Week 11: Matchings

November 11, 2020

1 Matching
Let G = (V, E) be a graph.

o A matching of G is an edge subset M consisting of links that no two edges share a
common vertex. The two endpoints of an edge in M are said to be matched under
M. The vertices incident with edges of M are said to be covered by M.

e A matching M of G is maximum if |M| > |M’| for all matchings M’ of G, and is
perfect if every vertex of GG is covered by M. Clearly, perfect matchings are maximum

matchings. The matching number of GG is the cardinality of a maximum matching
of G, denoted o/(G), i.e.,

o' (G) = max{|M| : M is a matching of G'}.
A graph is matchable if it admits a perfect matching.

e A covering of G is a vertex subset K C V(@) that every edge has an endpoint in
K. A covering of G is minimal if none of its subsets is a covering of G. A covering
K* of G is minimum if there is no covering K such that |K| < |K*|. The covering
number of G is the cardinality of a maximum covering of GG, denoted ((G), i.e.,

B(G) = min{|K| : K is a covering of G}.

e Let M be a matching and K a covering of G. Since every edge of M is covering by
a vertex of K, and distinct edges of M are covered by distinct vertices of K, we have
|M| < |K|. Thus

o'(G) < B(G).

It may be speculated that o/(G) = B(G). Unfortunately, this is not true in general.
However, it holds whenever G is bipartite.

e Let M be a matching and K a covering of G. If |[M| = |K]|, then M is a maximum
matching and K is a minimum covering.

e Given a matching M of G. An M-alternating path in GG is a path whose edges
alternate between M and M€ along its vertex-edge sequence. An M-augmenting
path is an M-alternating path whose initial and terminal vertices are covered by M.
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Lemma 1.1. Let M be a matching of a graph G and P a path in G.
(a) If P is M-alternating, then P has no self-intersect vertices.

(b) If P is an M-augmenting path, then the symmetric difference
M' = MAP := (M~ P)U (P~ M)
is a matching of G and |M'| = |M|+ 1.

Proof. (a) Suppose that the path P = wvgvy ... vg,.1 has self-intersection, i.e., two of the
vertices vg, V1, . .., Vamy1 are the same, say, v; = v; with ¢ < j. There are two possibilities:
j —tisodd and j — 7 is even. In the former case, we see that either the edges v;_1v;, v;0j11
belong to M or the edges v;v;11,v;-1v; belong to M. This is a contradiction since two
edges of M share the common vertex v;(v;). In the latter case, we see that either the edges
V104, vj—1v; belong to M or the edges v;v;41,v;v541 belong to M, so two edges of M share
the common vertex v;(v;).
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(b) Since M is a matching, no two edges of M . P share a common vertex. Since P has
no self-intersection, no two edges of P ~. M share a common vertex.

Note that the vertices of M N P are internal vertices of P, and neither the initial vertex
nor the terminal vertex of P is an endpoint of M. We see that the endpoints of M ~. P are
disjoint from P, of course, disjoint from P~ M. Thus the symmetric difference M’ = MAP
is a matching. Clearly, |M'| = |M|+ 1. O

Theorem 1.2 (Berge, 1957). Let M be a matching of G. Then M is a mazimum matching
if and only if G contain no M -augmenting path.

Proof. Suppose that M is not a maximum matching. Then there exists a matching M’ such
that |M’| > |M|. Consider the graph G* = (V, E*), where

E* = MAM' = (M — M")U(M' — M).

Since |M'| > | M|, we have
M — M| > |M — M.

The graph G* has the property that each vertex is incident with at most one edge in M — M’
and at most one edge in M’ — M, i.e., at most two edges of £*. This means that the degree
of every vertex of G* is at most two. Thus each component of G* is either a simple path
(without self-intersection) or a cycle. The paths and cycles must be M-alternating and can
be classified into four types:

Type 1. A simple path whose first and last edges are in M’ — M.



Type 2. A simple path whose first and last edges are in M — M’.

Type 3. A simple path whose first edge is in M — M’ and whose last edges is in M’ — M,
or whose first edge is in M’ — M and whose last edge is in M — M’.

Type 4. A cycle.

Note that a Type 1 path has more edges in M’ than the edges in M. A Type 2 path has
more edges in M than the edges in M’. A Type 3 path has equal number of edges in both
M and M’. And a Type 4 cycle has the same number of edges in both M and M’. Since
|M'" — M| > |M — M’|, there exists at least one path P = wvgvy ... vgy1 of Type 1, whose
first and last edges are in M’ — M. Since P is a component of G*, the initial and terminal
vertices vg, Ugg11 are not incident with edges in M — M’. We claim that both vy and vgy 1
are not incident with edges of M.

