: Graph G = (V, E). **Output:** Euler tour, or Euler trail, or no Euler trail.

- STEP 1: If there are vertices of odd degree, choose such a vertex v; otherwise, choose any vertex v. Set SEQ = v.
- STEP 2: If there is no edge remaining at the terminal vertex v of SEQ, then STOP. (There is an Euler trail. If v is the same as the initial vertex of SEQ, it is an Euler tour.)
- STEP 3: If there is exactly one edge e from v to another vertex w, then remove ve and go to STEP 5.
- STEP 4: If there are more than one edges remaining at v, choose one of these edges, say an edge e from v to w, in such a way that the removal of e will not disconnect the remaining graph, then remove e and go to STEP 5. If such an edge can not be selected, STOP. (There is neither Euler tour nor Euler trail.)

STEP 5: Add ew to the end of SEQ, replace v by w, and return to STEP 2.

Union, Intersection, Cartesian Product:

- Two graphs are said to be **disjoint** if they have no common vertices, and to be **edgedisjoint** if they have no common edges.
- The union of two graphs G and H is the graph $G \cup H$ with vertex set $V(G) \cup V(H)$ and edge set $E(G) \cup E(H)$. If G and H are disjoint, we write their union as G + H.
- The intersection of two graphs G and H is the graph $G \cap H$ with vertex set $V(G) \cap V(H)$ and edge set $E(G) \cap E(H)$. If G and H are disjoint, then G + H is the null graph.
- The **Cartesian product** of two simple graphs G, H is the graph $G \Box H$, whose vertex set is the Cartesian product $V(G) \times V(H)$ and whose edge set is

 $\{(u,x)(v,x): uv \in E(G), x \in V(H)\} \bigcup \{(u,x)(u,y): u \in V(G), xy \in E(H)\}.$

Digraphs, Out-degree, In-degree:

- A directed graph (or digraph for short) is an ordered pair D = (V, A) of disjoint set V of vertices and a set A of arcs (edges with a direction), such that each arc $a \in A$ is associated with an ordered pair (u, v) of two (possible identical) vertices u and v of V; the arc a points from u to v, or, e points away from u and points toward v.
- A **tournament** is a directed complete graph.
- Let v be a vertex in a digraph D. The **out-degree** of v is the number of arcs of which v is tail, denoted $d_D^+(v)$. The **in-degree** of v is the number of arcs of which v is a head, denoted $d_D^-(v)$.
- Let a be an arc in a digraph D from a vertex u to a vertex v. We call u an **in-neighbor** of v, and v an **out-neighbor** of u. We denote by $N_D^+(v)$ the set of all out-neighbors of a vertex v, and by $N_D^-(v)$ the set of all in-neighbors of v.

Orientations and Oriented Incidence Matrix:

- We may think of each graph G embedded in a Euclidean space \mathbb{R}^d , viewing each edge $e \in E(G)$ with endpoints u, v as a simple path $e : [0, 1] \to \mathbb{R}^d$ such that e(0) = u and e(1) = v. If e is a loop, then e is a closed simple path with e(0) = e(1).
- An orientation of an edge e with endpoints u, v is either the direction of the simple paths $e : [0,1] \to \mathbb{R}^d$ from e(0) to e(1) or its reverse direction. An orientation of a graph is an assignment that each edge of the graph is given an orientation. A graph G is oriented (or directed) if G is given an orientation ω , denoted (G, ω) .

• The oriented incidence matrix of an oriented graph (G, ω) is a $\{-1, 0, 1\}$ -valued matrix M indexed by $V(G) \times E(G)$, such that the entry (v, e) has value 0 if e is a loop or e is not incident with v, and has value +1 (-1) if e is a link pointing toward (away from) v.

Theorem 1.3. Every tournament has a directed Hamilton path.

Proof. Let D be a tournament with n vertices. We proceed by induction on n. It is trivial for n = 2, 3 by inspection. Now remove one vertex v from D to obtain a digraph $D' = D \setminus v$ with n - 1 vertices. By induction hypothesis, D' has a directed Hamilton path $P = v_1 v_2 \dots v_{n-1}$ from v_1 to v_{n-1} . The situation can be divided into the following cases.

CASE 1. (v, v_1) is a directed edge in D. Then $P_1 = vv_1v_2 \dots v_{n-1}$ is a directed Hamilton path for D. Otherwise, (v_1, v) is the directed edge.

CASE 2. (v_1, v) and (v, v_2) are directed edges in D. Then $P_2 = v_1 v v_2 \dots v_{n-1}$ is a directed Hamilton path for D. Otherwise, (v_2, v) is the directed edge.

CASE 3. (v_1, v) , (v_2, v) , and (v, v_3) are directed edges in D. Then $P_3 = v_1 v_2 v v_3 \dots v_{n-1}$ is a directed Hamilton path for D. Otherwise, (v_3, v) is the directed edge.

CASE k. $(v_1, v), (v_2, v), \ldots, (v, v_k)$ are directed edges in D. Then $P_k = v_1 \ldots v_{k-1} v v_k \ldots v_{n-1}$ is a directed Hamilton path for D. Otherwise, (v_k, v) is the directed edge.

CASE n. $(v_1, v), (v_2, v), \ldots, (v, v_{n-1})$ are directed edges in D. Then $P_n = v_1 v_2 \ldots v_{n-2} v v_{n-1}$ is a directed Hamilton path for D. Otherwise, (v_{n-1}, v) is the directed edge.

CASE n + 1. $P_{n+1} = v_1 v_2 \cdots v_{n-1} v$ is a directed Hamilton path for D.

Isomorphism, Automorphism, Homomorphism:

- Two graphs G and H are equal (or identical) if V(G) = V(H) and E(G) = E(H).
- A graph G is **isomorphic** to a graph H if there exist bijective mappings $f: V(G) \rightarrow V(H)$ and $g: E(G) \rightarrow E(H)$ such that $\operatorname{End}_G(e) = \{u, v\}$ if and only if $\operatorname{End}_H(g(e)) = \{f(u), f(v)\}$; such a pair (f, g) of mappings is called an **isomorphism** from G to H.
- An isomorphism from a graph G to itself if called an **automorphism** of G. The set of all automorphisms of G froms a group under the composition of mappings, called the **automorphism group** of G, denoted Aut(G).
- A homomorphism from a graph G to a graph H if there exist maps $f: V(G) \to V(H)$ and $g: E(G) \to E(H)$ such that if vertices u, v are adjacent by an edge e then the vertices f(u), f(v) are adjacent by the edge g(e). [The concept of homomorphism of graphs is not yet standardized. We rarely use the concept in our course.]

Labeled Graphs:

- Given a finite set V. A simple graph G = (V, E) on V can be considered as a subset of $\binom{V}{2}$, the set of all 2-element subsets of V. A simple graph whose vertices are labeled, but whose edges are not labeled, is referred to a **labeled simple graph**.
- Given a set V of n elements. There are $2^{\binom{n}{2}}$ labeled simple graphs with the vertex set V. We denote by $\mathcal{G}(V)$ the set of all labeled simple graphs with vertex set V.

• Let G be an unlabeled graph with n vertices. Then the number of labelings of G is $\frac{n!}{\operatorname{Aut}(G)}$, where $\operatorname{Aut}(G)$ is the automorphism group of G with any labeling. Then

$$\sum_{\substack{G \text{ unlabeled graph}\\ \text{with } n \text{ vertices}}} \frac{n!}{\operatorname{Aut}(G)} = 2^{\binom{n}{2}}.$$

• The number of unlabeled graphs with n vertices is at least $\left[2^{\binom{n}{2}}/n!\right]$.

Intersection Graphs, Interval Graphs, Polyhedral Graphs, Cayley Graphs:

- Let \mathcal{F} be a family of subsets of set V. The **intersection graph** of \mathcal{F} is a graph whose vertex set is \mathcal{F} , and two members of \mathcal{F} are adjacent if their intersection is nonempty.
- Let $V = \mathbb{R}$ and \mathcal{F} be a set of some closed intervals of \mathbb{R} . The intersection graph of \mathcal{F} is called an **interval graph**.
- Given a polytope P of ℝ³. The vertices and edges of P form a graph, called a polyhedral graph.
- Let Γ be a group. Given a subset $S \subset \Gamma$ such that S does not contain the identity element of Γ and is closed under inverse operation. The **Cayley graph** of Γ with respect to S is a graph $G(\Gamma, S)$ with vertex set Γ in which two vertices x, y are adjacent if $xy^{-1} \in S$.
- Each Cayley graph is regular.

Networks, Big Graphs, Infinite Graphs:

2 Subgraphs

Definition of Subgraphs:

- A graph H is called a **subgraph** of a graph G if $V(H) \subseteq V(G)$, $E(H) \subseteq E(G)$, and End_H: $E(H) \to \mathcal{P}_{1,2}(V(H))$ is the restriction of End_G: $E(G) \to \mathcal{P}_{1,2}(V(G))$ to E(H). We then say that G contains H or H is contained in G.
- A copy of a graph H in a graph G is a subgraph of G which is isomorphic to H. Such a subgraph is also referred to as an H-subgraph of G.
- An embedding of graph H in a graph G is an isomorphism from H to a subgraph of G. For each copy of H in G. For each copy of H in G, there are $|\operatorname{Aut}(H)|$ embeddings in G, whose image subgraph is fixed.
- A maximal connected subgraph of G is called a **connected component** (or just **component**) of G. The number of connected components of G is denoted by c(G).

Deletion, Contraction:

- Let v be a vertex in a graph G. We denote by $G \\ v$ the graph obtained from G by deleting the vertex v and all edges incident with v. Such an operation is referred to as an vertex deletion, and $G \\ v$ as a vertex-deleted subgraph.
- Let e be an edge of graph G. We denote by $G \\ e$ the graph obtained from G by deleting the edge e but leaving the endpoints of e. Such an operation is referred to as an edge deletion, and $G \\ e$ as an edge-deleted subgraph. If $S \subseteq E(G)$, we denote by $G \\ S$ the graph obtained from G by deleting all edges of S.
- Let e be an edge of a graph G. We denote by G/e the graph obtained from G by deleting the edge e and gluing the endpoints of e to become one vertex. Such an operation is called a **contraction**, and G/e an **edge-contracted minor** of G. Note that there are edges (other than e) joining the endpoints of e, then those edges become loops in G/e. If $S \subseteq E(G)$, we denote by G/S the graph obtained from G by contracting all edges of S.

Theorem 2.1. A graph G whose every vertex has degree at least 2 contains a cycle.

Proof. Let $P := v_0 e_1 v_1 \cdots e_{\ell} v_{\ell}$ be a longest path in G. Such a path does exist since G is finite. Of course, $\ell \geq 1$. If $v_0 = v_{\ell}$, then the underlying graph of P is already a cycle. If $v_0 \neq v_{\ell}$, then the degree of v_{ℓ} in P must be 1. Since the degree of v_{ℓ} in G is at least 2, there exists an edge $e_{\ell+1}$ (not in P) joining v_{ℓ} to another vertex $v_{\ell+1}$. If $v_{\ell+1} = v_i$ for some i with $0 \leq i \leq \ell$, then the underlying graph of $P_i := v_i e_{i+1} v_{i+1} e_{i+1} \cdots e_{\ell} v_{\ell} e_{\ell+1} v_{\ell+1}$ is a cycle. Otherwise, $Q := P e_{\ell+1} v_{\ell+1}$ is a longer path, a contradiction.

Corollary 2.2. A graph with some edges but no cycles has at least one vertex of degree 1; actually it has at least two vertices of degree 1.

Proof. The degree of the initial vertex and the terminal vertex of a longest path P in G have degree 1.

Acyclic Graphs (=Forests):

- A graph is said to be **acyclic** it it contains no cycles. An acyclic graph is also called a **forest**. A **tree** is a connected forest.
- Each vertex of degree 1 in a tree is called a **leaf** of the tree.
- Each tree with edges contains at least **two** leaves.
- If T = (V, E) is a tree, then |E| = |V| 1. If F = (V, E) is a forest, then

$$|E| = |V| - c(F),$$

where c(F) is the number of connected components of F.

Spanning Subgraphs, Induced Subgraphs:

• A spanning subgraph H of a graph G is subgraph such that V(H) = V(G).

- Let X be a vertex subset of a graph G. An **induced subgraph** of G by X is a graph G[X], whose vertex set is X and whose edge set consists of the edges of G having endpoints in X.
- Let S be an edge subset of a graph G. An **induced subgraph** of G by S is a graph G[S] whose edge set is S and whose vertex set consists of the endpoints of edges in S. The **induced spanning subgraph** of G by S is the subgraph (V, S).

Decomposition, Coverings:

• A decomposition of a graph G is a family of edge-disjoint subgraphs of G such that

$$E(G) = \bigcup_{H \in \mathcal{F}} E(H)$$

• A covering or cover of a graph G is a family \mathcal{F} of not necessarily edge-disjoint subgraphs of G such that

$$E(G) = \bigcup_{H \in \mathcal{F}} E(H).$$

- A covering \mathcal{F} of a graph G is referred to a **path (cycle) covering** if all members of \mathcal{F} are paths (cycles) of G.
- A covering of a graph G is **uniform** if each edge of G is covered the same number of times by the members of \mathcal{F} . When this number is k, the covering is called a k-cover. A 2-cover is usually called a **double cover**.

Theorem 2.3. A graph admits a cycle decomposition if and only if it is an even graph.

Proof. The necessity is trivial, for every cycle is 2-regular and the degree of each vertex in the graph is a sum of 2's. The sufficiency is as follows.

Let G be an even graph. If G contains some edges, then G contains a cycle C_1 by Theorem 2.1. Remove the edge of C_1 from G to obtain a graph G_1 , which is still even. Then by Theorem 2.1 again there is a cycle C_2 in G_1 . Remove the edges of C_2 from G_1 to obtain a graph G_2 , which is still even. Continue this procedure, we obtain a family of edge-disjoint cycles C_1, C_2, \ldots, C_k whose edge union is E(G); the family forms a cycle decomposition of G.

Theorem 2.4. Let $\mathcal{F} = \{F_1, \ldots, F_k\}$ be a family of complete bipartite graphs. If \mathcal{F} is a decomposition of K_n , then $k \ge n-1$.

Proof. It is trivially true for n = 1, 2 (for n = 1, there is no edges so the family is empty; for n = 2, at least one bipartite graph is required). Suppose $n \ge 3$ is the smallest positive integer such that the statement is not true, i.e., $K_n = (V, E)$ can be partitioned into complete bipartite graphs F_1, \ldots, F_k with k < n-1, where $F_i = [X_i, Y_i]$. Note that $E(K_n) = \bigsqcup[X_i, Y_i]$. Consider the system of linear equations:

$$\sum_{v \in V} x_v = 0, \quad \sum_{v \in X_i} x_v = 0, \quad i = 1, \dots, k$$

There are *n* variables and k+1 equations with k+1 < n. The system has a nonzero solution $x_v = c_v, v \in V$ (not all zero). Since $E(K_n) = \bigsqcup [X_i, Y_i]$, we have

$$\sum_{uv \in E(K_n)} c_u c_v = \sum_{i=1}^k \left(\sum_{u \in X_i} c_u\right) \left(\sum_{v \in Y_i} c_v\right).$$

Thus

$$0 = \left(\sum_{v \in V} c_v\right)^2 = \sum_{v \in V} c_v^2 + 2 \sum_{uv \in E(K_n)} c_u c_v$$
$$= \sum_{v \in V} c_v^2 + 2 \sum_{k=1}^k \left(\sum_{u \in X_i} c_u\right) \left(\sum_{v \in Y_i} c_v\right)$$
$$= \sum_{v \in V} c_v^2 > 0,$$

which is a contradiction.

Cuts, Bonds, Even Graphs:

• Let X and Y be vertex subsets of a graph G or digraph D. We introduce the edge subset and the arc subset of the form

[X, Y]: = set of edges with one vertex in X and the other vertex in Y, (X, Y): = set of arcs having the head in X and the tail in Y.

We view each cut $[X, X^c]$ of G as a spanning bipartite subgraph of G.

• An edge cut or just a cut of a graph G is a nonempty edge subset of the form $[X, X^c]$, where X is a vertex subset and X^c is its complement in V(G). We also write

$$\delta X = \delta_G X := [X, X^c].$$

If δX is a cut, then X, X^c must be proper subsets of V(G).

• For each vertex subset X of a graph G,

$$#[X, X^{c}] + 2#[X, X] = \sum_{v \in X} d_{G}(v).$$

- A **bond** of a graph G is a minimal cut, i.e., an edge cut none of whose proper subset is an edge cut.
- Deleting the edges of a cut increases the number of connected components. Deleting the edges of a bond increases exactly by one the number of connected components.
- An even graph is a graph whose every vertex has even degree.

9

• Every even graph can be decomposed into a family of edge-disjoint cycles. This why even graphs are also called **algebraic cycles**.

Theorem 2.5. A graph G is even if and only if every cut of G has even number of edges.

Proof. Let G be an even graph. For each proper subset $X \subset V(G)$, it is clear that $[X, X^c]$ contains even number of edges:

$$\#[X, X^c] = -2\#[X, X] + \sum_{v \in X} d_G(v).$$

Conversely, for each $v \in V(G)$, it is clear that $d_G(v) = \#[v, V \setminus v] + 2\#[v, v]$ is even. \Box

Proposition 2.6 (Bond Charcaterization). Let B be an edge subset of a connected graph G. Then B is a bond if, and only if, there exist disjoint connected vertex subsets X, Y such that $B = [X, Y] = [X, X^c]$.

Proof. " \Rightarrow " Let B be a minimal cut. Being a cut, there exists a proper vertex subset X' such that $B = [X', X'^c]$. Let X' be decomposed into connected vertex subsets X_i . Then each $[X_i, X'^c]$ is a cut and $B = [X', X'^c] = \bigsqcup[X_i, X'^c]$. Since B is minimal, only one of $[X_i, X'^c]$ is nonempty, say $[X_1, X'^c]$. Set $X = X_1$, we have $B = [X, X'^c]$. Let X'^c be decomposed into connected vertex subsets Y_j . Likewise, each $[X, Y_j]$ is a cut, and $B = \bigsqcup[X, Y_j]$. Since B is minimal, only one of $[X, Y_j]$ is nonempty, say $[X, X'^c]$.

"⇐" Let $B = [X, Y] = [X, X^c]$ be a cut, where X, Y are connected vertex subsets. Note that $G[X \cup Y]$ is connected. Suppose B is not minimal, i.e., there exists a proper subset $B' \subsetneq B$ such that B' is a cut. Then $c(G \smallsetminus B') > c(G)$ as B' is a cut. However, the edges of $B \smallsetminus B'$ are between X and Y, and both X, Y are connected vertex subsets. So $c(G \smallsetminus B') = c(G)$, contradictory to $c(G \smallsetminus B') > c(G)$.

Proposition 2.7 (Bond Decomposition of Cut). Each cut of a graph G is an edge-disjoint union of bonds of G.

Proof. Given a cut $[X, X^c]$ of G. Let X be decomposed into disjoint connected vertex subsets X_i . Then $[X, X^c]$ is decomposed into edge-disjoint (possibly empty) cuts $[X_i, X^c]$. Let X^c be decomposed into disjoint connected vertex subsets Y_j . Each nonempty $[X_i, X^c]$ is decomposed into edge-disjoint (possibly empty) cuts $[X_i, Y_j] = [Y_j, X_i]$. Since Y_j, X_i are connected vertex subsets, each nonempty $[Y_j, X_i] = [Y_j, Y_j^c]$ is a bond by Proposition 2.6. \Box

Definition 2.8. The symmetric difference of two spanning subgraphs $G_i = (V, E_i)$ (i = 1, 2) of a graph G = (V, E) is a spanning subgraph $G_1 \Delta G_2$ of G, whose edge set is

$$E_1 \Delta E_2 := E_1 \cup E_2 - E_1 \cap E_2.$$

We view each edge subset E' of G as a spanning subgraph with the edge set E'.

The class $\mathcal{P}(G)$ of all spanning subgraphs of G forms an abelian group under the symmetric difference Δ . We sometimes write

$$G_1 + G_2 := G_1 \Delta G_2 = (V, E_1 \Delta E_2)$$

The zero (or identity) element of $\mathcal{P}(G)$ is the spanning subgraph (V, \emptyset) with the empty edge set. The negative (or inverse) of a subgraph (V, E') is (V, E') itself.

Proposition 2.9. The symmetric difference of two cuts is a cut or the empty set of edges. For vertex subsets X, Y of a graph G,

$$[X, X^c]\Delta[Y, Y^c] = [X\Delta Y, (X\Delta Y)^c].$$

Proof. Note that V(G) is partitioned into four disjoint parts $X \cap Y$, $X \cap Y^c$, $X^c \cap Y$ and $X^c \cap Y^c$. The identity follows clearly from Figure 1. The identity can be also verified logically

Figure 1: Symmetric difference of two cuts, where $XY = X \cap Y$.

as follows:

$$\begin{split} [X, X^c] &= [X \cap Y, X^c] \sqcup [X \cap Y^c, X^c] \\ &= [X \cap Y, X^c \cap Y] \sqcup [X \cap Y, X^c \cap Y^c] \sqcup \\ [X \cap Y^c, X^c \cap Y] \sqcup [X \cap Y^c, X^c \cap Y^c]; \end{split}$$

$$\begin{aligned} [Y,Y^c] &= [X \cap Y,Y^c] \sqcup [X^c \cap Y,Y^c] \\ &= [X \cap Y,X \cap Y^c] \sqcup [X \cap Y,X^c \cap Y^c] \sqcup \\ [X^c \cap Y,X \cap Y^c] \sqcup [X^c \cap Y,X^c \cap Y^c]. \end{aligned}$$

