
Week 3: Connected Subgraphs

September 23, 2020

1 Connected Graphs

Path, Distance:

• A path from a vertex x to a vertex y in a graph G is referred to an xy-path.

• Let X,Y ⊂ V (G). An (X,Y )-path is an xy-path with x ∈ X and y ∈ Y .

• The distance between two vertices x and y, denoted d(x, y), is the minimal length of
all xy-paths. If there is no path between x and y, we define d(x, y) = ∞.

Technique of Using Eigenvalues:

Theorem 1.1. Let G be a simple graph with n vertices in which any two vertices have
exactly one common neighbor. Then G has a vertex of degree n− 1. Consequently, G must
be obtained from a family of disjoint triangles by gluing selected vertices, one from each
triangle, to a single vertex.

Proof. Suppose it is not true, i.e., the maximal degree ∆(G) < n − 1. We first show
that G is regular. Consider two non-adjacent vertices x and y. Let f : N(x) → N(y),
where f(v) is defined as the unique common neighbor of v and y. We claim that f is
injective. In fact, if f(u) = f(v) for distinct u, v ∈ N(x), then f(u) is a common neighbor
of u, v, y; now u and v have two common neighbors x and f(u), a contradiction. Thus
d(x) = |N(x)| ≤ |N(y)| = d(y). Likewise, d(y) ≤ d(x). So d(x) = d(y). This is equivalent to
say that any two adjacent vertices in Ḡ (the complement simple graph of G) have the same
degree. We claim that G is regular.

To this end, it suffices to show that Ḡ is connected. Note that Ḡ has no isolated vertices,
since the minimal degree ∆(Ḡ) = n− 1−∆(G) > 0. Suppose Ḡ has two or more connected
components. Take two edges ei = uivi from distinct components of Ḡ, i = 1, 2. Then
u1u2v1v2u1 is a cycle of G. Thus u1 and v1 have at least two common neighbors u2, v2, a
contradiction.

Let G be k-regular. Consider the number of paths of length 2 in G. Since any two vertices
have exactly one common neighbor, there are

(
n
2

)
paths of length 2. For each vertex v, there

are
(

k
2

)
paths with the middle vertex v. It follows that

(
n
2

)
= n

(
k
2

)
. So n = k2 − k + 1.

Let A be the adjacency matrix of G. The (u, v)-entry of A2 is the number of (u, v)-walks
of length 2. Then A2 has its diagonal entries k and other entries 1. So A2 = (k−1)I+J, where
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I is the identity matrix and J is a matrix whose entries are 1. Note that J has eigenvalue
0 with multiplicity n − 1 and simple eigenvalue n. Since A2 − λI = (k − 1 − λ)I + J and
n = k2 − k + 1, we see that A2 has eigenvalue k − 1 with multiplicity n − 1 and a simple
eigenvalue k2 with eigenvector (1, . . . , 1)T . Since A2 − λ2I = (A− λI)(A + λI), we see that
A has the eigenvalues ±√k − 1 with multiplicity n− 1 and a simple eigenvalue k.

Since the graph G is simple, we have tr(A) = 0 (the sum of its diagonal entries). Recall
that the trace of A is the sum of its eigenvalues counted with multiplicities. We have
±(n − 1)

√
k − 1 + k = 0; it forces that (n − 1)

√
k − 1 = k. The only possible choice is

that k = 2 and n = 3, i.e., G is a triangle, where ∆(G) = 2. This is contradict to that
∆(G) < n− 1.

Remark: The above proof is interesting, but the result is boring.

2 Euler Tour

• A trail in a connected graph is called an Euler tail if it traverses every edge of the
graph.

• Let G be a connected graph. A tour of G is a closed walk that traverses each edge at
least once. An Euler tour is a tour that traverses each edge exactly once. A graph is
said to be Eulerian if it admits an Euler tour.

Theorem 2.1. A connected graph G has an Euler tour if, and only if, every vertex of G has
even degree.

Proof. “⇒” Let W = v0e1v1e2 . . . envn be an Euler tour of G. When one travels along the
Euler tour and passes by a vertex v, the person must come towards v through one edge and
depart from v through another edge. Then the number of times coming towards v equals
the number times departing from v. Thus the degree of v must be even.

“⇐” Consider a longest trail W = v0e1v1e2 . . . envn in G. We show that W is an Euler
tour.

