Week 4: Trees

September 30, 2020

1 Forests and Trees

- A graph is **acyclic** if it contains no cycles. **Forest** is just another name for acyclic graph. A **tree** is a connected acyclic graph. A tree is **trivial** if it contains exactly one vertex.
- Every nontrivial tree has at least two leaves (= vertices of degree 1).
- Any two vertices in a tree are connected by a unique path.
- If T is tree, then |E(T)| = |V(T)| 1. More generally, if F is a forest, then

|E(F)| = |V(F)| - c(F),

where c(F) is the number of connected components of F.

2 Rooted Trees

- A tree with a specified vertex x is called a **rooted tree** with the **root** x, denoted T(x). A tree with a root x is also referred to an x-tree.
- A **branching** is a rooted tree with an orientation such that every vertex but the root has in-degree 1. A branching with a root x is referred to an x-branching.
- Let D be a digraph and x a vertex of D. Let X be the set of vertices reachable from x in D. Then there exists an x-branching T(x) in D with V(T) = X.

3 Spanning Trees

- A spanning subgraph H of a graph G is a subgraph such that V(H) = V(G). A spanning tree T of a connected graph G is a tree and is also a spanning subgraph. We identify each edge subset $S \subseteq E(G)$ as the spanning subgraph of G with edge set S.
- Every connected graph has a spanning tree.

• Let T be a spanning tree of a graph G. Let T^c denote the spanning subgraph whose edge set is E(G) - E(T). For each edge $e \in T^c$, there exists a unique cycle C(T, e)contained in $T \cup e$ (the graph having e added to T), known a **fundamental cycle** of G with respect to T. Each edge $e \in T^c$ must be contained in C(T, e).

Proof. Let u, v denote endpoints of the edge $e \in T^c$. There are two internal-vertex disjoint paths from u and v in $T \cup e$: the path uev and the unique path from u to v in T. The two paths form a cycle C(T, e) in $T \cup e$. Suppose C' is a cycle other than C(T, e) in $T \cup e$. Then $C'\Delta C(T, e)$ a nontrivial even graph contained in T, which is an edge disjoint cycles, contradicting the acyclicity of T.

• Let T be a tree of a graph G. For each edge $e \in T$, there exists a unique bond B(T, e) of G contained in $T^c \cup e$, known as a **fundamental bond** of G with respect to T. Each edge $e \in T$ must be contained in B(T, e).

Proof. The spanning subgraph $T \\ e$ (with the edge $e \\ \in T$ removed) is decomposed into two disjoint trees T_1 and T_2 . Then the edge set between the vertices of T_1 and the vertices of T_2 is a bond B(T, e) of G, and clearly, $e \\ \in B(T, e)$. Suppose B' is a bond contained in $T^c \\ \cup e$ but other than B(T, e). Then $B' \\ \Delta B(T, e)$ is an edge cut of Gcontained in T^c . Taking edge set complement of T^c , we see that T is contained in the spanning subgraph of G with the sedge set $E(G) \\ B' \\ \Delta B(T, e)$, which is disconnected as $B' \\ \Delta B(T, e)$ is an edge cut of G. This is a contradiction since T is connected. \Box

• Let F be a forest of a graph G. For each edge $e \in F^c$, there exists a unique cycle C(F, e) contained in $F \cup e$, known as a **fundamental cycle** of G with respect to F. For each edge $e \in F$, there exists a unique bond B(F, e) of G contained in $F^c \cup e$, known as a **fundamental bond** of G with respect to F.

4 Cycle Space and Bond Space

- The edge space of a graph G = (V, E) over the field $\mathbb{F}_2 = \{0, 1\}$ is the vector space of all functions from E to \mathbb{F}_2 , denote \mathbb{F}_2^E .
- The set C(G) of indicator functions of edge sets of even subgraphs of a graph G forms a subspace of \mathbb{F}_2^E , called the **cycle space** of G. Let $\mathcal{C}(G)$ denote the set of even spanning subgraphs of G, which can be made into a vector space over \mathbb{F}_2 by the one-to-one correspondence $\mathcal{C}(G) \to C(G)$, $H \mapsto 1_{E(H)}$.
- The set B(G) of indicator functions of edge sets of cuts of a graph G forms a subspace of \mathbb{F}_2^E , called the **bond space** of G. Let $\mathcal{B}(G)$ denote the set of cuts of G, which can be made into a vector space over \mathbb{F}_2 by the one-to-one correspondence $\mathcal{B}(G) \to B(G)$, $U = [X, X^c] \mapsto 1_U$.

Theorem 4.1. The collection of fundamental cycles of a connected graph G with respect to a spanning tree T forms a basis of the cycle space of G. So the cycle space has dimension $|E(T^c)| = |E(G)| - |V(G)| + 1$.

Proof. We claim that the collection $\{1_{C(T,e)} : e \in E(T^c)\}$ is a basis of the cycle space. We first show that $\{1_{C_e} : e \in E(G-T)\}$ is linearly independent over $\mathbb{F}_2 = \{0,1\}$.

