
Week 11: Matchings

November 11, 2020

1 Matching

Let G = (V, E) be a graph.

• A matching of G is an edge subset M consisting of links that no two edges share a
common vertex. The two endpoints of an edge in M are said to be matched under
M . The vertices incident with edges of M are said to be covered by M .

• A matching M of G is maximum if |M | ≥ |M ′| for all matchings M ′ of G, and is
perfect if every vertex of G is covered by M . Clearly, perfect matchings are maximum
matchings. The matching number of G is the cardinality of a maximum matching
of G, denoted α′(G), i.e.,

α′(G) = max{|M | : M is a matching of G}.
A graph is matchable if it admits a perfect matching.

• A covering of G is a vertex subset K ⊆ V (G) that every edge has an endpoint in
K. A covering of G is minimal if none of its subsets is a covering of G. A covering
K∗ of G is minimum if there is no covering K such that |K| < |K∗|. The covering
number of G is the cardinality of a maximum covering of G, denoted β(G), i.e.,

β(G) = min{|K| : K is a covering of G}.

• Let M be a matching and K a covering of G. Since every edge of M is covering by
a vertex of K, and distinct edges of M are covered by distinct vertices of K, we have
|M | ≤ |K|. Thus

α′(G) ≤ β(G).

It may be speculated that α′(G) = β(G). Unfortunately, this is not true in general.
However, it holds whenever G is bipartite.

• Let M be a matching and K a covering of G. If |M | = |K|, then M is a maximum
matching and K is a minimum covering.

• Given a matching M of G. An M-alternating path in G is a path whose edges
alternate between M and M c along its vertex-edge sequence. An M-augmenting
path is an M -alternating path whose initial and terminal vertices are covered by M .

1



Lemma 1.1. Let M be a matching of a graph G and P a path in G.

(a) If P is M-alternating, then P has no self-intersect vertices.

(b) If P is an M-augmenting path, then the symmetric difference

M ′ = M∆P := (M r P ) ∪ (P rM)

is a matching of G and |M ′| = |M |+ 1.

Proof. (a) Suppose that the path P = v0v1 . . . v2m+1 has self-intersection, i.e., two of the
vertices v0, v1, . . . , v2m+1 are the same, say, vi = vj with i < j. There are two possibilities:
j − i is odd and j − i is even. In the former case, we see that either the edges vi−1vi, vjvj+1

belong to M or the edges vivi+1, vj−1vj belong to M . This is a contradiction since two
edges of M share the common vertex vi(vj). In the latter case, we see that either the edges
vi−1vi, vj−1vj belong to M or the edges vivi+1, vjvj+1 belong to M , so two edges of M share
the common vertex vi(vj).
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(b) Since M is a matching, no two edges of M r P share a common vertex. Since P has
no self-intersection, no two edges of P rM share a common vertex.

Note that the vertices of M ∩ P are internal vertices of P , and neither the initial vertex
nor the terminal vertex of P is an endpoint of M . We see that the endpoints of M r P are
disjoint from P , of course, disjoint from P rM . Thus the symmetric difference M ′ = M∆P
is a matching. Clearly, |M ′| = |M |+ 1.

Theorem 1.2 (Berge, 1957). Let M be a matching of G. Then M is a maximum matching
if and only if G contain no M-augmenting path.

Proof. Suppose that M is not a maximum matching. Then there exists a matching M ′ such
that |M ′| > |M |. Consider the graph G∗ = (V, E∗), where

E∗ = M∆M ′ := (M −M ′) ∪ (M ′ −M).

Since |M ′| > |M |, we have
|M ′ −M | > |M −M ′|.