Suppose that vy (vgg41) is incident with an edge e in M. The edge e cannot be in M’
(since the vertex is already incident with an edge in M’ — M). So e belongs to M — M’,
i.e., vy (vgry1) is incident with at least two edges in G*, which is a contradictory to the fact
that vy (vogs1) is an initial (terminal) vertex of the path P, and that P is a component of
G*. Now we see that P is an M-augmenting path, since its initial and terminal vertices are
not incident with edges of M. The symmetric difference M AP gives a larger matching of
G, this is contradictory to that M is a maximum matching of G. O

2 Matching in bipartite graphs

3 Perfect matchings

An odd (even) component of a graph G = (V, E) is a connected component having odd
(even) number of vertices. Let o(G) denote the number of odd components of G.

Let M be a matching of G. Each odd component of G' contains at least one vertex not
covered by M. Let U := U(M) denote the set of vertices not covered by M. Then obviously

U| = o(G).

Let S be nonempty proper subset, i.e., @ C S C V. Let H be an odd component of G \. S.
Then H cannot be covered by M N H. Assume that H is covered by M. Then the vertices
of H not covered by M N H must be matched some vertices in S by M. It is clear that there
are at most |S| odd components of G \. .S covered by M. So the number of odd components
of G .S not covered by M is at least o(G \.S) —|S|. Thus |U| > o(G . S) —|S|. We obtain
the following proposition.

Proposition 3.1. For all matching M of a graph G and all subsets S C V(G),
[U(M)| = o(G N S) = [S]. (3.1)

In particular, if |[UM)| = o(G ~ S) — |S| for a proper subset S C V(G), then M is a
mazimum matching.

Proof. Let |[U(M)| = o(G~\S)—|S| for a matching M and a proper subset S C V. Suppose
M is not a maximum matching, i.e., there exists a matching M’ such that |M| < |M’|. Then
[UM)| > |UM")| > o(G ~ S) —|S]|, which is a contradiction. O
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A subset B C V(@) is a barrier to a matching M of a graph G if
[U(M)| = o(G'\ B) — |B|.

Barriers are succinct certificates to check if a matching is maximum, and of course not unique
for a graph. Recall that a graph is matchable if it admits a perfect matching. A graph
G is hypo-matchable if its every single-vertex-deleted subgraph is matchable, i.e., G \ v
admits a perfect matching for each vertex v € V(G).

Lemma 3.2. (a) The empty set and all singletons are barriers of perfect matchings.
(b) The empty set is a barrier for every hypo-matchable graph.

Proof. (a) Let M be a perfect matching of graph G. The empty set is obviously a barrier
of M. For each v € V(G), the vertex v must be matched a vertex of an odd component of
G ~ v, and each odd component of G \ v has a vertex matched v. So there is exactly one
odd component of G \ v. Thus |[U(M)| =0 = o(G \v) — 1. So {v} is a barrier of M.

(b) Let M, be a perfect matching of G \ v for each v € V(G). If the set E,(G) of edges
at v is empty, then M, is a perfect matching of G; clearly, @ is a barrier of G to M,. If
E,(G) # @, then |U(M,)| =1 = o(G), which means that @ is a barrier of G to M,,. O

A vertex v of a graph G is essential if every maximum matching of G covers v; otherwise
inessential, i.e., there exists a maximum matching M of G such that v is not covered by
M. Recall that the matching number o/(G) is the number of edges of a maximum matching
of G. We claim: A vertex v is essential if and only if o/(G \v) = o/(G) — 1.

In fact, let v be an essential vertex of G. Given maximum matching M of G. Then v
matches a vertex with an edge e = uv € M. Thus M \ e is a matching of G ~\ v. We have
d(GNwv)>|M~e|l=|M—-1=d(G)—1. Let M, be a maximum matching of G \ v.
If G \ v has a vertex u not covered by M,, then M, U e is a matching of G, where e = uwv.
Thus o/ (G) > |M,Ue| = |M,|+ 1 =a/ (G~ v)+ 1. Therefore o/(G \v) = /(G) — 1.

Conversely, let o (G~ v) = o/(G) —1 for a vertex v € V(G). Given a maximum matching
M of G. Suppose v is not covered by M. Then M is a maximum matching of G ~\ v. Thus
(G ~\v)=|M|=d(G), a contradiction.

Lemma 3.3. Ifv is an essential vertex of a graph G and B is a barrier of G\ v, then BUv
1s a barrier of G.

Proof. Let M be a maximum matching of G. Then v is covered by an edge e = uv € M.
Then |M —e| = |M| —1=d(G) — 1 = a/ (G —v). This means that M — e is a maximum
matching of G —v. Since B is a barrier of G — v, we have |U(M —¢)| = o(G — BUv) — | B].
Thus [UM)| = |UM —e)+1=0(G— BUwv)—|BUe|. This means that BUe is a barrier
of G to M. O

Lemma 3.4. Let G be a graph whose every vertex is inessential. Then G is hypo-matchable.