Assume

$$\sum_{e \in E(G-T)} a_e \mathbf{1}_{C_e} = 0 \tag{4.1}$$

for some coefficients a_e in \mathbb{F}_2 . For an particular edge $e_0 \in E(G - T)$, we have $e_0 \in C_{e_0}$ and $e_0 \notin C_e$ for all $e \in E(G - T)$ but $e \neq e_0$. So the value of left-hand side of (4.1) at e_0 is a_0 , i.e., $a_0 = 0$. This proves the linear independence.

To show that $\mathbb{F}_2 = \{0, 1\}$ spans the cycle space of G, given a cycle C of G. We claim that $1_C = \sum_{e \in E(C-T)} 1_{C_e}$, i.e.,

$$1_C + \sum_{e \in E(C \cap T^c)} 1_{C_e} = 0.$$
(4.2)

It is clear that the left-hand side of (4.2) is zero on $E(T^c - C)$. The left-hand side of (4.2) also cancels to zero on $E(C \cap T^c)$. Thus the left-hand side of (4.2) is the indicator function of an even graph on T. Since T does not contain cycle, it follows that the left-hand side of (4.2) is zero on E(G).

Theorem 4.2. The collection of fundamental bonds of a connected graph G with respect to a spanning tree T forms a basis of the bond space of G. So the bond space has dimension |T(G)| = |V(G)| - 1.

Proof. Let $\{B_e : e \in E(T)\}$ be the collection of fundamental bonds of G with respect to T. We first show that $\{1_{B_e} : e \in E(T)\}$ is linearly independent over \mathbb{F}_2 .

Assume

$$\sum_{e \in E(T)} a_e \mathbf{1}_{B_e} = 0 \tag{4.3}$$

for some coefficients a_e in \mathbb{F}_2 . For an particular edge $e_0 \in E(T)$, we have $e_0 \in B_{e_0}$ and $e_0 \notin B_e$ for all $e \in E(T)$ but $e \neq e_0$. So the value of left-hand side of (4.3) at e_0 is a_0 , i.e., $a_0 = 0$. This proves the linear independence.

To show that $\mathbb{F}_2 = \{0, 1\}$ spans the bond space of G, given a bond B of G. We claim that $1_B = \sum_{e \in E(T)} 1_{B_e}$, i.e.,

$$1_B + \sum_{e \in E(B \cap T)} 1_{B_e} = 0.$$
(4.4)

It is clear that the left-hand side of (4.4) is zero on E(T - B). The left-hand side of (4.4) also cancels to zero on $E(B \cap T)$. Thus the left-hand side of (4.4) is the indicator function of an edge cut on T^c , i.e., $U \subset T^c$. Since $T = G - T^c$ is connected, thus G - U is also connected.

Corollary 4.3. Let G be a graph with connected components G_1, \ldots, G_k . Then

$$C(G) = \bigoplus_{i=1}^{k} C(G_i), \quad B(G) = \bigoplus_{i=1}^{k} B(G_i),$$

and dim C(G) = |E(G)| - |V(G)| + c(G), dim B(G) = |V(G)| - c(G). However, C(G) + B(G) is not a direct sum over \mathbb{F}_2 .

Proof. The first part is trivial. For the graph G with two vertices u and v and two edges between u and v. Then the edge space is isomorphic to \mathbb{F}_2^2 , $C(G) = B(G) \cong \mathbb{F}_2$.

5 Flow group and flow space

Let G = (V, E) be a graph, where each edge e is viewed as a path $e : [0, 1] \to \mathbb{R}^d$ with its endpoints e(0) and e(1) glued to two (possibly identical) vertices in V. So we view e(0) and e(1) as vertices of G. There are two directions on [0, 1], one from 0 to 1 and the other from 1 to 0, they are represented by the identity map $\sigma : [0, 1] \to [0, 1]$ and the reverse direction map $\sigma' : [0, 1] \to [0, 1]$ given by $\sigma'(t) = 1 - t$. So the images of the two maps $e\sigma, e\sigma'$ are the same; both $e\sigma, e\sigma'$ are called **orientations** of the edge e. For each edge e we put an arrow on e, namely \vec{e} , to denote an orientation of e, the other one is denoted by $-\vec{e}$. Let $\vec{E}(G) = \{\vec{e}, -\vec{e} : e \in E(G)\}$ denote the set of all oriented edges of G.