(a) Claim v0 = vn. Suppose v0 6= vn. Let vn be appeared k times in the vertex sequence
(v0, v1, . . . , vn−1), say, vi1 = · · · = vik = vn, i1 < · · · < iik < n. Then the degree of vn in W
is 2k + 1. Since the degree of vn in G is even, there is an edge e in G but not in W incident
with vn and another vertex v. Thus W ′WTev is a longer trail in G, a contradiction.

(b) Claim that G − E(W ) has no edges incident with a vertex in W . Suppose there is
an edge e ∈ E(G)− E(W ) incident with a vertex vi ∈ V (W ) and another vertex v. Then

W ′ = vev1ei+1vi+1 · · · envn(v0)e1v1 · · · vi−1eivi

is a longer trail in G, a contradiction.
(c) Claim that W uses every edge of G. Suppose there exists an edge e not used in W .

Let e be incident with vertices u, v. Then u, v 6∈ V (W ). Since G is connected, there is a
shortest path P = u0x1u1 · · ·xmum from W to u, where u0 = ui and um = u. We claim that
x 6 ∈ E(W ). Suppose x1 ∈ E(W ), then u1 ∈ V (W ); thus P ′ = u1x2u2 · · ·xmum is a shorter
path from T to u, a contradiction. Now since x1 6∈ E(W ), we have a longer trail

W ′ = u1x1(u0)viei+1vi+1 · · · envn(v0)e1v1e2 · · · vi−1eivi.
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Again this is a contradiction.
Since W is a closed trail that uses every edge of G, we see that W is an Euler tour.

Corollary 2.2. A connected graph G has a non-closed Euler trail if and only if G has exactly
two vertices of odd degree.

Proof. “⇒” Let W := v0e1v1 · · · envn be an Euler trail of G with v0 6= vn. Then W ′ := We0v0

is an Euler tour of the graph G′ := G∪ e0. Theorem 2.1 implies that G′ is an even graph. It
follows that G has exactly the two vertices v0, vn of odd degree.

“⇐” Let G have exactly two vertices u and v of odd degree. We add a new edge between
u and v to G to obtain a new graph G′. Then G′ is a connected even graph. Thus G′ has
an Euler tour by Theorem 2.1. Remove the edge e from the Euler tour for G′, we obtain an
Euler trail for G.

A cut edge of a graph G is an edge e such that Gr e has more connected components
than G, i.e., c(G− e) > c(G).

Lemma 2.3. Let G be a connected graph with a specified vertex v. Assume that G is either
an even graph (former case) or G has exactly two vertices u, v of odd degree (latter case).

(a) If dG(v) = 1 and e = vw is a link at v, then G is the latter case. Moreover, G r v is
connected, either having all vertices of even degree (when w = u) or having exactly two
vertices u,w of odd degree (when w 6= u).

having either 2(k − 1) vertices of odd degree (when w is an odd-degree vertex) or 2k
vertices of odd degree (when w is an even-degree vertex).

(b) If dG(v) ≥ 2 and dG(v) is even, then G is the former case. Moreover, for each edge
e = vw at v, G r e is connected, either having all vertices of even degree (when e is a
loop) or having exactly two vertices v, w of odd degree (when e is a link).

having 2k vertices of odd degree (when e is a loop) or 2k vertices of odd degree (when w
is an odd vertex in G) or 2(k + 1) vertices of odd degree (when w is an even vertex in
G).

(c) If dG(v) ≥ 2 and dG(v) is odd, then G is the latter case. Moreover, there exists an edge
e = vw at v such that Gr e is connected, either having all vertices of even degree (when
w = u) or having exactly two vertices u,w of odd degree (when w 6= u).

having 2k vertices of odd degree (when e is a loop) or 2(k − 1) vertices of odd degree
(when w is an odd vertex in G) or 2k vertices of odd degree (when w is an even vertex
in G).

Proof. (a) It is clearly the latter case. If w = u, i.e., dG(w) is odd, then Gr v is a connected
even graph. If w 6= u, i.e., dG(w) is even, then G r v has exactly two vertices u,w of odd
degree.

(b) Since dG(v) is even, it turns out that G is the former case. If e is a loop at v, i.e.,
w = v, then G r e have the same property as G. If e is a link, then G r e has exactly two
vertices v, w of odd degree. We still need to show that G r e is connected. Suppose G r e
has two connected components G1, G2 with v ∈ V (G1), w ∈ V (G2). Then G1 has exactly
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one vertex v of odd degree. This is impossible because the number of vertices of odd degree
is always even.