Note that $[X \cap Y^c, X^c \cap Y] = [X^c \cap Y, X \cap Y^c]$, which is canceled in $[X, X^c]\Delta[Y, Y^c]$. The cuts $[X \cap Y, X^c \cap Y]$, $[X \cap Y^c, X^c \cap Y^c]$ are disjoint from both $[X \cap Y, X \cap Y^c]$ and $[X^c \cap Y, X^c \cap Y^c]$. Thus $[X, X^c]\Delta[Y, Y^c]$ is the disjoint union

$$\begin{split} & [X \cap Y, X \cap Y^c] \cup [X \cap Y, X^c \cap Y] \cup [X \cap Y^c, X^c \cap Y^c] \cup [X^c \cap Y, X^c \cap Y^c] \\ = & [X \cap Y, (X \cap Y^c) \cup (X^c \cap Y)] \sqcup [(X \cap Y^c) \cup (X^c \cap Y), X^c \cap Y^c] \\ = & [(X \cap Y^c) \cup (X^c \cap Y), (X \cap Y) \cup (X^c \cap Y^c)]. \end{split}$$

Since $X\Delta Y = (X \cap Y^c) \cup (X^c \cap Y)$ and

$$(X\Delta Y)^c = (X^c \cup Y) \cap (X \cup Y^c)$$

= $[(X^c \cup Y) \cap X] \cup [(X^c \cup Y) \cap Y^c]$
= $(X \cap Y) \cup (X^c \cap Y^c),$

we see that $[X, X^c]\Delta[Y, Y^c] = [X\Delta Y, (X\Delta Y)^c].$

Proposition 2.10. For spanning subgraphs $G_i = (V, E_i)$ of a graph G = (V, E), i = 1, 2, and each proper vertex subset $X \subset V$, we have

$$\delta_{G_1 \Delta G_2} X = \delta_{G_1} X \Delta \partial_{G_2} X, \quad \text{i.e.,} \quad [X, X^c]_{G_1 \Delta G_2} = [X, X^c]_{G_1} \Delta [X, X^c]_{G_2}.$$

Proof. It follows that $\delta_{G_1 \Delta G_2} X = [X, X^c] \cap (E_1 \Delta E_2) = [X, X^c] \cap (E_1 \cup E_2 - E_1 \cap E_2)$ and

$$\delta_{G_1} X \Delta \partial_{G_2} X = ([X, X^c] \cap E_1) \Delta ([X, X^c] \cap E_2) = ([X, X^c] \cap E_1) \cup ([X, X^c] \cap E_2) - [X, X^c] \cap E_1 \cap E_2 = [X, X^c] \cap (E_1 \cup E_2) - [X, X^c] \cap E_1 \cap E_2.$$

Theorem 2.11. The symmetric difference of two spanning even subgraphs of a graph G is an even spanning subgraph of G.

Proof. Let $G_i = (V, E_i)$ be spanning even subgraphs of G = (V, E), i = 1, 2. Let X be a proper vertex subset. By Proposition 2.10,

$$\#\delta_{G_1\Delta G_2}X = \#(\delta_{G_1}X\Delta\delta_{G_2}X) = \#\delta_{G_1}X + \#\delta_{G_2}X - 2\#(\delta_{G_1}X \cap \delta_{G_2}X),$$

which is an even number. Then by Theorem 2.5, $G_1 \Delta G_2$ is a spanning even subgraph. \Box

Corollary 2.12. The class C(G) of spanning even subgraphs of a graph G is closed under the symmetric difference. So C(G) is a subgroup of $\mathcal{P}(G)$, called the **cycle group** of G.

Corollary 2.13. The class $\mathcal{B}(G)$ of cuts of a graph G is closed under symmetric difference. So $\mathcal{B}(G)$ is a subgroup of $\mathcal{P}(G)$, called the **bond group** (or **cut group**) of G.

Vector Spaces Associated to Graphs:

• Let S be a nonempty set and \mathbb{F} a field. Let \mathbb{F}^S denote the set of all functions from S to \mathbb{F} . Then \mathbb{F}^S becomes a vector space over \mathbb{F} under the addition and the scalar multiplication of functions: For functions $f, g \in \mathbb{F}^S$ and a scalar $a \in \mathbb{F}$,

$$(f+g)(s) = f(s) + g(s), \quad (af)(s) = af(s), \quad s \in S$$

If |S| = n and $S = \{s_1, \ldots, s_n\}$, then $\mathbb{F}^S \cong \mathbb{F}^n$ and the isomorphism is given by $f \mapsto (f(s_1), \ldots, f(s_n))$. If you don't like an arbitrary field \mathbb{F} , just assume that \mathbb{F} is the field \mathbb{R} of real numbers.

• Let S be a nonempty set and $\mathbb{F}_2 = \{0, 1\} \cong \mathbb{Z}/2\mathbb{Z}$, the field of two elements, where 1 + 1 = 0 (so -1 = 1). The power set $\mathcal{P}(S)$ is an abelian group under the symmetric difference, which is written as plus '+' now as follows: For subsets $A, B \subseteq S$, define the addition

$$A + B := A \cup B - A \cap B.$$

The zero element of $\mathcal{P}(S)$ is the empty set \emptyset ; the negative element of $A \in \mathcal{P}(S)$ is A itself. Moreover, for each $a \in \mathbb{F}_2$, we define the scalar multiplication

$$aA = \begin{cases} A & \text{if } a = 1, \\ \emptyset & \text{if } a = 0. \end{cases}$$

Then $\mathcal{P}(S)$ becomes a vector space over \mathbb{F}_2 under the addition and scalar multiplication.

• There is a bijection $\varphi : \mathcal{P}(S) \to \mathbb{F}_2^S$, defined by

$$\varphi(A) = 1_A$$
, where $1_A(s) = \begin{cases} 1 & \text{if } s \in A, \\ 0 & \text{if } s \in S - A. \end{cases}$

The bijection φ preserves the addition and scalar multiplication:

$$\varphi(A+B) = 1_{A\cup B-A\cap B} = 1_{A-B} + 1_{B-A} (1_{A\cup B} - 1_{A\cap B})$$

= $1_A + 1_{A\cap B} + 1_B + 1_{A\cap B} (1_A + 1_B - 1_{A\cap B} - 1_{A\cap B})$
= $1_A + 1_B = \varphi(A) + \varphi(B);$

$$\varphi(aA) = \begin{cases} 1_A & \text{if } a = 1\\ 1_{\varnothing} = 0 & \text{if } a = 0 \end{cases} = \begin{cases} a\varphi(A) & \text{if } a = 1\\ a\varphi(A) & \text{if } a = 0 \end{cases} = a\varphi(A).$$

So φ is a vector space isomorphism from $\mathcal{P}(S)$ to \mathbb{F}_2 .

- A basis of P(S) is the set of singletons {s} : s ∈ S. A basis of F₂^S is the set of indicator functions of singletons 1_{s} : s ∈ S. If |S| = n and S = {s₁,..., s_n}, the vector space F₂^S is isomorphic to F₂ⁿ with 1_{{s_i} ↔ (0,...,1,...,0) (all coordinates are zero except 1 for the *i*th coordinate).
- For a graph G = (V, E), the vector space \mathbb{F}_2^V is called the **vertex space** of G, and \mathbb{F}_2^E is called the **edge space** of G, whose dimension is |E|.
- The class of edge sets of even subgraphs of a graph G is a vector subspace of its edge space, called the **cycle space** of G.
- The class of edge sets of cuts of a graph G is a vector subspace of its edge space, called the **bond space** of G.