An orientation ω of G is an assignment \emptyset that each edge of G is given an orientation of that edge. So an orientation of G can be viewed as a subset $\omega \subset \vec{E}(G)$ such that

$$\omega \cap (-\omega) = \emptyset, \quad \omega \cup (-\omega) = \vec{E}(G).$$

There exists a unique function $[,]: V \times \vec{E} \to \mathbb{Z}$, called the **incidence function** of G, satisfying the following properties:

- (1) [v, e] = 1 if e is a directed link pointing to v,
- (2) [v, e] = 0 if e is a directed loop or v is not incident with e,
- (3) $[v, -e] = -[v, e], \forall v \in V, e \in \vec{E}.$

Given an abelian group A. A 1-chain of G over A is a function $c : \vec{E} \to A$ such that c(-e) = -c(e) for $e \in \vec{E}$. Let $C_1(G, A)$ denote the group of all 1-chains of G. If A is a field \mathbb{F} , then $C_1(G, \mathbb{F})$ is a vector space over \mathbb{F} , and its dimension is |E(G)|.

A 0-chain of G over A is a function from V to A, the set of all 0-chains is denoted $C_0(G, A)$. There is a **boundary operator** $\partial : C_1(G, A) \to C_0(G, A)$ defined by

$$\partial c = \sum_{v \in V} \sum_{e \in E} c(\vec{e}) [v, \vec{e}] v, \quad c = \sum_{e \in E} c(\vec{e}) \vec{e}.$$

A flow of G is a 1-chain f such that $\partial f = 0$. If C is a cycle and ω_C is a direction of C, then the indicator chain I_{ω_C} is a flow. Since $I_{\omega_C} = \sum_{e \in \omega_C} e$, so for simply we can identify I_{ω_C} as ω_C itself, and write $\omega_C = \sum_{e \in \omega_C} e$ as the formal sum.

$$\mathbf{I}_{\omega_C}(e) = \begin{cases} \pm 1 & \text{if } \pm e \in \omega_C, \\ 0 & \text{otherwise.} \end{cases}$$

Given an orientation ω on G to have a digraph (i.e. oriented graph) $D = (G, \omega)$. Then ω forms a basis of $C_1(G, A)$. Viewing V as basis of $C_0(G, A)$, the matrix of the boundary operator ∂ relative to the basis ω and V is the **incidence matrix** $\mathbf{M} = [m_{ve}]$, whose rows are indexed by vertices v and columns by edges e, defined by $m_{ve} = [v, \vec{e}]$, where $\vec{e} \in \omega$. **Proposition 5.1.** Let \mathbf{M} be the incidence matrix of a digraph $D = (G, \omega)$. Let $S \subseteq E(G)$ be an edge subset, and \mathbf{M}_S the submatrix of \mathbf{M} whose columns are indexed by the members of S. Then the columns of \mathbf{M}_S are linearly dependent if and only if the subgraph G[S] contains a cycle.

Proof. " \Rightarrow " Let the columns of \mathbf{M}_S be linearly dependent. If S contains some loops, clearly, these loops are cycles of G[S]. We assume that S contains no loops. Let $S' \subset S$ be a minimal subset such that the columns of $\mathbf{M}_{S'}$ are linearly dependent. We may assume S = S'.

Let v be a vertex of V(G[S]). There exist some edges of S connecting v, and all such edges are links; so the v-row of \mathbf{M}_S is nonzero. Suppose the v-row of \mathbf{M}_S has only one nonzero entry, say, $m_{ve_0} \neq 0$; then any solution of $\mathbf{M}_S \mathbf{x} = \mathbf{0}$ must have $x_{e_0} = 0$; thus $\mathbf{M}_{S \setminus e_0} \mathbf{x} = \mathbf{0}$ has nonzero solutions, i.e., the columns of $\mathbf{M}_{S \setminus e_0}$ are linearly dependent, contradicting the minimality of S. It then follows that the v-row of \mathbf{M}_S has at least two nonzero entries. This means that the degree of v in G[S] is at least 2. So G[S] has degree at least 2 everywhere. We see that G[S] contains a cycle.

" \Leftarrow " Let C be a cycle contained in G[S]. It suffices to show that the columns of \mathbf{M}_C are linearly dependent. In fact, let $P = v_0 e_1 v_1 e_2 v_2 \cdots e_n v_n$ with $v_0 = v_n$ the close path on C and choose a direction of C to follow W, then the matrix \mathbf{M}_C is

$$\mathbf{M}_{C} = \begin{pmatrix} 1 & 0 & \cdots & 0 & -1 \\ -1 & 1 & \cdots & 0 & 0 \\ 0 & -1 & \ddots & \vdots & \vdots \\ \vdots & \vdots & \ddots & 1 & 0 \\ 0 & 0 & \cdots & -1 & 1 \\ 0 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & \cdots & 0 & 0 \end{pmatrix}$$

For the case n = 1, the cycle C is a loop and \mathbf{M}_C is a zero column. For $n \ge 2$, it is clear that all columns of \mathbf{M}_C add up to zero, so the columns are linearly dependent.

If one doesn't like chain group, one can simply choose an orientation to have a digraph $D = (G, \omega)$, and define a real-valued **flow** of D to be a function $f : E(G) \to \mathbb{R}$ such that the inflow equals the outflow at every vertex $v \in V(G)$, i.e., satisfying the **circulation law**

$$\sum_{e \in E^+(v)} f(e) = \sum_{e \in E^-(v)} f(e),$$
(5.1)

where $E^+(v)$ $(E^-(v))$ is the set of directed edges of D whose arrows point to (away from) v. If we view each $f: E(G) \to \mathbb{R}$ as a vector whose coordinates are indexed by the members of E(G), the circulation law (5.1) can be stated as the matrix equation

$$\mathbf{M}\mathbf{x} = 0, \quad \mathbf{x} \in \mathbb{R}^E.$$

The set of all real-valued flows of (G, ω) forms a subspace of \mathbb{R}^E , called the **flow space** of (G, ω) , denoted $F(G, \omega)$. The edge space \mathbb{R}^E has a canonical inner product

$$\langle f,g \rangle = \sum_{e \in E(G)} f(\vec{e})g(\vec{e}).$$

A partial orientation ω of a graph G = (V, E) is a subset of \vec{E} such that $\omega \cap (-\omega) = \emptyset$. A coupling of two partial orientations ω_1, ω_2 of G is a function $[\omega_1, \omega_2] : E(G) \to \mathbb{Z}$, defined by

$$[\omega_1, \omega_2](e) = \begin{cases} 1 & \text{if } \omega_1(e) = \omega_2(e), \\ -1 & \text{if } \omega_1(e) = -\omega_2(e), \\ 0 & \text{otherwise.} \end{cases}$$

Let C be a circuit of G. A **direction** of C is an orientation ω_C on C such that the digraph (C, ω_C) has a head and a tail at each vertex of C. A circuit with a direction is known as **directed circuit**. A **circuit flow** of a digraph (G, ω) is a coupling $[\omega, \omega_C]$, where ω_C is a direction of a circuit C of G.

Lemma 5.2. Let (G, ω) be a digraph and (C, ω_C) a directed circuit. Then the coupling $[\omega, \omega_C]$ is a flow of (G, ω) .

Proof. The circulation law (5.1) is clearly satisfied at each vertex outside of C. If C is a loop e_0 at a vertex v, then $e_0 \in E^+(v, \omega) \cap E^-(v, \omega)$; the circulation law satisfies at v as

$$\sum_{e \in E^+(v,\omega)} [\omega,\omega_C](e) - \sum_{e \in E^-(v,\omega)} [\omega,\omega_C](e) = [\omega,\omega_C](e_0) - [\omega,\omega_C](e_0) = 0$$

Let C be a non-loop. For each vertex $v \in C$, let e_1, e_2 be two edges of C at v, with e_1 pointing to v and e_2 pointing away from v. If both e_1, e_2 point to v in ω , then $e_1, e_2 \in E^+(v, \omega)$ and the circulation law satisfies at v as

$$\sum_{e \in E^+(v,\omega)} [\omega, \omega_C](e) - \sum_{e \in E^-(v,\omega)} [\omega, \omega_C](e) = \sum_{e \in E^+(v,\omega)} [\omega, \omega_C](e) = 1 - 1 = 0.$$

If e_1 points to v and e_2 points away from v in ω , then $e_1 \in E^+(v, \omega)$ and $e_2 \in E^-(v, \omega)$; the circulation law satisfies at v as

$$\sum_{e \in E^+(v,\omega)} [\omega, \omega_C](e) - \sum_{e \in E^-(v,\omega)} [\omega, \omega_C](e) = 1 - 1 = 0.$$

It is analogous for other two cases: the case that both e_1, e_2 point away from v in ω , and the case that e_1 points away from v and e_2 points to v in ω .

Theorem 5.3. Let F be a spanning forest of a graph G with an oriented graph ω . For each edge $e \in F^c$, let ω_e be a direction of the fundamental circuit C(F, e) such that ω, ω_e agree on e. Then for each abelian group A,

Flow
$$(G, \omega; A) = \bigoplus_{e \in F^c} [\omega, \omega_e] A \cong A^{E(F^c)},$$

where $[\omega, \omega_e]A = \{[\omega, \omega_e]a : a \in A\}$ with $([\omega, \omega_e]a)(e') = [\omega, \omega_e](e')a$ for $e' \in E(G)$. Moreover, for each $f \in \text{Flow}(G, \omega; A)$,

$$f = \sum_{e \in F^c} [\omega, \omega_e] f(e).$$

Proof. Let $\sum_{e \in F^c} [\omega, \omega_e] a_e = 0$ for some $a_e \in A$. The support of $[\omega, \omega_e]$ is contained in $F \cup e$. For each $e_0 \in F^c$, we have

$$a_{e_0} = \sum_{e \in F^c} [\omega, \omega_e](e_0) a_e = \left(\sum_{e \in F^c} [\omega, \omega_e] a_e\right)(e_0) = 0.$$

Then $[\omega, \omega_e]a_{e_0} = 0$. Thus Flow $(G, \omega; A)$ is a direct sum of $[\omega, \omega_e]A$, where $e \in F^c$.

Next it suffices to show that $f' := f - \sum_{e \in F^c} [\omega, \omega_e] f(e)$ is identically zero. It is clear that f' is an A-flow of (G, ω) , since f and $[\omega, \omega_e] f(e)$ for $e \in F^c$ are A-flows. For each edge $e_0 \in F^c$, we have $f'(e_0) = f(e_0) - \sum_{e \in F^c} f(e) [\omega, \omega_e] (e_0) = f(e_0) - f(e_0) = 0$. Thus $f'|_{F^c} = 0$.

Let T be a component of F. If the tree T contains edges, then T contains at least two leaves. Let $e' \in T$ be an edge whose one endpoint is a leaf v of T. The net flow of f' at v is $\pm f'(e')$, which must be zero, since f' is a flow; i.e., f'(e') = 0. Continue this procedure, we see that $f'|_T = 0$; consequently, $f'|_F = 0$. We have shown that $f = \sum_{e \in F^c} [\omega, \omega_e] f(e)$. \Box

Remark. The flow space Flow $(G, \omega; \mathbb{R})$ is the kernel of the incidence matrix **M** of the digraph (G, ω) , i.e., the solution space of the matrix equation $\mathbf{Mx} = \mathbf{0}$.

6 Tension group and tension space

A tension valued in an abelian group A or just A-tension of a digraph (G, ω) is a function $g: E(G) \to A$ such that for each directed circuit (C, ω_C) ,

$$\langle [\omega, \omega_C], g \rangle := \sum_{e \in C} [\omega, \omega_C](e)g(e) = 0.$$

Let Tens $(G, \omega; A)$ denote the set of all A-tensions of (G, ω) , which forms an abelian subgroup of A^E , called the A-tension group of G with respect to ω . The tension group is called tension space if the group A is a field.

Let $U = X, X^c$ be a cut of G. A **direction** of U is an orientation on U such that every arc of the digraph (U, ε_U) has its tail in X and head in X^c ; and (U, ε_U) is called a **directed cut** of G. The **indicator function** of U is the characteristic function of the edge subset E(U).

Lemma 6.1. Let G be a graph with an orientation ω . For a cut $U = [X, X^c]$ of G with a direction ω_U , the coupling $[\omega, \omega_U]$ is an integer-valued tension of digraph (G, ω) , called a **cut** tension, or further a **bond tension** if U is a bond.

Proof. Let C be a circuit of G with an orientation ω_C . Note that $[\omega, \omega_C](e)[\omega, \omega_U](e) = [\omega_C, \omega_U](e)$ fort all $e \in E(G)$. It follows that the inner product

$$\langle [\omega, \omega_C], [\omega, \omega_U] \rangle = \sum_{e \in E(G)} [\omega, \omega_C](e) [\omega, \omega_U](e) = \sum_{e \in C \cap U} [\omega_C, \omega_U](e) = 0,$$

since the number of edges of $C \cap U$ having the same orientation in ω_C, ω_U equals the number of edges having opposite orientations. So $[\omega, \omega_U]$ is a tension of (G, ω) by definition.

Theorem 6.2. Let F be a spanning forest of a graph G, and let ω be an orientation of G. For each edge $e \in F$, let ω_e be a direction of the fundamental bond B(F, e) of G such that ω, ω_e agree on e. Then for each abelian group A,

Tens
$$(G, \omega; A) = \bigoplus_{e \in F} [\omega, \omega_e] A \cong A^{E(F)}.$$

Moreover, for each $q \in \text{Tens}(G, \omega; A)$,

$$g = \sum_{e \in F} [\omega, \omega_e] g(e).$$

Proof. Let $\sum_{e \in F} [\omega, \omega_e] a_e = 0$ for some $a_e \in A$. The support of $[\omega, \omega_e]$ is contained in $F^c \cup e$. For each $e_0 \in F$, we have

$$a_{e_0} = \sum_{e \in F} [\omega, \omega_e](e_0) a_e = \left(\sum_{e \in F} [\omega, \omega_e] a_e\right)(e_0) = 0.$$

Then $[\omega, \omega_e]a_{e_0} = 0$. Thus Tens $(G, \omega; A)$ is a direct sum of $[\omega, \omega_e]A$, where $e \in F$. Next it suffices to show that $g' := g - \sum_{e \in F} [\omega, \omega_e]g(e)$ is identically zero. It is clear that f' is an A-tension of (G, ω) , since g and $[\omega, \omega_e]g(e)$ for $e \in F$ are A-tensions. For each edge $e_0 \in F$, we have $g'(e_0) = g(e_0) - \sum_{e \in F^c} g(e)[\omega, \omega_e](e_0) = g(e_0) - g(e_0) = 0$. Thus $g'|_F = 0$. For each $e' \in F^c$, let $\omega_{e'}$ be a direction of the fundamental circuit C(F, e'). By definition

of tension, we have

$$g'(e') = \langle [\omega, \omega_{e'}], g' \rangle = 0$$

This means that $g'|_{T^c} = 0$. We have shown that $g = \sum_{e \in F} [\omega, \omega_e] g(e)$.

Corollary 6.3. The flow space Flow $(G, \omega; \mathbb{R})$ and the tension space Tens $(G, \omega; \mathbb{R})$ are orthogonal complement of each other in $\mathbb{R}^{E(G)}$. In particular,

$$\mathbb{R}^{E(G)} = \operatorname{Flow}\left(G,\omega;\mathbb{R}\right) \oplus \operatorname{Tens}\left(G,\omega;\mathbb{R}\right).$$

However, Flow $(G, \omega; \mathbb{Z}) \oplus$ Tens $(G, \omega; \mathbb{Z})$ is a full rank lattice of $\mathbb{Z}^{E(G)}$.

Proof. Trivial.

Cycle Group and Cocycle Group 7

A chain of a graph G = (V, E) is a function $c : \vec{E}(G) \to \mathbb{Z}$ such that c(-e) = -c(e) for $e \in \vec{E}(G)$. Given an orientation ω , a chain c is usually written as

$$c = \sum_{e \in \omega} c(e)e$$

There is a bilinear **pairing** $\langle, \rangle : C_1(G) \times C_1(G) \to \mathbb{Z}$, defined by

$$\langle c_1, c_2 \rangle = \sum_{e \in \omega} c_1(e) c_2(e). \tag{7.1}$$

Set of all chains forms an abelian group $C_1(G)$. Let $C_0(G)$ be the group of all integer-valued functions defined on V(G). There is a **boundary operator** $\partial : C_1(G) \to C_0(G)$, defined by

$$\partial c = \sum_{e \in \omega} c(e) \partial e, \tag{7.2}$$

where $\partial e = u - v$ if e = uv, i.e., the oriented edge e has its tail at u and heat at v. It is clear that ∂ is a group homomorphism so that ker ∂ is a subgroup of $C_1(G)$, called the **cycle** group of G, denoted Z(G).

There is a group homomorphism $\delta : C_0(G) \to C_1(G)$, called the **co-boundary** (or **difference**) operator of G, defined for each oriented edge e = uv by

$$(\delta p)(e) = p(u) - p(v).$$
 (7.3)

A chain $c \in C_1(G)$ is called a **tension** of G if for every cycle C and its direction ω_C ,

$$\langle c, \omega_C \rangle = 0. \tag{7.4}$$

The set of all tensions of G forms a subgroup of $C_1(G)$, called the **tension group** of G, denoted T(G).

Lemma 7.1. For each potential function $p: V(G) \to \mathbb{Z}$, the image δp is a tension of G.

Proof. For each direction ω_C of a cycle C, the direction ω_C can be represented by a path closed path $v_0e_1v_1e_1\cdots e_nv_n$ with $v_0 = v_n$. Let ω be an orientation of G such that ω agrees ω_C on C. Then

$$\langle \delta p, \omega_C \rangle = \sum_{e \in \omega} (\delta p)(e) \omega_C(e) = \sum_{e \in \omega_C} (\delta p)(e) = \sum_{i=1}^n \delta p(e_i) = \sum_{i=1}^n [v_{i-1} - v_i] = 0.$$

This means that δp is a tension.

Theorem 7.2. $T(G) = \operatorname{im} \delta$.

Proof. Tension Lemma 7.1 implies im $\delta \subseteq T(G)$. For each tension $g \in T(G)$, we construct a potential p such that $\delta p = g$. We may assume that G is connected. Fix a vertex v_0 and set $p(v_0)$ arbitrarily.

Now for each vertex v, let $W = v_0 e_1 v_1 e_2 \cdots e_m v_m$ be a shortest path from v_0 to $v_m = v$. Assume that p have been defined on $v_0, v_1, \ldots, v_{m-1}$. We then define p at v as

$$p(v_m) = p(v_0) + \sum_{i=1}^m g(e_i).$$

We see that $g(e_i) = p(v_i) - p(v_{i-1}), i = 1, ..., m$.

To show that p is well-defined at v. Let $W' = v'_0 e'_1 v'_1 e'_2 \cdots e'_n v'_n$ be another shortest path from $v_0 = v'_0$ to $v = v'_n$. Then

$$p(v'_n) = p(v'_0) + \sum_{j=1}^n g(e'_j).$$

г				
н				
н				
н				
L	_	_	_	л

Note that $W'W^{-1}$ is a closed path, its edges forms a cycle C with direction $W'W^{-1}$. Thus

$$p(v'_n) - p(v_n) = \sum_{j=1}^n g(e'_j) - \sum_{i=1}^m g(e_i) = \sum_{j=1}^n g(e'_j) + \sum_{i=1}^m g(-e_i) = \sum_{e \in W'W^{-1}} g(e) = 0.$$

Hence p is well-defined at v. It is clear that $\delta p = g$ by definition of p.

Question. The cycle group Z(G) and the cocycle group T(G) are subgroups of $C_1(G)$, and Z(G) + T(G) is a full rank subgroup. What is the cardinality $|C_1(G)/(Z(G) + T(G))|$?