The graph G∗ has the property that each vertex is incident with at most one edge in M−M ′

and at most one edge in M ′−M , i.e., at most two edges of E∗. This means that the degree
of every vertex of G∗ is at most two. Thus each component of G∗ is either a simple path
(without self-intersection) or a cycle. The paths and cycles must be M -alternating and can
be classified into four types:

Type 1. A simple path whose first and last edges are in M ′ −M .
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Type 2. A simple path whose first and last edges are in M −M ′.
Type 3. A simple path whose first edge is in M −M ′ and whose last edges is in M ′−M ,

or whose first edge is in M ′ −M and whose last edge is in M −M ′.
Type 4. A cycle.
Note that a Type 1 path has more edges in M ′ than the edges in M . A Type 2 path has

more edges in M than the edges in M ′. A Type 3 path has equal number of edges in both
M and M ′. And a Type 4 cycle has the same number of edges in both M and M ′. Since
|M ′ − M | > |M − M ′|, there exists at least one path P = v0v1 . . . v2k+1 of Type 1, whose
first and last edges are in M ′ −M . Since P is a component of G∗, the initial and terminal
vertices v0, v2k+1 are not incident with edges in M −M ′. We claim that both v0 and v2k+1

are not incident with edges of M .
Suppose that v0 (v2k+1) is incident with an edge e in M . The edge e cannot be in M ′

(since the vertex is already incident with an edge in M ′ − M). So e belongs to M − M ′,
i.e., v0 (v2k+1) is incident with at least two edges in G∗, which is a contradictory to the fact
that v0 (v2k+1) is an initial (terminal) vertex of the path P , and that P is a component of
G∗. Now we see that P is an M -augmenting path, since its initial and terminal vertices are
not incident with edges of M . The symmetric difference M∆P gives a larger matching of
G, this is contradictory to that M is a maximum matching of G.

2 Matching in bipartite graphs

3 Perfect matchings

An odd (even) component of a graph G = (V, E) is a connected component having odd
(even) number of vertices. Let o(G) denote the number of odd components of G.

Let M be a matching of G. Each odd component of G contains at least one vertex not
covered by M . Let U := U(M) denote the set of vertices not covered by M . Then obviously

|U | ≥ o(G).

Let S be nonempty proper subset, i.e., ∅ ( S ( V . Let H be an odd component of Gr S.
Then H cannot be covered by M ∩H. Assume that H is covered by M . Then the vertices
of H not covered by M ∩H must be matched some vertices in S by M . It is clear that there
are at most |S| odd components of Gr S covered by M . So the number of odd components
of GrS not covered by M is at least o(GrS)−|S|. Thus |U | ≥ o(GrS)−|S|. We obtain
the following proposition.

Proposition 3.1. For all matching M of a graph G and all subsets S ⊆ V (G),

|U(M)| ≥ o(Gr S)− |S|. (3.1)

In particular, if |U(M)| = o(G r S) − |S| for a proper subset S ( V (G), then M is a
maximum matching.

Proof. Let |U(M)| = o(GrS)−|S| for a matching M and a proper subset S ( V . Suppose
M is not a maximum matching, i.e., there exists a matching M ′ such that |M | < |M ′|. Then
|U(M)| > |U(M ′)| ≥ o(Gr S)− |S|, which is a contradiction.
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A subset B ⊆ V (G) is a barrier to a matching M of a graph G if

|U(M)| = o(GrB)− |B|.

Barriers are succinct certificates to check if a matching is maximum, and of course not unique
for a graph. Recall that a graph is matchable if it admits a perfect matching. A graph
G is hypo-matchable if its every single-vertex-deleted subgraph is matchable, i.e., G r v
admits a perfect matching for each vertex v ∈ V (G).

Lemma 3.2. (a) The empty set and all singletons are barriers of perfect matchings.
(b) The empty set is a barrier for every hypo-matchable graph.

Proof. (a) Let M be a perfect matching of graph G. The empty set is obviously a barrier
of M . For each v ∈ V (G), the vertex v must be matched a vertex of an odd component of
G r v, and each odd component of G r v has a vertex matched v. So there is exactly one
odd component of Gr v. Thus |U(M)| = 0 = o(Gr v)− 1. So {v} is a barrier of M .

(b) Let Mv be a perfect matching of Gr v for each v ∈ V (G). If the set Ev(G) of edges
at v is empty, then Mv is a perfect matching of G; clearly, ∅ is a barrier of G to Mv. If
Ev(G) 6= ∅, then |U(Mv)| = 1 = o(G), which means that ∅ is a barrier of G to Mv.

A vertex v of a graph G is essential if every maximum matching of G covers v; otherwise
inessential, i.e., there exists a maximum matching M of G such that v is not covered by
M . Recall that the matching number α′(G) is the number of edges of a maximum matching
of G. We claim: A vertex v is essential if and only if α′(Gr v) = α′(G)− 1.

In fact, let v be an essential vertex of G. Given maximum matching M of G. Then v
matches a vertex with an edge e = uv ∈ M . Thus M r e is a matching of Gr v. We have
α′(G r v) ≥ |M r e| = |M | − 1 = α′(G) − 1. Let Mv be a maximum matching of G r v.
If Gr v has a vertex u not covered by Mv, then Mv ∪ e is a matching of G, where e = uv.
Thus α′(G) ≥ |Mv ∪ e| = |Mv|+ 1 = α′(Gr v) + 1. Therefore α′(Gr v) = α′(G)− 1.

Conversely, let α′(Grv) = α′(G)−1 for a vertex v ∈ V (G). Given a maximum matching
M of G. Suppose v is not covered by M . Then M is a maximum matching of Gr v. Thus
α′(Gr v) = |M | = α′(G), a contradiction.

Lemma 3.3. If v is an essential vertex of a graph G and B is a barrier of Grv, then B∪v
is a barrier of G.

Proof. Let M be a maximum matching of G. Then v is covered by an edge e = uv ∈ M .
Then |M − e| = |M | − 1 = α′(G) − 1 = α′(G − v). This means that M − e is a maximum
matching of G− v. Since B is a barrier of G− v, we have |U(M − e)| = o(G−B ∪ v)− |B|.
Thus |U(M)| = |U(M − e) + 1 = o(G−B ∪ v)− |B ∪ e|. This means that B ∪ e is a barrier
of G to M .

Lemma 3.4. Let G be a graph whose every vertex is inessential. Then G is hypo-matchable.

Proof. Inessential of every vertex implies that G has no perfect matching. We need to show
that each vertex-deleted subgraph of G has a perfect matching. Suppose this is not true, i.e.,
there exists a vertex v such that G−v has no perfect matching. Since v is not essential in G,
there exists a maximum matching M of G such that v is not covered by M . Of course, M is
a matching but not a perfect matching of G − v. So there exists a vertex u not covered by
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M , where u 6= v. We see that there exist a pair of two vertices not covered by a maximum
matching of G. We choose a pair of two vertices u, v among all pairs of two vertices not
covered by a maximal matching of G such that the distance d(u, v) is minimal.

If d(u, v) = 1, then M ∪ e with e = uv is a matching of G, contradicting the maximality
of M . So d(u, v) ≥ 2. Let Puv be a shortest path from u to v. Let w be an internal vertex
of Puv. Since d(u,w) < d(u, v), the vertex w must be covered by M . Since w is not essential
in G, there exists a maximum matching M ′ of G such that w is not covered by M ′. Since
d(u,w) < d(u, v) and d(w, v) < d(u, v), both u, v must be covered by M ′.

Note that components of M∆M ′ are vertex disjoint cycles and paths, whose edges al-
ternate between M and M ′. Clearly, each cycle of M∆M ′ has even number of edges, and
each endpoint of a path in M∆M ′ is covered either by M or by M ′ but not by both. Note
that w is covered by M but not by M ′, and u, v are covered by M ′ but not by M . Thus
u,w, v must be endpoints of paths in M∆M ′. Each path of M∆M ′ also has even number of
edges. In fact, if P is a path of M∆M ′ with endpoints not covered by M (M ′), then P is an
M -augmenting (M ′-augmenting) path. So M∆P (M ′∆P ) is a matching and |M∆P | > |M |
(|M ′∆P | > |M ′|), contradicting the maximality of M (M ′).

Let Pu be the path of M∆M ′ with endpoints u, x. Then x is covered by M but not
covered by M ′. If x 6= w, then M∆Pu is a maximum matching and u,w are not covered
by M∆Pu, but d(u,w) < d(u, v); contradicting the minimality of d(u, v). Thus x = w, i.e.,
Pu is a from u to w. Likewise, the path Pv of M∆M ′ starting from v ends at w. This is
contradictory to that w is an endpoint of a path in M∆M ′.

Theorem 3.5 (Tutte-Berge Theorem). Every graph G has a barrier, i.e., there exists a
matching M of G and a proper subset S ( V (G) such that |U(M)| = o(G r S) − |S|.
Moreover,

α′(G) =
1

2
min{v(G)− o(Gr S) + |S| : S ( V (G)}. (3.2)

Proof. We proceed by induction on |V (G)|. For |V | = 1, choose M = ∅, then S = ∅ is a
barrier to M , since |U(M)| = 1 = o(G) = o(G r S) − |S|. For V = {u, v} with E = ∅,
choose M = ∅, then S = ∅ is a barrier to M , since |U(M)| = 2 = o(G) = o(G r S) − |S|.
For V = {u, v} and E = {uv}, choose M = E, then S = ∅ is a barrier to M , since
|U(M)| = 0 = o(G) = o(Gr S)− |S|.

Given a graph G = (V, E) with |V | ≥ 3. If all vertices of G are inessential, then G is
hypo-matchable. Thus the empty set is a barrier of G. If there exists an essential vertex
v ∈ V (G), then Gr v has a barrier S by induction. Thus S ∪ v is a barrier by Lemma 3.3.

Let B ⊂ V (G) be a barrier to a matching M of G, i.e., |U(M)| = o(GrB)− |B|. Then
M is a maximum matching and

α′(G) = |M | = 1

2
|V (G)− U(M)| = 1

2

(
v(G)− o(GrB) + |B|

)
.

Since |U(M)| ≥ o(GrS)−|S| for all S ⊆ V (G), we have v(G)−|U(M)| ≤ v(G)−o(GrS)+|S|
for all S ⊆ V (G). The Tutte-Berge formula follows immediately.

Theorem 3.6 (Tutte Theorem). A graph G has a perfect matching if and only if for each
S ⊆ V ,

o(Gr S) ≤ |S|.
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Proof. Let M be a perfect matching of G. Then 0 = |U(M)| ≥ o(G r S) − |S|, namely,
o(G r S) ≤ |S| for all S ⊆ V (G). Conversely, assume o(G r S) ≤ |S| for all S ⊆ V (G).
Let B be a barrier of G, i.e., there exists a maximum matching M such that |U(M)| =
o(G r B) − |B|. Then |U(M)| = o(G r B) − |B| ≤ 0. This means that M is a perfect
matching.

Corollary 3.7 (Petersen’s Theorem). Every 3-regular simple graph G without cut edges has
a perfect matching.

Proof. We may assume that G is connected. For each subset S ( V (G), let S1, . . . , Sk denote
the vertex sets of odd components of Gr S. Note that

3|S| =
∑
v∈S

deg (v) = #[S, Sc] + 2#E(G[S]),

odd = 3|Si| =
∑
v∈Si

deg (v) = #[Si, S] + 2#E(G[Si]), i = 1, . . . , k.

Then #[S, Sc] ≤ 3|S| and

#[Si, S] =
∑
v∈Si

deg (v)− 2#E(G[Si]) = odd, i = 1, . . . , k.

Since G is connected and has no cut edge, we have #[Si, S] > 0 and #[Si, S] 6= 1. So
#[Si, S] ≥ 3. Thus

o(G− S) = k ≤ 1

3

k∑
i=1

#[Si, S] =
1

3
#[S, Sc] ≤ |S|.

By Tutte’s theorem, G has a perfect matching.

4 Matching algorithm

Given a matching M of a graph G. Recall that if P is an M -augmenting path, then M∆P
is a matching and |M∆P | = |M | + 1. We shall describe a polynomial-time algorithm,
which either finds an M -augmenting path (subsequently, the matching M is improved), or
a certificate that such M -augmenting path does not exist. Let u be a vertex not covered by
M . A u-rooted tree T of G is an M-alternating tree if the unique path in T from u to
each vertex v of T is an M -alternating path. A u-rooted M -alternating tree is M-covered
if all vertices of T other than u are covered by M ∩ T . Each u-rooted M -covered tree has a
bipartition T [R(T ), B(T )], where R(T ), B(T ) are the vertex bipartition of V (T ), consisting
of vertices v having even, odd distances respectively from u to v in T .

Algorithm 4.1 (Augmenting Path Search (APS)). Input: a graph G with a matching M
and a vertex u uncovered by M . Output: a matching M̂ with one more edge than the input
matching M , or a u-rooted maximal M -covered tree T (APS-tree).

1. Set a tree T with V (T ) = {u} and E(T ) = ∅, R(T ) = {u}.
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2. If [R(T ), V (T )c] = ∅, stop, a maximal u-rooted M -tree is found.

3. While ∃e = xy ∈ [R(T ), V (T )c], do V (T ) := V (T ) ∪ y, E(T ) := E(T ) ∪ e.

If y is not covered by M , stop, a required matching M̂ := M∆P is found,
where P is the unique path from u to y in T .

If y is covered by M , choose an edge e = yz ∈ M , do V (T ) := V (T ) ∪ z,
E(T ) := E(T ) ∪ e, R(T ) := R(T ) ∪ z; return to Step 2.

The APS algorithm ends up with either a matching M̂ with |M̂ | = |M |+1 (see the right
of Figure 1 with an M -augmented path), or a u-rooted M -covered tree T (see the middle of
Figure 1), we have

|B(T )| = |R(T )| − 1, B(T ) ⊆ NG[R(T )] ⊆ V (T ),

where NG[R(T )] is the set of vertices of G adjacent to some vertices of R(T ). Note that
whenever a u-rooted M -covered tree is the case, it does not mean that there is no M -
augmented path in G. For instance, the right of Figure 1 demonstrates an M -augmented
path starting from u that is not tested by the APS algorithm.
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Figure 1: An APS-tree and an M -augmented path.

Proposition 4.1. Let T be an APS-tree returned by the APS Algorithm. If no two vertices
of R(T ) are adjacent in G, then no M-augmenting path in G include any vertex of T , in
other words, each M-augmenting path in G is disjoint from T .

Assume the algorithm is end up with a u-rooted maximal M -covered tree T . If V rV (T )
is covered by M , then M is a maximum matching. If V r V (T ) is uncovered by M , choose
a vertex v ∈ V r V (T ) uncovered by M and repeat the APS algorithm starting from v.

Algorithm 4.2 (Hungarian or Egerváry’s Algorithm). Input: a bipartite graph G[X,Y ]
with a matching M . Output: a matching M̂ of G such that |M̂ | > |M |.

1. Set a tree T with V (T ) = {u} and E(T ) = ∅, R(T ) = {u}.
2. If [R(T ), V (T )c] = ∅, stop, a maximal u-rooted M -tree is found.

3. While ∃e = xy ∈ [R(T ), V (T )c], do V (T ) := V (T ) ∪ y, E(T ) := E(T ) ∪ e.

If y is not covered by M , stop, a required matching M̂ := M∆P is found,
where P is the unique path from u to y in T .
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If y is covered by M , choose an edge e = yz ∈ M , do V (T ) := V (T ) ∪ z,
E(T ) := E(T ) ∪ e, R(T ) := R(T ) ∪ z; return to Step 2.

Repeating the APS algorithm, we have

• A set T of pairwise disjoint APS-trees.

• A set R :=
⋃

T∈T R(T ) of red vertices.

• A set B :=
⋃

T∈T B(T ) of blue vertices.

• A subgraph F := Gr (R ∪B) with perfect matching M(F ).

• A matching M∗ := M(F ) ∪⋃
M(T ) of G.

• A set U := {u(T ) : T ∈ T } of vertices not covered by M∗.

Theorem 4.2. The matching M∗ returned above is a maximum matching.

Exercises
Ch11:
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