Theorem 2.14. Let T be a spanning tree of a connected graph G. Let C(T, e) denote the unique cycle (called the **fundamental cycle** of G with respect to T) contained in $T \cup e$ for each edge e of the co-tree $T^c := E(G) \setminus E(T)$. Then the cycle group C(G) is generated by the cycles C(T, e) with $e \in T^c$. Moreover, if C(G) is viewed a vector space over \mathbb{F}_2 , then $\{C(T, e) : e \in T^c\}$ is a basis of C(G).

Proof. The fundamental cycles of G with respect to T are linearly independent: Assume

$$\sum_{e \in T^c} x_e C(T, e) = 0 (= \emptyset) \quad \text{with} \quad x_e \in \mathbb{F}_2.$$

For each $e \in T^c$, we have $e \in C(T, e)$ and $C(T, e) \setminus e \subset T$; we see that e cannot be canceled in the LHS if $x_e = 1$. So $x_e = 0$ for all $e \in T^c$. This means that $C(T, e), e \in T^c$ are linearly independent over \mathbb{F}_2 .

Let C be an even spanning subgraph of G. Then C is an addition of edge-disjoint cycles. Consider the following even spanning subgraph

$$C' := C + \sum_{e \in C \cap T^c} C(T, e).$$

We claim that $C' = 0 \ (= \emptyset)$. Note that C' is contained in T (the edges in T^c are canceled by definition). Suppose C' is nonempty. Then C' is an edge disjoint union of cycles C_i contained in T, which is a contradiction. Thus C' = 0 and $C = \sum_{e \in C \cap T^c} C(T, e)$. We have shown that $\{C(T, e) : e \in T^c\}$ is a basis of C(G).

Theorem 2.15. Let T be a spanning tree of a connected graph with G. Let $B(T^c, e)$ denote the unique bond (called a **fundamental bond** of G with respect to T) contained in $T^c \cup e$ for each edge $e \in T$. Then the bond group $\mathcal{B}(G)$ is generated by the bonds $B(T^c, e)$, where $e \in T$. Moreover, if $\mathcal{B}(G)$ is viewed as a vector space over \mathbb{F}_2 , then $\{B(T^c, e) : e \in T\}$ is a basis of $\mathcal{B}(G)$.

Proof. The fundamental bonds of G with respect to T are linear independent: Assume

$$\sum_{e \in T} x_e B(T^c, e) = 0 (= \emptyset) \quad \text{with} \quad x_e \in \mathbb{F}_2.$$

For each $e \in T$, we have $e \in B(T^c, e)$ and $B(T^c, e) \setminus e \subset T^c$; we see that e cannot be canceled in the LHS if $x_e = 1$. So $x_e = 0$ for all $e \in T$. This means that $B(T^c, e), e \in T$ are linearly independent over \mathbb{F}_2 .

Let U be a cut of G. Consider the following additions of cuts

$$U' := U + \sum_{e \in U \cap T} B(T^c, e)$$

We claim that $U' = 0 (= \emptyset)$. Note that U' is contained in T^c (the edges in T are canceled in the RHS). Suppose $U' \neq 0$, i.e., U' is a nonempty cut contained T^c , which is a contradiction, since each cut contains at least one edge of T. Thus G' = 0 and $U = \sum_{e \in U \cap T} B(T^c, e)$. We have shown that $\{B(T^c, e) : e \in T\}$ is a basis of $\mathcal{B}(G)$. \Box

Corollary 2.16. For each even subgraph H and each cut U of a graph G, we have

$$|H \cap U| = |E(H) \cap E(U)| =$$
even.

Proof. Let H be decomposed into edge-disjoint cycles C. Then $|H \cap U| = \sum_{C} |C \cap U|$. It suffices to show that $|C \cap U|$ is even. Let $U = [X, X^c]$ and C be arranged as a closed path $W = v_0 e_1 v_1 \dots e_n v_n$ with $v_n = v_0$. Then W goes through U between X and X^c even number of times. So $|C \cap U|$ is even.

Question: Is the group $\mathcal{P}(G)$ a direct sum of the cycle group $\mathcal{C}(G)$ and the bond group $\mathcal{B}(G)$, i.e., $\mathcal{P}(E) = \mathcal{C}(P) \oplus \mathcal{B}(G)$?

3 Flow space and tension space

Let G = (V, E) be a graph and let A an abelian group.

• Recall that **orientation** of an edge e = uv with endpoints u, v is one of the two arcs (directed edges) \vec{uv} and \vec{uv} ($= \vec{vu}$). If an orientation of e is denoted by \vec{e} , say, $\vec{e} = \vec{uv}$, then the other (opposite) orientation of e is denoted by $-\vec{e}$, i.e., $-\vec{e} = \overleftarrow{uv}$. Let $\vec{E}(G)$ denote the set of all oriented edges from the edge set E(G). Then

$$|\vec{E}(G)| = 2|E(G)|$$

• Recall that an **orientation** ω of G is an assignment that each edge of G is given one of its two orientations. We may view ω as an arc subset $\omega \subset \vec{E}(G)$ such that

$$\omega \cap (-\omega) = \emptyset, \quad \omega \cup (-\omega) = \vec{E}(G).$$

A graph G with an orientation ω is called a **directed graph**, denoted (G, ω) .

• A flow valued in A or A-flow of a digraph (G, ω) is a function $f \in A^E$ such that for each vertex $v \in V$,

$$\sum_{e \in E^+(v)} f(e) - \sum_{e \in E^-(v)} f(e) = 0, \qquad (3.1)$$

where $E^+(v)$ is the set of arcs of ω pointing to v, and $E^-(v)$ the set of arcs of ω pointing away from v. The **A-flow group** of G with respect to ω , denoted $F(G, \omega; A)$, is the group of all A-flows of (G, ω) .

- A sink (source) of a digraph (G, ω) is a vertex v such that all arcs of ω with endpoint v point to (away from) v.
- A circuit of a graph G is a minimal spanning even subgraph. Circuit is just another name for cycle in graphs. A direction of a circuit C is an orientation ω_C on C such that the directed subgraph (C, ω) has neither a sink nor a source. Each circuit has exactly two directions.
- Given an orientation ω of G. For each directed circuit (C, ω_C) of G, the function $[\omega, \omega_C] : E \to \mathbb{Z}$, defined by

$$[\omega, \omega_C](e) = \begin{cases} 1 & \text{if } e \in C \text{ and } \omega, \omega_C \text{ have the same orientation on } e, \\ -1 & \text{if } e \in C \text{ and } \omega, \omega_C \text{ have opposite orientations on } e, \\ 0 & \text{if } e \notin C, \end{cases}$$

is an integer-valued flow of the digraph (G, ω) , called a **circuit flow** generated by C.

• A tension valued in A or A-tension of a digraph (G, ω) is a function $g \in A^E$ such that for each directed circuit (C, ω_C) ,

$$\langle [\omega, \omega_C], g \rangle := \sum_{e \in C} [\omega, \omega_C](e)g(e) = 0.$$

The A-tension group of G with respect to ω , denoted $T(G, \omega; A)$, is the group of all A-tensions of (G, ω) .