(c) It is clear that G is the latter case. If G has no cut edge at v, then for any edge
e = vw at v, the graph G r e is an even graph (when w = u) or G r e has exactly two
vertices u,w of odd degree (when w 6= u).

Let G have a cut edge e′ = vw′ at v. Then Gr e′ has two connected components G1, G2

with v ∈ V (G1), w′ ∈ V (G2), dG1(v) is even, and dG(v) ≥ 3. Suppose u ∈ V (G1); then G1

has the only vertex u of odd degree; this is a contradiction. So we must have u ∈ V (G2),
G1 is a connected even graph, and dG1(v) ≥ 2. Then by (b), for each edge e = vw at v
in G1, the graph G1 r e is connected, either having all vertices of even degree (when e is a
loop) or having exactly two vertices v, w of odd degree (when e is a link). Consequently, the
graph G r e is connected, having exactly two vertices u,w of odd degree for either case of
G1 r e.

Theorem 2.4. (Fleury’s Algorithm) Input: a connected graph G = (V, E). Output:
an Euler tour, or an Euler trail, or none of the previews two for G.

Step 1 If there are vertices of odd degree, then start at one such vertex u. Otherwise, start
at any vertex u. Set W := u and G′ := G.

Step 2 Let v be the terminal vertex of W . If there is no edge remaining at v in G′, stop.
(Now W is an Euler tour if v = u and an Euler trail if v 6= u.)

Step 3 If there is exactly one edge e = vw remaining at v in G′, set W := Wew, G′ := G′re
when e is a loop, G′ := G′ r v when e is a link, and return to Step 2.

Step 4 If there are more than one edge remaining at v in G′, choose one of these edges, say
e = vw, in such a way that G′r e is still connect; set W := Wew, G′ := G′r e, and
return to Step 2. If such an edge cannot be selected, stop. (There is neither Euler
tour nor Euler trail.)

Proof. At each step until stop in the algorithm, we construct a pair (W,G′) dynamically,
where W is a trail in G, G′ is a connected subgraph of G, and W,G′ have no common edges
and E(G) = E(W ) ∪ E(G′), said to be complementary.

In Step 4, in the case that an edge e cannot be selected at v so that G′ r e is still
connected, i.e., every edge at v in G′ is a cut edge, then all edges at v in G′ are cut edges of
G, since W and G′ are connected. Let ei = vvi be edges at v in G′, where i = 1, . . . , k and
k ≥ 2. Then G r {e1, . . . , ek} has components G0, G1, . . . , Gk with vi ∈ V (Gi) and v0 = v.
It is clear that it is impossible to have a trail in G from v to visit both G1 and G2. So Euler
tour and Euler trail is impossible for the graph G.

A pair (W,G′) above is said to be Eulerian if G′ is either an even graph or has exactly
two vertices of odd degree, the terminal vertex v of W is a vertex of G′, and if G′ is the case
of having exactly two vertices of odd degree then v is one of the two odd-degree vertices.
Whenever G is an even graph or have exactly two vertices of odd degree, the initial pair
(W,G′) in Fleury’s algorithm is an Eulerian complementary pair.

Let (W,G′) be an Eulerian complementary pair with the terminal vertex v of W in the
process of Fleury’s algorithm before entering Step 2. Now in Step 2, if there is no edge at
v in G′, then E(G′) = ∅ (since G′ is connected). It is clear that W is an Euler trail for G.
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In Step 3, if e is a loop, it is clear that (Wew, G′ r e) is an Eulerian complementary pair;
if e is a link then by Lemma 2.3(a), (Wew, G′ r v) is an Eulerian complementary pair. In
Step 4, we have dG′(v) ≥ 2; then by Lemma 2.3(b) and Lemma 2.3(c), (Wew, G′ r e) is an
Eulerian complementary pair.

Since all (W,G′) constructed in Fleury’s algorithm are Eulerian complementary pairs,
and edges of G′ are reducing when iterates, Fleury’s algorithm stops at (W,∅) with W an
Euler trail for G after finite number of iterates.
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Figure 1: A graph with an Euler trail.