8 Cayley's Labeled Tree formula

Theorem 8.1 (Cayley's Labeled Tree Formula). Let $t(K_n)$ denote the number of labeled spanning trees of the complete graph K_n on n vertices. Then $t(K_n) = n^{n-2}$.

Proof. Recall that a **labeled branching** is an oriented labeled rooted tree such that there is no edge head at the root and exactly one edge head at each of other vertices. Since each labeled tree of K_n gives rise to n labeled branchings, the number of labeled branchings of K_n is $n \cdot t(K_n)$. It suffices to show that the number of labeled branchings of K_n is n^{n-1} .

Note that each labeled branching on n vertices can be build up, one at a time to add an edge, starting with the empty graph on n vertices. In order to end up with a branching, the subgraph constructed at each stage must be a branching forest (each of its components is a branching). Initially, this branching forest has n components, each consists of an isolated vertex. At each stage, we add a new directed edge \vec{e} joining a vertex u of one branching to the root v of another branching with $\vec{e} = \vec{u}\vec{v}$, resulting that the number of components decreases exactly by one. If there are k components at a stage, where $2 \le k \le n$, the number of ways to add a new edge $\vec{e} = \vec{u}\vec{v}$ is n(k-1): u can be any one of the n vertices, whereas v must be the root of a branching that does not contain the vertex u; there are exactly k-1 choices for v. Thus the total number of ways of constructing a labeled branching on n vertices in this ways is

$$\prod_{k=2}^{n} n(k-1) = n^{n-1}(n-1)!.$$

On the other hand, each individual labeled branching on n vertices contains exactly n-1 edges, and adding these n-1 edges in any order results the same labeled branching. So each labeled branching can be constructed in exactly (n-1)! ways. It follows that the number of labeled branchings is n^{n-1} .

Proposition 8.2. Let G be a connected graph and e a link edge. Let t(G) denote the number of spanning trees of labeled graph G. Then

$$t(G) = t(G \setminus e) + t(G/e).$$

Proof. The spanning trees of G that do not contain the edges e are exactly the spanning trees of $G \setminus e$. The spanning trees T of G that do contain the edges e are exactly the spanning trees T/e of G/e. The formula follows immediately.

Exercises. Ch4: 4.3.1; 4.3.2; 4.3.3; 4.3.7; 4.3.8; 4.3.9; 4.3.10.

9 Laplacian matrix

Let G = (V, E) be a graph with adjacency matrix **A** and diagonal degree matrix **D**. Recall that each entry a_{uv} of **A** is the number of edges between u and v, and each diagonal entry deg_G(v) of **D** is the number edges at v, where each loop is counted twice. Let **M** be the incidence matrix of a digraph (G, ω) . The **Laplacian** of G is

$$\mathbf{L} := \mathbf{M}\mathbf{M}^T = \mathbf{D} - \mathbf{A}.$$

Choose a vertex v, let \mathbf{M}_v denote the submatrix obtained from \mathbf{M} by deleting the v-row. The **truncated Laplacian** of G relative to v is the matrix

$$\mathbf{L}_{v} := \mathbf{M}_{v} \mathbf{M}_{v}^{T},$$

which is the submatrix obtained from \mathbf{L} by deleting the *v*-row and *v*-column.

Theorem 9.1. For each vertex v of a connected graph G,

$$\det \mathbf{L}_v = t(G).$$

Example 9.1. The complete graph K_n on the vertex set $\{1, 2, ..., n\}$ has the Laplacian

$$\mathbf{L} = \begin{pmatrix} n-1 & -1 & \cdots & -1 \\ -1 & n-1 & \cdots & -1 \\ \vdots & \vdots & \ddots & \vdots \\ -1 & -1 & \cdots & n-1 \end{pmatrix}_{n \times n}$$

Deleting the last row and column, we obtain an $(n-1) \times (n-1)$ matrix \mathbf{L}_v . Adding up all rows of \mathbf{L}_v other than the top row to the top, then adding the top row to each row row below, we have $(n-1) \times (n-1)$ matrices

$$\mathbf{L}_{v} \rightsquigarrow \begin{pmatrix} 1 & 1 & \cdots & 1 \\ -1 & n-1 & \cdots & -1 \\ \vdots & \vdots & \ddots & \vdots \\ -1 & -1 & \cdots & n-1 \end{pmatrix} \rightsquigarrow \begin{pmatrix} 1 & 1 & \cdots & 1 \\ 0 & n & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & n \end{pmatrix}_{(n-1)\times(n-1)}$$

We see that $\det \mathbf{L}_v = n^{n-2}$.

A unimodular matrix is a square integer matrix having determinant either 1 or -1. A totally unimodular matrix is a rectangular integer matrix whose all square submatrices have determinant 1 or 0 or -1.

Lemma 9.2. The incidence matrix of any digraph is totally unimodular.