- Let $U = [X, X^c]$ be a cut of G. A **direction** of U is an orientation ω_U on B such that the arcs of ω_U have heads all in X or all in X^c . Each cut has exactly two directions.
- Given an orientation ω of G. For each directed cut (U, ω_U) of G, the function $[\omega, \omega_U]$: $E \to \mathbb{Z}$, defined by

$$[\omega, \omega_U](e) = \begin{cases} 1 & \text{if } e \in U \text{ and } \omega, \omega_U \text{ have the same orientation on } e, \\ -1 & \text{if } e \in U \text{ and } \omega, \omega_U \text{ have opposite orientations on } e, \\ 0 & \text{if } e \notin U, \end{cases}$$

is an integral tension of the digraph (G, ω) , called a **cut tension** generated by U. The cut tension is called a **bond tension** if the cut is a bond.

• A function $f \in A^E$ is a flow of (G, ω) if, and only if, for each directed bond (B, ω_B) ,

$$\langle [\omega, \omega_B], f \rangle = \sum_{e \in \omega_B} [\omega, \omega_B](e) f(e) = 0.$$

In particular, a digraph (G, ω) is **even** (i.e., in-degree equals out-degree at every vertex) if, and only if, for each directed bond (B, ω_B) ,

$$\sum_{e \in \omega_B} [\omega, \omega_B](e) = 0.$$

- A local direction of a cut $U = [X, X^c]$ of a graph G is an orientation ω_U such that (U, ω_U) can be decomposed into an edge-disjoint directed bonds. Local directions of a cut are not necessarily unique up to sign.
- Let U be a nonempty edge subset of G, and let ω_U be an orientation on U. If the function $[\omega, \omega_U] : E \to \mathbb{Z}$, defined by

$$[\omega, \omega_U](e) = \begin{cases} 1 & \text{if } e \in U \text{ and } \omega, \omega_U \text{ have the same orientation on } e, \\ -1 & \text{if } e \in U \text{ and } \omega, \omega_U \text{ have opposite orientations on } e, \\ 0 & \text{if } e \notin U, \end{cases}$$

is an integral tension of G, ω), then U is a cut, i.e., $U = [X, X^c]$ for a vertex subset X of G, and ω_U is a local direction of U.

The flow groups $F(G, \omega; \mathbb{Z})$, $F(G, \omega; \mathbb{R})$ are called **flow lattice**, **flow space** of (G, ω) respectively. Likewise, the tension groups $T(G, \omega; \mathbb{Z})$, $T(G, \omega; \mathbb{R})$ are called **tension lattice**, **tension space** of (G, ω) respectively. Sometimes we abbreviate $F(G, \omega; \mathbb{R})$ to $F(G, \omega)$, and $T(G, \omega; \mathbb{R})$ to $T(G, \omega)$

Theorem 3.1. Let T be a spanning tree of a connected graph G with an orientation ω .

(a) For each $e \in T^c$, let C(T, e) denote the unique circuit contained in $T \cup e$ with a direction ω_e such that ω, ω_e have the same orientation on e. Then $\{[\omega, \omega_e] : e \in T^c\}$ is a basis of $F(G, \omega; \mathbb{Z})$, and for each $f \in F(G, \omega; \mathbb{Z})$,

$$f = \sum_{e \in T^c} f(e)[\omega, \omega_e].$$

(b) For each e ∈ T, let B(T^c, e) denote the unique bond contained in T^c ∪ e with a direction ω_e such that ω, ω_e have the same orientation on e. Then {[ω, ω_e] : e ∈ T} is basis of T(G, ω; Z), and for each g ∈ T(G, ω; Z),

$$g = \sum_{e \in T} g(e)[\omega, \omega_e].$$

(c) Vector spaces $F(G, \omega; \mathbb{R})$ and $T(G, \omega; \mathbb{R})$ are orthogonal complement each other in \mathbb{R}^E ; in particular,

$$T(G,\omega;\mathbb{R})\oplus F(G,\omega;\mathbb{R})=\mathbb{R}^{E}.$$

However, $T(G, \omega; \mathbb{Z}) \oplus F(G, \omega; \mathbb{Z}) \subseteq \mathbb{Z}^E$ and

$$|\mathbb{Z}^{E}/(T(G,\omega;\mathbb{Z})\oplus F(G,\omega;\mathbb{Z}))| = \#\{\text{spanning forests of } G\}.$$

Proof. (a) Consider the equation $\sum_{e \in T^c} x_e[\omega, \omega_e] = 0$. Note that $[\omega, \omega_e]$ is supported on $T \cup e$. For each $e_0 \in T^c$, we have

$$0 = \left(\sum_{e \in T^c} x_e[\omega, \omega_e]\right)(e_0) = \sum_{e \in T^c} x_e[\omega, \omega_e](e_0) = x_{e_0}.$$

We see that $[\omega, \omega_e] : e \in T^c$ are linearly independent.

Let $f \in F(G, \omega; R)$. Consider the flow

$$f' := f - \sum_{e \in T^c} f(e)[\omega, \omega_e].$$

For each $e_0 \in T^c$, note that $f'(e_0) = f(e_0) - \sum_{e \in T^c} f(e)[\omega, \omega_e](e_0) = f(e_0) - f(e_0) = 0$. Then $f'|_{T^c} = 0$. Note that T is a tree and f' is a flow of (G, ω) . For each edge $e' \in T$ at a leaf v of T, the net flow of f' at v is $\pm f'(e')$, which must be zero by definition of flow. Then f is zero on edges of $T \\ e'$ at its leaves. Continue this procedure, we see that $f'|_T = 0$. We have show that $f = \sum_{e \in T^c} f(e)[\omega, \omega_e]$. Thus $\{[\omega, \omega_e] : e \in T^c\}$ is basis of $F(G, \omega; \mathbb{Z})$. (b) Likewise, consider the equation $\sum_{e \in T} x_e[\omega, \omega_e] = 0$. Note that $[\omega, \omega_e]$ is supported on

 $T^c \cup e$. For each $e_0 \in T$, we have

$$0 = \left(\sum_{e \in T} x_e[\omega, \omega_e]\right)(e_0) = \sum_{e \in T^c} x_e[\omega, \omega_e](e_0) = x_{e_0}.$$

We see that $[\omega, \omega_e] : e \in T$ are linearly independent.

Let $q \in T(G, \omega; R)$. Consider the tension

$$g' := g - \sum_{e \in T} g(e)[\omega, \omega_e].$$

For each $e_0 \in T$, note that $g'(e_0) = f(e_0) - \sum_{e \in T} g(e)[\omega, \omega_e](e_0) = g(e_0) - g(e_0) = 0$. Then $g'|_T = 0$. For each $e' \in T^c$, consider the direction $\omega_{e'}$ of C(T, e') in the former part of the theorem. By definition of tension, we have

$$g(e') = \langle [\omega, \omega_{e'}], g \rangle = 0.$$

We see that $g'|_{T^c} = 0$. We have shown that $g = \sum_{e \in T} g(e)[\omega, \omega_e]$. Thus $\{[\omega, \omega_e] : e \in T\}$ is basis of $T(G, \omega; \mathbb{Z})$.

(c) Since tensions are orthogonal to circuit flows, and flows are spanned by circuit flows, it follows that all tensions are orthogonal to flows by (a). Since dim $F(G,\omega;\mathbb{R}) = |T^c|$ and $\dim T(G,\omega;\mathbb{R}) = |T|$, we see that

$$|E| = \dim F(G, \omega; \mathbb{R}) + \dim T(G, \omega; \mathbb{R}).$$

It follows that $F(G, \omega; \mathbb{R})$ and $T(G, \omega; \mathbb{R})$ are orthogonal complement each other in \mathbb{R}^E . Thus \mathbb{R}^E is a direct sum of $F(G, \omega; \mathbb{R})$ and $T(G, \omega; \mathbb{R})$.

The **incidence matrix** of a digraph (G, ω) is the $V \times E$ matrix

$$\mathbf{M} = \mathbf{M}(G, \omega) = [m_{ve}], \quad m_{ve} = \begin{cases} 1 & \text{if } \vec{e} = \vec{u}\vec{v} \in \omega, \ u \neq v, \\ -1 & \text{if } \vec{e} = \vec{v}\vec{w} \in \omega, \ v \neq w, \\ 0 & \text{otherwise.} \end{cases}$$

For each $v \in V(G)$, we have the flow equation:

$$\sum_{e \in E^+(v)} x_e - \sum_{e \in E^-(v)} x_e = 0 \quad \Leftrightarrow \quad \sum_{e \in E} m_{ve} x_e = 0.$$

Let $\boldsymbol{x} = (x_e : e \in E) \in \mathbb{R}^E$. Then the flow space $F(G, \omega; \mathbb{R})$ is the solution set of the matrix equation

$$\mathbf{M} \boldsymbol{x} = \boldsymbol{0}$$

Since the row space of \mathbf{M} is the orthogonal complement of ker \mathbf{M} , we have

$$F(G,\omega;\mathbb{R}) = \ker \mathbf{M}, \quad T(G,\omega;\mathbb{R}) = \operatorname{Row}\mathbf{M}.$$

4 Chain group

Given an abelian A. The flow groups $F(G, \omega; A)$ depend on the chosen orientations ω , though all of them are isomorphic. Likewise, the tension groups $T(G, \omega; A)$ also depend on the chosen orientations ω , and all of them are isomorphic. It is desired to obtain a unique flow group of G in some intrinsic way, so that it is independent of the chosen orientations. For this purpose we need to introduce so-called chains groups.

Boundary Operator and Co-boundary Operator:

- Each vertex of a graph G is referred to a 0-cell, and each edge of G is referred to a 1-cell. So a graph G can be viewed as a 1-dimensional cell complex.
- A 0-chain of G valued in A is a function $p: V \to A$, also called a **potential function**. A 1-chain or just chain of G valued in A is a function $f: \vec{E}(G) \to A$ satisfying

$$f(-e) = -f(e) \quad \forall \ e \in E(G).$$

This means that the two orientations of each edge are coupled by opposite values. Let $C_i(G, A)$ denote the group of *i*-chains of G, i = 0, 1, called the *i*th chain group of G.

• The **support** of a chain f is the edge set $\operatorname{supp} f = \{e \in E(G) : f(\vec{e}) \neq 0\}$. We usually write a chain f as

$$f = \sum_{e \in \text{supp}f} f(\vec{e})\vec{e}.$$

Here we do not care which oriented edge \vec{e} is selected: since $f(-\vec{e}) = -f(\vec{e})$, we have

$$\sum_{e \in \text{supp}f} f(-\vec{e})(-\vec{e}) = \sum_{e \in \text{supp}f} (-1)(-1)f(\vec{e})\vec{e} = \sum_{e \in \text{supp}f} f(\vec{e})\vec{e}$$

The chain group $C_1(G, A)$ is generated by the arcs $\vec{e} \in \vec{E}(G)$. Each member of $C_1(G, A)$ is of the form $\sum_{e \in E} a_{\vec{e}} \vec{e_i}$ with $\vec{e} \in \vec{E}(G)$ and $a_{\vec{e}} \in A$.

• Choose an orientation ω of G. The chain group $C_1(G, A)$ can be identified to the group A^E of functions from E to A as follows: $C_1(G, A) \cong A^E$, each $f : \vec{E} \to A$ is identified as a function $f : E \to A$ given by

$$f(e) = f(\vec{e})$$
 for $e \in E(G)$, where $\vec{e} \in \omega$.

• There is a canonical **pairing** $\langle,\rangle: C_1(G,\mathbb{Z}) \times C_1(G,A) \to A$, defined by

$$\langle f,g\rangle = \sum_{e\in E(G)} f(\vec{e})g(\vec{e}).$$

Again, here it does not matter which oriented edge \vec{e} is selected in the sum, since

$$f(-\vec{e})g(-\vec{e}) = (-f(\vec{e}))(-g(\vec{e})) = f(\vec{e})g(\vec{e}).$$

• The **boundary operator** of G is the group homomorphism

$$\partial : C_1(G, A) \to C_0(G, A), \quad \partial \vec{e} = v - u, \quad \vec{e} = \vec{uv},$$

extended by linearity (homomorphism is uniquely determined by its values on generators). More specifically, for each $f \in C_1(G, A)$,

$$(\partial f)(v) = \sum_{\vec{e} = \vec{u}\vec{v}} f(\vec{e}) = -\sum_{\vec{e} = \vec{v}\vec{w}} f(\vec{e}) = \sum_{\vec{e} \in \omega \cap \vec{E}(v)} f(\vec{e}),$$

where ω is an orientation of G and $\vec{E}(v)$ is the set of arcs having v as an endpoint.

The flow group F(G, A) of G with coefficients in A is ker ∂ . Each member of F(G, A) is called a flow of G valued in A or A-flow.

• The **co-boundary operator** of *G* is the group homomorphism

$$\delta: C_0(G, A) \to C_1(G, A), \quad (\delta p)(\vec{e}) = p(u) - p(v), \quad \vec{e} = \vec{u}\vec{v}.$$

Circuit Chains, Cut Chains, Bond Chains:

• A circuit chain of a graph G, associated with a directed circuit (C, ω_C) , is a chain

$$\mathbf{I}_{\omega_C}: \vec{E} \to \mathbb{Z}, \quad \mathbf{I}_{\omega_C}(e) = \begin{cases} 1 & \text{if } e \in \omega_C, \\ 0 & \text{if } e \notin \omega_C \cup (-\omega_C). \end{cases}$$

Sometimes we simply write I_{ω_C} as ω_C , since

$$\mathbf{I}_{\omega_C} = \sum_{e \in E} \mathbf{I}_{\omega_C}(\vec{e}) \cdot \vec{e} = \sum_{\vec{e} \in \omega_C} 1 \cdot \vec{e} = \sum_{\vec{e} \in \omega_C} \vec{e}.$$

- A direction of a cut $U = [X, X^c]$ of a graph G is an orientation ω_U on U such that its oriented edges have tails in X and heads in X^c . A cut U with a direction ω_U is called a directed cut, denoted (U, ω_U) .
- A cut chain of G, associated with a directed cut (U, ω_U) , is a chain

$$\mathbf{I}_{\omega_U}: \vec{E} \to \mathbb{Z}, \quad \mathbf{I}_{\omega_U}(e) = \begin{cases} 1 & \text{if } e \in \omega_U, \\ 0 & \text{if } e \notin \omega_C \cup (-\omega_U). \end{cases}$$

Likewise, we sometimes simply write I_{ω_U} as ω_U . A cut chain is called a **bond chain** if the cut is a bond.

Definition 4.1. A tension of a graph G with values in an abelian group A is a chain $g \in C_1(G, A)$ such that for each directed circuit (C, ω_C) ,

$$\sum_{e \in \omega_C} g(e) = 0, \quad \text{i.e.}, \quad \langle \mathbf{I}_{\omega_C}, g \rangle = 0.$$

The **tension group** T(G, A) of G with coefficients in A is the group of all tensions of G with values in A.