Example 2.1. An Euler trail for the graph in Figure 1 is given as

v3e3v4e4v5e5v6e6v7e7v8e8v1e1v2e2v3e12v9e14v4e16v6e15v9e10v2e9v8e11v9e13v7.

3 Connection in Digraphs

• A directed walk in a digraph D is an alternating sequence of vertices and arcs

W := v0a1v1 . . . a`v`

such that the arc ai has the tail vi−1 and head vi, i = 1, . . . , `. We call v0 the initial
vertex and v` the terminal vertex of W . Such a walk is referred to a directed
(v0, v`)-walk; the subwalk of W from a vertex vi to a vertex vj is referred to a (vi, vj)-
segment of W .

• A directed trail is a directed walk with distinct arcs. A directed path is a directed
walk with distinct arcs and distinct vertices, except the possible case that the initial
vertex equals the terminal vertex.

• Given a digraph D. A vertex y is reachable from a vertex x in D if x = y or
there is a directed (x, y)-path from x to y in D. Two vertices x and y of D are
strongly connected if each of them is reachable from the other in D. Strongly
connectedness is an equivalence relation on the vertex set V (D). A sub-digraph of
D induced by an equivalence class of the strong connectedness is called a strongly
connected component or strong component of D.

• A directed Euler trail in a digraph D is a directed trail that uses every arc of D. A
closed directed Euler trail is called a directed Euler tour. A digraph is said to be
Eulerian if it has a directed Euler tour.
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Theorem 3.1. Let x, y be two vertices of a digraph D. Then y is reachable from x in D if
and only if (X,Xc) 6= ∅ for every subset X ⊂ V (D) such that x ∈ X and y 6∈ X.

Proof. For necessity, let P be a directed path from x to y. For each proper subset X ⊂ V (D)
with x ∈ X and y ∈ Xc, the path P passes between X and Xc. The first arc of P from X
to Xc; so (X,Xc) 6= ∅.

Conversely, for sufficiency, suppose that y is not reachable from x. Let X be the set of
vertices reachable from x. Then y ∈ Xc. Since every vertex of Xc is not reachable from x,
there is no arc from X to Xc. So (X,Xc) = ∅, a contradiction.

Theorem 3.2. A connected digraph D is Eulerian if, and only if, the in-degree equals the
out-degree at each vertex of D.

Proof. It is analogous to the proof of the existence of Euler tour.

4 Cycle Double Cover

Cycle Cover, Cycle Double Cover

• A cycle cover of a graph G is a family F of subgraphs of G such that E(G) =⋃
H∈F E(H) and each member of F is a cycle.

• A cycle double cover of a graph G is a cycle cover such that each edge of G belongs
to exactly two members of F , i.e., each edge of G is covered exactly twice by F .

Proposition 4.1. Let G be a graph having a cycle covering C that each edge of G is covered
at most twice. Then G has a cycle double cover.

Proof. Let E1 ⊂ E(G) be the edge subset whose edges are covered exactly one by C. Since
C is a covering and each edge of G is covered at most twice by members of C, we see that
G[E1] is an Eulerian graph (i.e. even graph). So G[E1] is a union of edge disjoint cycles, i.e.,
G[E1] has a covering C1 that each edge of G[E1] is covered exactly once. Thus C2 = C ∪ C1

is a cycle double covering of G.

Cycle Double Cover Conjecture

Conjecture 4.2. Every 2-connected graph (i.e. having no cut edge) has a cycle double cover.

5 Chinese Postman Problem

A postman wishes to walk minimal distance to pass every street at least once in order to
deliver mails in worst case. The problem is known as the Chinese postman problem; it
was first formulated by a Chinese mathematician Meigu Guan (Mei-Ku Kuan) in 1962 as
finding a closed walk of minimal distance on a connected graph that passes every edge at
least once.

Pairing odd vertices
Let G = (V, E) be a connected graph. It is well known that G contains even number

of vertices of odd degree. Let W = v0e1v1e2v2 · · · envn be a closed walk of minimal distance
that uses every edge at least once.
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Lemma 5.1. Let W be a closed walk on a connected graph G that uses every edge of G at
least once. Let u be an odd-degree vertex. Then

(a) There exists an edge e at u such that e appears in W more than once.

(b) There exists a path P from u to another odd vertex v of G such that every edge of P
appears at least twice in W .

(c) There exist paths pairing odd vertices of G. If G has 2m odd-degree vertices, then there
exist m paths P1, . . . , Pm pairing the 2m odd-degree vertices. Moreover, for each edge e
appeared exactly in k paths of P1, . . . , Pm, the edge e appears at least k + 1 times in W ,
and

|W | ≥ |E(G)|+
∞∑
i=1

|Pi|.

Proof. (a) When one follows the order of W and crosses the vertex u, the number of times
of moving toward u equals the number of times departing away from u. Then the number
of edges in W at u (counted with multiplicities) is even and positive. Since the number of
edges at u in G is odd, we see that one of the edges at u in G must appear more than once
in W .

(b) Without loss of generality we may assume that G is loopless. We perform the following
algorithm to construct a walk P from u to another odd-degree vertex.

Step 1 Initially, set P ′ = u, G′ = G, W ′ = W , v = u.

Step 2 If deg G′(v) = odd, select an edge e = vw in G′ that appears at least twice in
W ′; set P ′ := P ′ew, G′ := G′ ∪ e′ (with e′ an edge having the endpoints as e),
W ′ := (W ′ r e) ∪ e′ (replace one copy e by e′), v := w; and return to Step 2.

If deg G′(v) = even (i.e., deg G(v) = odd), stop. (P ′ is a walk from the odd vertex
u to an odd vertex v in G.)

Note that deg G′(v) is even if and only if deg G(v) is odd. If an even-degree vertex v of G′

(odd-degree vertex of G) is met in an iteration of the algorithm, a walk P ′ is found from the
odd-degree vertex u to an odd-degree vertex v in G. Of course, a path P from u to v can
be easily constructed along the walk P ′. Each iteration reduce the multiplicity of a multiple
edge of W ′ by 1. Eventually, W ′ contains no multiple edges after finite number of iterations,
i.e., an even-degree vertex v is met eventually in G′. So the algorithm stops.

(c) When a walk P ′
1 is found from one odd vertex to another odd vertex in G, if there

are still odd-degree vertices in G′, perform the algorithm again to find a walk P ′
2 from one

odd-degree vertex to another odd-degree vertex in G′. Continue this procedure by the above
algorithm, we obtain walks P ′

1, . . . , P
′
k pairing the odd-degree vertices of G. Of course, the

paths P1, . . . , Pk pairing the odd-degree vertices of G are easily constructed along the walks.
Since the construction, the multiset W −⋃k

i=1 P ′
i is a covering of E(G). Thus

|W | ≥ |E(G)|+
k∑

i=1

|P ′
i | ≥ |E(G)|+

k∑
i=1

|Pi|.
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Lemma 5.2. Let G be a connected graph G with 2k > 0 odd-degree vertices. Let P1, . . . , Pk

be paths paring the odd-degree vertices. Then there exists a closed walk W in G such that
each Pi is a part of W and every edge of G appears at least once in W .

Proof. Let ui and vi be the initial and terminal vertices of Pi, i = 1, . . . , k. Let Qi be a copy
of the path Pi, having the same vertices as Pi but edges distinct from that of G. Then the
graph G′ := G∪P1 ∪ · · · ∪Pk is an even graph. Thus G′ has an Euler tour W ′. Clearly, each
Qi is a subwalk of W ′. Replacing each Qi by Pi in W ′, we obtain a closed walk W that uses
every edge of G at least once.

Theorem 5.3 (Chinese Postman Problem Algorithm). Input: connected graph G. Output:
close walk W of minimum length that uses every edge of G.

Step 1 Pairing the odd-degree vertices by minimum distance paths Pi.

Step 2 Minimize the sum
∑ |Pi| among all pairings.

Step 3 Whenever {Pi} is a minimum paring of odd-degree vertices, construct a new graph
G′ by adding a copy of each Pi into G so that G′ is Eulerian.

Step 4 Find an Euler tour W ′ for G′. Replace the copy of each Pi in W ′ by Pi to obtain a
closed walk W of minimum length that uses every edge of G.

Proof. It is clear that the walk found in the theorem is a closed walk that uses every edge
of G. Lemma (4) shows that the length of every closed walk that uses all edge of G is larger
than or equal to the length of the walk found by the theorem. Thus the walk found in the
theorem is a closed walk of minimum length that uses every edge of G.

Exercises
Ch3: 3.1.2; 3.1.5; 3.2.1; 3.2.2; 3.4.1; 3.4.4; 3.4.5; 3.4.11.
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