Proof. We prove it by induction on the size of square submatrices. For 1×1 submatrix, there is one vertex v and one edge e; if v is not an endpoint of e or e is a loop, then the 1×1 submatrix is 0; if v is an endpoint of e and e is not a loop, then the submatrix is of the form $[\pm 1]$. It is true clearly in all cases.

Let \mathbf{M}_1 be a square submatrix indexed by a vertex subset V_1 and edge subset E_1 with $|V_1| = |E_1| \ge 2$. If there exists a vertex $v \in V_1$ not incident with any edge of E_1 , then the v-row of \mathbf{M}_1 is zero; consequently, det $\mathbf{M}_1 = 0$. We may assume that all vertices of V_1 are incident with some edges of E_1 . If there exists a loop $e \in E_1$ or an edge $e \in E_1$ not incident with any vertex in V_1 , then the e-column is zero; consequently, det M = 0. If there exists an edge $e \in E_1$ incident with only one vertex v in V_1 and e is not a loop, then the e-column has only one nonzero entry 1 or -1. Using cofactor expansion formula for determinant, we see that det \mathbf{M}_1 is 1 or 0 or -1 by induction.

Now we may assume that endpoints of edges of E_1 are contained in V_1 . Then $G_1 = (V_1, E_1)$ is a subgraph. If G_1 contains a cycle, then the columns of \mathbf{M}_1 are linearly dependent, so det $\mathbf{M}_1 = 0$. If G_1 contains no cycle, i.e., G_1 is a forest. Then $|E_1| = |V_1| - c(G_1)$, which is contradictory to $|V_1| = |E_1|$.

Proposition 9.3 (Cauchy-Binet Formula). Let A be an $m \times n$ matrix and B an $n \times m$ matrix. If $m \leq n$, then

$$\det(AB) = \sum_{S \subseteq [n], |S|=m} \det(A|_S) \det(B|_S), \tag{9.1}$$

where $[n] = \{1, 2, ..., n\}$, $A|_S$ is the $m \times m$ submatrix of A whose column index set is S, and $B|_S$ is the $m \times m$ submatrix of B whose row index set is S.

Proof. Let $A = [a_{ik}]_{m \times n}$, $B = [b_{kj}]_{n \times m}$, and $C = AB = [c_{ij}]_{m \times m}$, where $c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$. Then

$$\det(C) = \det\left(\begin{array}{ccc} \sum_{k_{1}=1}^{n} a_{1k_{1}} b_{k_{1}1} & \cdots & \sum_{k_{m}=1}^{n} a_{1k_{m}} b_{k_{m}m} \\ \vdots & \ddots & \vdots \\ \sum_{k_{1}=1}^{n} a_{mk_{1}} b_{k_{1}1} & \cdots & \sum_{k_{m}=1}^{n} a_{mk_{m}} b_{k_{m}m} \end{array}\right)$$
$$= \sum_{k_{1}=1}^{n} \cdots \sum_{k_{m}=1}^{n} \det\left(\begin{array}{ccc} a_{1k_{1}} b_{k_{1}1} & \cdots & a_{1k_{m}} b_{k_{m}m} \\ \vdots & \ddots & \vdots \\ a_{mk_{1}} b_{k_{1}1} & \cdots & a_{mk_{m}} b_{k_{m}m} \end{array}\right)$$
$$= \sum_{k_{1},\dots,k_{m}=1}^{n} \det\left(\begin{array}{ccc} a_{1k_{1}} & \cdots & a_{1k_{m}} \\ \vdots & \ddots & \vdots \\ a_{mk_{1}} & \cdots & a_{1k_{m}} \\ \vdots & \ddots & \vdots \\ a_{mk_{1}} & \cdots & a_{mk_{m}} \end{array}\right) b_{k_{1}1} \cdots b_{k_{m}m}.$$

Rewrite the nonzero terms in the above expansion of det(C), we obtain

$$\det(C) = \sum_{1 \le k_1, \dots, k_m \le n, \ k_i \ne k_j} \det(A|_{\{k_1, \dots, k_m\}}) b_{k_1 1} \cdots b_{k_m m}$$
$$= \sum_{1 \le t_1 < \dots < t_m \le n} \sum_{\sigma \in S_m} \det(A|_{\{t_{\sigma(1)}, \dots, t_{\sigma(m)}\}}) b_{t_{\sigma(1)} 1} \cdots b_{t_{\sigma(m)} m}$$
$$= \sum_{1 \le t_1 < \dots < t_m \le n} \det(A|_{\{t_1, \dots, t_m\}}) \sum_{\sigma \in \mathfrak{S}_m} \operatorname{sgn}(\sigma) b_{t_{\sigma(1)} 1} \cdots b_{t_{\sigma(m)} m}$$

where \mathfrak{S}_m is the set of all permutations of $\{1, \ldots, m\}$. Set $S = \{t_1, \ldots, t_m\}$, we have $\det(C) = \sum_{S \subseteq [n], |S|=m} \det(A|_S) \det(B|_S)$.