Proof. Inessential of every vertex implies that G has no perfect matching. We need to show
that each vertex-deleted subgraph of G has a perfect matching. Suppose this is not true, i.e.,
there exists a vertex v such that G —v has no perfect matching. Since v is not essential in G,
there exists a maximum matching M of GG such that v is not covered by M. Of course, M is
a matching but not a perfect matching of G — v. So there exists a vertex u not covered by

4



M, where u # v. We see that there exist a pair of two vertices not covered by a maximum
matching of G. We choose a pair of two vertices u,v among all pairs of two vertices not
covered by a maximal matching of G such that the distance d(u,v) is minimal.

If d(u,v) =1, then M Ue with e = uv is a matching of G, contradicting the maximality
of M. So d(u,v) > 2. Let P,, be a shortest path from u to v. Let w be an internal vertex
of P,,. Since d(u,w) < d(u,v), the vertex w must be covered by M. Since w is not essential
in GG, there exists a maximum matching M’ of G such that w is not covered by M’. Since
d(u, w) < d(u,v) and d(w,v) < d(u,v), both u,v must be covered by M.

Note that components of MAM' are vertex disjoint cycles and paths, whose edges al-
ternate between M and M’. Clearly, each cycle of MAM’ has even number of edges, and
each endpoint of a path in MAM’ is covered either by M or by M’ but not by both. Note
that w is covered by M but not by M’, and u,v are covered by M’ but not by M. Thus
u, w, v must be endpoints of paths in MAM’. Each path of MAM’ also has even number of
edges. In fact, if P is a path of M AM’ with endpoints not covered by M (M'), then P is an
M-augmenting (M’-augmenting) path. So MAP (M'AP) is a matching and |[MAP| > | M|
(|[M'AP| > |M’|), contradicting the maximality of M (M’).

Let P, be the path of MAM' with endpoints uw,x. Then z is covered by M but not
covered by M’. If x # w, then MAP, is a maximum matching and u,w are not covered
by MAP,, but d(u,w) < d(u,v); contradicting the minimality of d(u,v). Thus x = w, i.e.,
P, is a from u to w. Likewise, the path P, of MAM’ starting from v ends at w. This is
contradictory to that w is an endpoint of a path in MAM’. O

Theorem 3.5 (Tutte-Berge Theorem). FEwvery graph G has a barrier, i.e., there exists a
matching M of G and a proper subset S C V(G) such that [U(M)| = o(G ~ S) — |9].
Moreover,

o (G) = %min{v(G) oG~ S)+ S| S C V(). (3.2)
Proof. We proceed by induction on |V(G)|. For |[V| =1, choose M = &, then S = & is a
barrier to M, since [U(M)| = 1 = o(G) = o(G \ §) — |S]. For V = {u,v} with E = @,
choose M = @, then S = @ is a barrier to M, since |[U(M)| =2 = o(G) = o(G \ S) — |5].
For V' = {u,v} and £ = {uv}, choose M = FE, then S = @& is a barrier to M, since
UM)|=0=0(G) =0(G~95)—|S5].

Given a graph G = (V, E) with |V| > 3. If all vertices of G are inessential, then G is
hypo-matchable. Thus the empty set is a barrier of G. If there exists an essential vertex
v € V(G), then G \ v has a barrier S by induction. Thus S U wv is a barrier by Lemma 3.3.

Let B C V(G) be a barrier to a matching M of G, i.e., |U(M)| = o(G ~ B) — |B|. Then
M is a maximum matching and

, 1 1

o/(G) = |M| = 5IV(G) = U(M)| = 5 (v(G) = o(G~ B) + B ).
Since [U(M)| > o(G~S)—|S| for all S C V(G), we have v(G)—|U(M)| < v(G)—o(G~\S)+]|S|
for all S C V(G). The Tutte-Berge formula follows immediately. O

Theorem 3.6 (Tutte Theorem). A graph G has a perfect matching if and only if for each
SCV,
o(G N\ S) < S|



Proof. Let M be a perfect matching of G. Then 0 = |[U(M)| > o(G ~ S) — |S|, namely,
o(G~ S) <|S] for all S C V(G). Conversely, assume o(G ~\ S) < |S| for all S C V(G).
Let B be a barrier of G, i.e., there exists a maximum matching M such that |[U(M)| =
o(G \ B) — |B|. Then |U(M)| = o(G ~ B) — |B|] < 0. This means that M is a perfect
matching. O

Corollary 3.7 (Petersen’s Theorem). Every 3-regular simple graph G without cut edges has
a perfect matching.