Proposition 4.2. For each potential $p \in C_0(G, A)$, δp is a tension of G.

Proof. Let C be a circuit with a direction ω_C . We may arrange the vertices and directed edge of (C, ω_C) as a directed walk $W = v_0 e_1 v_1 e_2 v_2 \dots v_{n-1} e_n v_n$, where $v_n = v_0$ and the direction of e_i is pointing from v_{i-1} to v_i , $i = 1, 2, \dots, n-1$. Then

$$\langle \delta p, \mathbf{I}_{\omega_C} \rangle = \sum_{i=1}^n \delta p(e_i) = \sum_{i=1}^n \left[p(v_i) - p(v_{i-1}) \right] = \sum_{i=1}^n p(v_i) - \sum_{i=0}^{n-1} p(v_i) = 0.$$

Theorem 4.3. Let F be a spanning forest of a graph G = (V, E). Let C(F, e) denote the unique circuit contained in $F \cup e$ with a direction $\omega(F, e)$, where $e \in F^c$. Let $B(F^c, e)$ denote the unique bond contained in $F^c \cup e$ with a direction $\omega(F^c, e)$, where $e \in F$. Then

$$F(G, A) = \bigoplus_{e \in F^c} A \operatorname{I}_{\omega(F,e)} \cong A^{F^c} \quad and \quad f = \sum_{e \in F^c} f(e) \operatorname{I}_{\omega(F,e)};$$

$$T(G, A) = \bigoplus_{e \in F} A \operatorname{I}_{\omega(F^c,e)} \cong A^F \quad and \quad g = \sum_{e \in F} g(e) \operatorname{I}_{\omega(F^c,e)};$$

$$F(G, A) + T(G, A) \subseteq C_1(G, A) \cong A^E.$$

However, F(G, A)+T(G, A) is not necessarily a direct sum. The vector spaces $F(G, \mathbb{R}), T(G, \mathbb{R})$ are orthogonal complement each other in $C_1(G, \mathbb{R})$, and

$$F(G,\mathbb{Z})\oplus T(G,\mathbb{Z})\subseteq C_1(G,\mathbb{Z}), \quad F(G,\mathbb{R})\oplus T(G,\mathbb{R})=C_1(G,\mathbb{R}).$$

Proof. Consider the chain $f' = f - \sum_{e \in F^c} f(\vec{e}) I_{\omega(F,e)}$ with $\vec{e} \in \omega(F,e)$, which is a member of F(G, A). It is clear by definition that f' = 0 on \vec{F}^c . So f' is only possibly nonzero on \vec{F} . Since F is a forest, each component T of F is a tree. For each nontrivial tree Tof F, let e' = uv be an edge at a leaf v of T and let $\vec{e}' = \vec{uv}$. Since $\partial f' = 0$, we have $0 = (\partial f')(v) = f'(\vec{e}')$. Continue this procedure by selecting leaves of $T \smallsetminus e$, we conclude that f' = 0 on \vec{T} . Subsequently, f' = 0 on \vec{F} . Thus $f = \sum_{e \in F^c} f(\vec{e}) I_{\omega(F,e)}$, where $\vec{e} \in \omega(F,e)$. Likewise, set $g' = g - \sum_{e \in F} g(e) I_{\omega(F^c,e)}$ with $\vec{e} \in \omega(F^c,e)$, which is a member of T(G,A).

Likewise, set $g' = g - \sum_{e \in F} g(e) I_{\omega(F^c,e)}$ with $\vec{e} \in \omega(F^c,e)$, which is a member of T(G,A). It is clear by definition that g' = 0 on \vec{F} . For each $e' \in F^c$, we have $g'(\vec{e}') = \langle g', I_{\omega(F,e')} \rangle = 0$. Thus g' = 0 on $\vec{F^c}$. Therefore $g = \sum_{e \in F} g(\vec{e}) I_{\omega(F^c,e)}$, where $\vec{e} \in \omega(F^c,e)$.

Let G be the graph with two vertices connected by two parallel edges. Then $C_1(G, \mathbb{Z}_2) \cong \mathbb{Z}_2^2$ and $F(G, \mathbb{Z}_2) = T(G, \mathbb{Z}_2) \cong \mathbb{Z}_2$. Of course $F(G, \mathbb{Z}_2) + T(G, \mathbb{Z}_2)$ cannot be a direct sum, and $F(G, \mathbb{Z}_2) + T(G, \mathbb{Z}_2) \neq C_1(G, \mathbb{Z}_2)$. More complicated examples can be constructed in a similar fashion.

Theorem 4.4. Let c(G) denote the number of connected components of a graph G. Then for each abelian group A,

$$C_0(G, A) \cong T(G, A) \oplus A^{c(G)}$$

Proof. Given a tension $g \in T(G)$. Fix a vertex v_0 in a component of G, and let $p(v_0)$ be any member of A. For each $v \in V(G_0)$, let $P = v_0 e_1 v_1 \cdots e_m v_m(v)$ be a directed path from v_0 to v. Define

$$p(v) = p(v_m) = p(v_0) + \sum_{i=1}^m g(e_i), \quad e_i = \overrightarrow{v_{i-1}v_i}.$$

Let $P' = v_0 e'_1 v'_1 \dots e'_n v_n(v)$ be an other directed path from v_0 to v. Let P'^{-1} denote the reversal of P', having e'_n pointing away from v. Then PP'^{-1} is a directed closed path. Thus

$$\langle g, \mathbf{I}_{PP'^{-1}} \rangle = \sum_{i=1}^{m} g(e_i) - \sum_{j=1}^{n} g(e'_j) = 0.$$

This means that p(v) is well-defined. For a directed edge $e := e_m = \overrightarrow{v_{m-1}v_m}$. We have

$$(\delta p)(e) = p(v_m) - p(v_{m-1}) = \left(p(v_0) + \sum_{i=1}^m g(e_i) \right) - \left(p(v_0) + \sum_{i=1}^{m-1} g(e_i) \right) = g(e_m) = g(e).$$

Proposition 4.5. Let X be a proper vertex subset of a graph G = (V, E). Let $\omega(X, X^c)$ denote the direction of the cut $[X, X^c]$ such that all arcs of $\omega(X, X^c)$ have heads in X and tails in X^c . Then

$$\delta 1_X = \mathbf{I}_{\omega(X,X^c)}.$$

This explains again why we adopt the notation $\delta X = [X, X^c]$.

Proof. For each $\vec{e} = \vec{u}\vec{v} \in \omega(X, X^c)$, we have $v \in X$ and $u \in X^c$; then $(\delta 1_X)(\vec{e}) = 1_X(v) - 1_X(u) = 1$. Clearly, $(\delta 1_X)(\vec{e}) = 0$ for $\vec{e} = \vec{u}\vec{v} \in [X^c, X^c]$ and $(\delta 1_X)(\vec{e}) = 1 - 1 = 0$ for $\vec{e} = \vec{u}\vec{v} \in [X, X]$.

Exercises

Ch1: 1.1.21; 1.1.22; 1.2.8; 1.4.2; 1.5.6; 1.5.7; 1.5,12. Ch2: 2.1.2; 2.1,11; 2.2.12; 2.4.1; 2.4.2; 2.4.9; 2.5.2; 2.5.4; 2.5.7; 2.6.2; 2.6.4.