
Week 5: Separation of Graphs

October 7, 2020

1 Cut Vertices

• A cut vertex of a graph G is a vertex v such that when v and the edges at v are
removed, the number of components increases, i.e., c(G) < c(G r v), where G r v is
the graph obtained from G by removing v and the edges at v.

• A cut edge of a graph G is an edge whose removal increases the number of components.

• A connected graph is 2-connected if between any two vertices there are at least two
internally disjoint paths. A connected graph with only one vertex is either a single
loop or a single vertex.

• Let G be a connected graph without loops. Then G is 2-connected if and only if any
two edges of G are contained in a cycle of G.

Proof. The sufficiency is trivial. Given two distinct vertices u, v of G and edges e1, e2

at u, v respectively. Let C be a cycle containing e1, e2. Clearly, the cycle C contains
vertices u, v and can be split into two internally disjoint paths from u to v.

The necessity is left as a nontrivial exercise.

Theorem 1.1. Let G be a connected graph with n ≥ 3 vertices. Then G is 2-connected if
and only if G contains no cut vertex.

Proof. Since |V (G)| ≥ 3, G being 2-connected is equivalent to saying that there exists two
internally disjoint paths between any two vertices.

“⇒” Suppose G contains a cut vertex v. Then Grv contains at least two components G1

and G2. Given vertices v1 ∈ V (G1) and v2 ∈ V (G2). Each path connecting v1 and v2 must
pass through the vertex v. So any two paths between v1 and v2 must contain the common
internal vertex v. This is a contradiction.

“⇐” Let u, v be two vertices of G and let d(u, v) denote their distance. We proceed by
induction on d(x, y). For d(u, v) = 1, there exists an edge e = uv in G. Note that e is not
a cut edge. (Otherwise, since between u, v there exist two internally disjoint paths, there
exists a third vertex w adjacent either to u or to v, say, adjacent to u. Then u is a cut vertex
of G, a contradiction.) The subgraph Gr e is connected. Any uv-path in Gr e and uev are
two internally disjoint paths from u to v.

Consider the case d(u, v) = d ≥ 2. Let P = v0e1v1 . . . edvd be a path from u(= v0) to
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Figure 1: No cut vertex via common cycle of two vertices

v(= vd). Since d(v0, vd−1) = d−1, by induction there are two internally disjoint paths P1, P2

from v0 to vd−1 in G. Since vd−1 is not a cut vertex of G, the subgraph Grvd−1 is connected.
Let P3 be a path from v0 to vd in Grvd−1. Let w be the last vertex of P3 that meets P1∪P2,
say, w lies in P1. Let Q1 denote the subpath of P1 from v0 to w, and R1 the subpath of P3

from w to vd. Then P ′
1 = Q1R1 and P ′

2 = P2edvd are two internally disjoint paths from u to
v, see Figure 2.

2 Separation and Blocks

• A separation of a connected graph G is a decomposition of G into two connected
subgraphs G1 and G2 having a unique common vertex v and disjoint nonempty edge
sets; the common vertex v is called a separating vertex of G. A connected graph is
separable if it contains at least one separating vertex; otherwise, it is nonseparable.

• A cut vertex is a separating vertex. A separating vertex is not necessarily a cut vertex.
If v is a separating vertex but not a cut vertex, then there exists at least one loop at
v. So if a graph has no loop at a vertex v, then v is a separating vertex if and only if
v is a cut vertex.

• If a graph G is nonseparable and is not a single loop, then G contains no loops.

• A block of a connected graph G is a maximal nonseparable subgraph. If G contains
some edges, i.e., G is not a single vertex, then each block of G is either a loop, or a
cut edge, or a maximal 2-connected subgraph without loops.

Theorem 2.1. Let G be a connected graph. Then G is nonseparable if and only if any two
edges lie on a common cycle.

Proof. “⇐” Suppose G is separable, i.e., G is separated at a vertex v into two connected
subgraphs G1 and G2, such that V (G1)∩V (G2) = {v}, E(G1)∩E(G2) = ∅, and E(Gi) 6= ∅,
i = 1, 2. Take edges ei = vvi at v with ei ∈ Gi, i = 1, 2. Clearly, the edges e1, e2 cannot be
on a common cycle of G, a contradiction.

“⇒” If G has only one vertex, then G is a single vertex or a single loop; nothing is to
be proved. Let G contain at least two vertices. Clearly, G contains no loops, i.e., all edges
are links. If G is a single link edge, then again nothing is to be proved. We assume that G
contain at least two edges. Given an edge e = uv, subdivide e into two edges by introducing
a new vertex w on e to obtain a new graph G′. We claim that G′ is also nonseparable. In
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fact, suppose G′ is separable. Then G′ must be separated at the vertex w into two connected
subgraphs G′

u, G
′
v with u ∈ G′

u, v ∈ G′
v. Being a middle point of e, the vertex w has to be a

cut vertex of G′; consequently, the edge e is a cut edge of G. Thus Gr e has two connected
components Gu, Gv with u ∈ Gu, v ∈ Gv. Since G has at leat two edges, either Gu has some
edges at u or Gv has some edges at v, say, it is the former case. We see that G is separated at
u into Gu and Gv∪e∪u, which contradicts the non-separablility of G. So G′ is nonseparable.

Now given two edges ei = uivi of G, i = 1, 2. Subdivide ei by introducing a new vertex
wi on ei to obtain a new graph H. Then H is nonseparable and has at least 3 vertices. Since
nonseparable graphs have no cut vertices, by Theorem 1.1 there exist two internally disjoint
paths P1, P2 from w1 to w2. The closed path P1P

−1
2 forms a cycle of G, which contains both

edges e1, e2.

Corollary 2.2 (Classification of Nonseparable Graphs). A nonseparable graph is either a
single vertex, or a single loop, or a single link, or a 2-connected graph having at least two
vertices and no loops.

Theorem 2.3 (Block-Tree Decomposition). Every connected graph G can be decomposed
into blocks satisfying the following properties:

(a) Any two blocks of G have at most one vertex in common.

(b) Every cycle is contained in a block of G.

(c) There is no sequence B0, B1, . . . , Bk of blocks of G such that Bi ∩ Bi+1 6= ∅ for i =
0, 1, . . . , k, where k ≥ 1 and Bk+1 = B0.

Proof. (a) Let B1, B2 be two blocks having vertices v1, . . . , vk in common. It is easy to see
that both B1, B2 have no loops. So B := B1∪B2 has no loops; consequently, each separating
vertex of B is a cut vertex. Since B1, B2 are maximal nonseparable subgraphs of G, it
follows that B is separable. Let B be separated at a vertex v into G1, G2. Note that one of
G1 ∩ B1, G2 ∩ B1 contains the other; otherwise, B1 has a separation at v into G1 ∩ B1 and
G2 ∩ B1, contradictory to the non-separability of B1. Thus either G2 ∩ B1 ⊆ G1 ∩ B1 or
G1 ∩ B1 ⊆ G2 ∩ B1, i.e., either B1 ⊆ G1 or B1 ⊆ G2. Likewise, we have either B2 ⊆ G1 or
B2 ⊆ G2. Say, B1 ⊆ G1, we must have B2 ⊆ G2. Since B1 ∪ B2 = G1 ∪ G2, it follows that
B1 = G1, B2 = G2, and k = 1 with v = v1. We have seen that B1, B2 have only one vertex
in common.

(b) and (c) are equivalent. We prove (c). Suppose there is a sequence B0, B1, . . . , Bk

of blocks such that Bi ∩ Bi+1 = {vi}, i = 0, 1, . . . , k, where Bk+1 = B0 and k ≥ 1. Then
B :=

⋃k
i=0 Bi is connected and cannot be separated at its any vertex. So B is a block,

contradict to the maximality of Bi.

• Let B be the set of all blocks of a connected graph G, and S the set of separating
vertices. Denote by BT(G) the bipartite graph whose vertex set has the bipartition
{S,B}, and whose edges are the pairs {v, b}, where v ∈ S, v ∈ b ∈ B. Then BT(G) is
a tree, known as the block tree of G.

• An end block of G is a block corresponding to a leaf of the block tree BT(G).

• Any vertex of a block of G other than the separating vertices is called an internal
vertex of the block.
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Figure 2: A block-tree decomposition and its block tree

3 Ear Decomposition

• Every nonseparable graph other than a single vertex or a link contains a cycle.

• Given a subgraph H of a graph G. An ear of H is a path P in G such that P is not a
closed path, its initial and terminal vertices lie in H, and its edges and internal vertices
lie outside H.

Proposition 3.1. Let H be a subgraph of a nonseparable graph G. If H is not a trivial
subgraph (i.e. neither a single vertex nor the whole graph G), then H has an ear in G.

Proof. If H is a spanning subgraph, then E(H) ( E(G) is a proper subset, thus each edge
e ∈ E(G) r E(H) is an ear of H in G. If H is not a spanning subgraph, then there exists
an edge e = uv with u ∈ H and v ∈ GrH, since G is connected. Moreover, u is connected
to some other vertices in H, as H is not a single vertex. Since G is nonseparable, the edge
e cannot be a cut edge of G, so G r e is connected. Then there exist (v, H)-paths in G.
We claim that one of such (v, H)-paths is from v to a vertex w other than u. In fact, if

H

P

e
u vH\u

w

Figure 3: Existence of an ear

all (v, H)-paths are from v to u, then u is a separating vertex of G, contradictory to the
non-separability of G. Each (v, H)-path P from v to a vertex w other than u is an ear of H
in G. See Figure 3.

Proposition 3.2. Let H be a subgraph of a graph G with an ear P in G. If H is nonseparable,
then H ∪ P is also nonseparable.

Proof. We may assume G = H ∪ P . Suppose G is separated at a vertex v into G1 and
G2, no one is contained in another and have exactly one vertex v in common. Since H is
nonseparable, by block-tree decomposition H must be contained in either G1 or G2, say,
H ⊆ G1. Then G2 ⊆ P . So G2 is a subpath of P . This is impossible.
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A sequence G0, G1, . . . , Gk of graphs is said to be nested if G0 ⊂ G1 ⊂ G2 ⊂ · · · ⊂ Gk.
An ear decomposition of a nonseparable graph G is a nested sequence G0, G1, . . . , Gk of
subgraphs of G such that

(ED1) G0 is a cycle,

(ED2) Gi+1 = Gi ∪ Pi, where Pi is an ear of Gi in G for all i = 0, 1, . . . , k − 1, and

(ED3) Gk = G.

Theorem 3.3 (Ear Decomposition Theorem). Let G be a nonseparable graph. If G is neither
a single vertex nor a link, then G has an ear decomposition.

Proof. It is trivial when G is a single loop, just take G0 to the loop. We consider that G is
not a single vertex, not a single link, and not a single loop. Then G must contain at least
two edges. Theorem 2.1 implies that the two edges lie on a common cycle C, which has
at least two vertices. Set G0 := C. If G0 ( G is a proper subgraph, then Proposition 3.1
implies that G0 has an ear P0 in G, since G0 is not a single vertex. Thus G1 := G0 ∪ P0

is nonseparable. Likewise, if G1 is a proper subgraph of G, then G1 has an ear P1 in G.
Continue this procedure, we obtain nonseparable subgraphs Gi and their ears Pi in G such
that Gi+1 := Gi ∪ Pi. Since G is finite, the procedure must end up with Gk = G at some
step k.

Recall that a digraph D is strongly connected (or just strong) if for each proper vertex
subset X ( V (D), the set (X,Xc), consisting of all arcs having tails in X and heads in Xc,
is nonempty. Note that (Xc, X) is also nonempty.

Proposition 3.4. A digraph D is strongly connected if and only if for any two vertices u
and v in D, there exist a directed path from u to v and a directed path from v to u, i.e., u
and v are strongly connected.

Proof. The sufficiency is trivial. For necessity, fix two vertices u and v, let Vu denote the set
of all vertices w such that there exists a directed path (allowing zero length) from u to w in
D. Then for each w′ ∈ V c

u there is no directed path from u to w′. Clearly, u ∈ Vu 6= ∅.
If Vu 6= V (D), then (Vu, V

c
u ) 6= ∅, since D is strongly connected. Take an arc e = w1w2 ∈

(Vu, V
c
u ) with w1 ∈ Vu and w2 ∈ V c

u , and directed path P from u to w1. Then Q := Pew2 is
a directed path from u to w2, contradictory to the fact that there is no directed path from
u to w2. Hence Vu = V (D). Likewise, Vv = V (D). This means that u and v are strongly
connected.

Proposition 3.5. A connected digraph is strongly connected if and only if each of its blocks
is strongly connected.

Proof. Trivial.

Proposition 3.6. Let P be an ear of a sub-digraph H in a digraph D (viewed as their
underlying graphs). If H is strongly connected and P is a directed path, then H ∪ P is also
strongly connected.
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Proof. Let P = v0e1v1 · · · envn be directed path from v0 to vn. For two vertices u and v of
H ∪ P , if u, v ∈ H, nothing is to be proved, since H is strongly connected. If u, v ∈ P , say,
u = vi and v = vj with i < j, take a directed path P0 in H from vn to v0. Write P = P1P2P3,
where P2 is the directed subpath from vi to vj. Then Q := P3P0P1 is a directed path from
vj to vi. So u and v are strongly connected.

If u ∈ P and v ∈ H with u = vi, take a directed path P0 in H from vn to v and a directed
path Q0 in H from v to v0. Then viei+1vi+1 · · · enP0 is a directed path from u to v, and
Q0e1v1 · · · eivi is a directed path from v to u. Thus u and v are strongly connected.

Proposition 3.4 implies that H ∪ P is strongly connected.

Theorem 3.7. Every connected graph G without cut edge has a strong orientation.

Proof. It suffices to show that each block of G has a strong orientation. We may assume
that G is nonseparable. If G is a single vertex or a loop, it is trivial that G has a strong
orientation. Note that G cannot be a single link. So we assume that G is not a vertex,
not a link, and not a loop. The Ear Decomposition Theorem 3.3 implies that G has an
ear decomposition (G0, G1, . . . , Gk), where Gi+1 = Gi ∪ Pi and Pi is an ear of Gi in G,
i = 0, 1, . . . , k−1. We now orient the edges of G0 and Pi so that G0 becomes a directed cycle
and Pi becomes directed paths. Initially, G0 is strongly connected. Proposition 3.6 implies
that all Gi+1 = Gi ∪ Pi are strongly connected. Hence G = Gk is strongly connected.

4 Ear Decomposition of Digraphs

A directed ear of a sub-digraph H in a digraph D is a directed path P whose distinct
initial and terminal vertices lie in H and internal vertices lie outside H.
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Proposition 4.1. Let H be a sub-digraph of a nonseparable and strongly connected digraph
D. If H is strongly connected, but not a vertex, not a loop, and not the whole digraph D,
then H has a directed ear in D.

Proof. Since D is nonseparable and H is nontrivial subgraph of D, then H has some ears in
D by Proposition 3.1. Among these ears we choose one ear P having minimum number of
reversing arcs relative to the order of P . We claim that such an ear P is actually a directed
ear of H in D. Write P as the sequence v0e1v1 · · · ekvk of vertices and arcs in D. If k = 1,
then either P or P−1 is a directed ear of H in D.
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Figure 4: Existence of directed ear

Suppose P is not a directed path. Clearly, k ≥ 2. Let ei be an arc having its tail at vi

and head at vi−1. Then one of vi and vi−1 is outside H. Since D is strongly connected, there
is a directed path P1 from vi−1 to vi in D. Then

Q1 := v0e1v1 · · · ei−1P1ei+1vi+1 · · · ekvk

is a walk from v0 to vk, having less number of reversing arcs comparing with the walk P .
Suppose Q1 ∩H = ∅. Then Q1 is disjoint from H, except v0, vk ∈ H. Let Q be a path

followed the walk Q1 from v0 to vk, having no repeating vertices. Then Q is a directed ear
of H in D, having less number of reversing arcs comparing with P , which is contradictory
to the choice of P . So we must have Q1 ∩H 6= ∅.

Let u be the first vertex and v the last vertex of Q1 such that u, v ∈ H. Let R1 be
the subpath of Q1 from vi−1 to u, and R2 the subpath of Q1 from v to vi. If u 6= v, then
Q := R2eiR1 is a directed ear of H in D; see the left of Figure 4 below. If u = v, we have
two cases: u 6= v0 and u 6= vk. In the former case, the directed walk v0e1v1 · · · vi−2ei−1R1

contains a directed ear Q of H in D. In the latter case, the directed walk R2ei+1vi+1 · · · ekvk

contains a directed ear Q of H in D. See the right of Figure 4. In both cases the directed
path Q has less number of reversing arcs comparing with P , which is contradictory to the
choice of P .

A directed ear decomposition of a nonseparable strong digraph D is a nested sequence
D0, D1, . . . , Dk of nonseparable strong sub-digraphs of D such that

(DED1) D0 is a directed cycle,

(DED2) Di+1 = Di ∪ Pi, where Pi is a directed ear of Di in D, i = 0, 1, . . . , k − 1, and

(DED3) Dk = D.
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Theorem 4.2. Let D be a nonseparable and strongly directed digraph. If D is nontrivial,
i.e., not a single vertex, then D has a directed ear decomposition.

Proof. It is trivial when D is a directed loop. When D is not a loop, D must have at least
two vertices, say, u and v. Let P be a directed path from u to v and Q a directed path from
v to u in D. Then W := PQ−1 is a closed directed walk containing both u and v. Of course,
W contains a directed cycle D0, whose all edges are links. Clearly, D0 is nonseparable and
strongly connected. If D0 ( D, then D0 has a directed ear P0 in D by Proposition 4.1, and
D1 := D0∪P0 is nonseparable and strongly connected by Propositions 3.2 and 3.6. Continue
this procedure, we obtain a nested sequence D0, D1, . . . , Dk of nonseparable and strongly
connected sub-digraphs of D such that Di+1 = Di ∪ Pi, where Pi is a directed ear of Di in
D for i = 0, 1, . . . , k − 1, and Dk = D. This is a directed ear decomposition of D.

• A feedback set of a digraph D is an arc subset S of D such that D r S contains no
directed cycle.

• A feedback set S of a digraph D is minimal if for each arc e ∈ S the sub-digraph
(DrS)∪ e contains some directed cycles. Each such directed cycle intersects S at the
unique arc e, and is called a fundamental directed cycle of D with respect to S.

• A minimal feedback set S of a digraph D is coherent if each arc of D is contained in
some fundamental directed cycles of D with respect to S.

• If a digraph D admits a coherent feedback set, then every component of D must be
strongly connected, for every edge is contained in a fundamental directed cycle and
the union of directed cycles is obviously strongly connected.

Theorem 4.3. Let D be a nontrivial (i.e. not a single vertex) connected digraph. Then D
is strongly connected if and only if D admits a coherent feedback set.

Proof. The sufficiency is trivial. For necessity, let D be a strongly connected digraph with at
least two vertices. If D is separable, then each its block is strongly connected, and we may
consider each of its blocks. So we may assume that D is nonseparable. By Theorem 4.2, D
has a directed ear decomposition D0, D1, . . . , Dk, where D0 is a directed cycle, Di+1 = Di∪Pi,
Pi is a directed ear of Di in D, i = 0, 1, . . . , k − 1, and Dk = D. Now choose an arc e0 from
D0 and set S0 := {e0}. If D1 r S0 contains no directed cycles, set S1 := S0. If D1 r S0

contains a directed cycle, then the directed cycle must contain the directed path P0; choose
an edge e1 ∈ P0 and set S1 := S0 ∪ e1. Thus D1 r S1 contains no directed cycles.

In general for i ≥ 1, the digraph Di−1 r Si−1 contains no directed cycle, and Di r Si−1

may and may not contain directed cycles. If Di r Si−1 contains a directed cycle C, then C
must contain the directed path Pi−1. Let

Si =

{
Si−1 if Di r Si−1 contains no directed cycle,
Si−1 ∪ ei otherwise, choose an edge ei ∈ Pi−1.

We see that Di r Si contains no directed cycle. Finally, we have constructed a coherent
feedback set S = Sk for D.
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Proposition 4.4. Every strongly connected digraph D has a strongly connected spanning
sub-digraph of at most 2

(|V (D)| − 1
)

arcs.

Proof. Delete all loops of D if necessary. We may assume that D contains no loops. If D is
a single vertex, it is clearly true. We assume that D has at least two vertices and no loops.
Then each block of D is strongly connected, containing at least two vertices. For each block
B of D, consider a directed ear decomposition of B. Delete from B the edges in the directed
ears of length one. We obtain a nonseparable and strongly connected spanning sub-digraph
H of B, and a directed ear decomposition D0, D1, . . . , Dk of H, where D0 is a directed cycle,
Di+1 = Di ∪Pi, Pi is a directed ear of Di in D of length at least two, i = 0, 1, . . . , k− 1, and
Dk = H. Since each ear contains at least one internal vertex and |V (D)| ≥ 2, we have

k ≤ |V (H)| − |V (D0)| ≤ |V (H)| − 2.

Since D0 is a cycle and Pi is a path, we have

|E(D0)| = |V (D0)|, |E(Pi)| = |V (Pi)| − 1, i = 0, 1, . . . , k − 1.

It follows that

|E(H)| = |E(D0)|+
k−1∑
i=0

|E(Pi)| = |V (D0)|+
k−1∑
i=0

(|V (Pi)| − 1
)

= |V (D0)|+
k−1∑
i=0

[(|V (Pi)| − 2
)

+ 1
]

= |V (H)|+ k

≤ 2|V (H)| − 2 (∵ k ≤ |V (H)| − 2).

Now the union of the strongly connected sub-digraphs H, one for each block of D, is a
strongly connected spanning sub-digraph of D. It then follows that

∣∣E(⋃
H

)∣∣ =
∑
H

|E(H)| ≤ 2
∑
H

(|V (H)| − 1
)

= 2
(|V (D)| − 1

)
,

by induction on the number of H’s.

Exercises
Ch5: 5.1.2; 5.2.1; 5.2.2; 5.2.5; 5.3.3; 5.3.6; 5.3.8; 5.4.2; 5.4.4; 5.4.5.

9