Proof. We may assume that G is connected. For each subset S C V(G), let Sy, ..., Sk denote
the vertex sets of odd components of G ~. .S. Note that

31S| =) deg (v) = #[S, 5 + 2#E(GIS]),
veS
odd = 3[S;| = ) deg (v) = #[S;, 5] + 2#E(G[S)]), i=1,... k.
vES;

Then #[S, 5¢] < 3|S| and

#19:,5] = deg (v) — 2#E(G[S)]) = odd, i=1,...,k

vES;

Since G is connected and has no cut edge, we have #[S;, S| > 0 and #[S;,S] # 1. So
#[S;, S] > 3. Thus

i 1 .
o(G—8)=k< 5;#[52-,3] = g #1997 <S].

By Tutte’s theorem, G has a perfect matching. m

4 Matching algorithm

Given a matching M of a graph G. Recall that if P is an M-augmenting path, then M AP
is a matching and |MAP| = |M| + 1. We shall describe a polynomial-time algorithm,
which either finds an M-augmenting path (subsequently, the matching M is improved), or
a certificate that such M-augmenting path does not exist. Let u be a vertex not covered by
M. A wu-rooted tree T of GG is an M-alternating tree if the unique path in 7" from u to
each vertex v of T' is an M-alternating path. A u-rooted M-alternating tree is M-covered
if all vertices of T" other than u are covered by M NT. Each u-rooted M-covered tree has a
bipartition T[R(T"), B(T')], where R(T'), B(T') are the vertex bipartition of V(7T'), consisting
of vertices v having even, odd distances respectively from u to v in T

Algorithm 4.1 (Augmenting Path Search (APS)). Input: a graph G' with a matching M
and a vertex u uncovered by M. Output: a matching M with one more edge than the input
matching M, or a u-rooted maximal M-covered tree T' (APS-tree).

1. Set a tree 7" with V(T') = {u} and E(T) = @, R(T) = {u}.
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2. If [R(T),V(T)¢] = @, stop, a maximal u-rooted M-tree is found.
3. While Je = zy € [R(T),V(T)], do V(T') :=V(T) Uy, E(T) := E(T) Ue.

If y is not covered by M, stop, a required matching M = MAP is found,
where P is the unique path from u to y in 7.

If y is covered by M, choose an edge e = yz € M, do V(T) := V(T) U z,
E(T):=E(T)Ue, R(T) := R(T) U z; return to Step 2.

The APS algorithm ends up with either a matching M with [M| = |M]|+1 (see the right
of Figure 1 with an M-augmented path), or a u-rooted M-covered tree T (see the middle of
Figure 1), we have

|B(T)| = |R(T)| =1, B(T) € Ne[R(T)] € V(T),

where Ng[R(T)] is the set of vertices of G adjacent to some vertices of R(T'). Note that
whenever a wu-rooted M-covered tree is the case, it does not mean that there is no M-
augmented path in GG. For instance, the right of Figure 1 demonstrates an M-augmented
path starting from u that is not tested by the APS algorithm.

u

Figure 1: An APS-tree and an M-augmented path.

Proposition 4.1. Let T be an APS-tree returned by the APS Algorithm. If no two vertices
of R(T) are adjacent in G, then no M-augmenting path in G include any vertex of T, in
other words, each M -augmenting path in G s disjoint from T

Assume the algorithm is end up with a u-rooted maximal M-covered tree T. If V \ V(T
is covered by M, then M is a maximum matching. If V'~ V(T') is uncovered by M, choose
a vertex v € V \. V(T') uncovered by M and repeat the APS algorithm starting from v.

Algorithm 4.2 (Hungarian or Egervéry’s Algorithm). Input: a bipartite graph G[X,Y]
with a matching M. Output: a matching M of G such that |M| > |M]|.

1. Set a tree T" with V(T') = {u} and E(T) = @, R(T) = {u}.
2. If [R(T"),V(T)] = @, stop, a maximal u-rooted M-tree is found.
3. While Je = zy € [R(T),V(T)], do V(T') :==V(T) Uy, E(T) := E(T) Ue.

If y is not covered by M, stop, a required matching M := MAP is found,
where P is the unique path from u to y in 7.
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If y is covered by M, choose an edge e = yz € M, do V(T) := V(T) U z,
E(T):=E(T)Ue, R(T) := R(T) U z; return to Step 2.

Repeating the APS algorithm, we have
e A set 7 of pairwise disjoint APS-trees.
o Aset R:=Jpor R(T) of red vertices.

o Aset B :=Jper B(T) of blue vertices.

A subgraph F := G \ (R U B) with perfect matching M (F).
e A matching M* := M(F)U|JM(T) of G.
o Aset U:={u(T):T € T} of vertices not covered by M*.

Theorem 4.2. The matching M* returned above is a mazrimum matching.

Exercises
Chl1:



