Week 5: Separation of Graphs

October 7, 2020

1 Cut Vertices

e A cut vertex of a graph G is a vertex v such that when v and the edges at v are
removed, the number of components increases, i.e., ¢(G) < ¢(G \ v), where G \ v is
the graph obtained from G by removing v and the edges at v.

e A cut edge of a graph G is an edge whose removal increases the number of components.

e A connected graph is 2-connected if between any two vertices there are at least two
internally disjoint paths. A connected graph with only one vertex is either a single
loop or a single vertex.

e Let G be a connected graph without loops. Then G is 2-connected if and only if any
two edges of GG are contained in a cycle of G.

Proof. The sufficiency is trivial. Given two distinct vertices u,v of G and edges eq, ey
at u, v respectively. Let C' be a cycle containing ey, es. Clearly, the cycle C' contains
vertices u, v and can be split into two internally disjoint paths from u to v.

The necessity is left as a nontrivial exercise. O]

Theorem 1.1. Let G be a connected graph with n > 3 vertices. Then G is 2-connected if
and only if G contains no cut vertexz.

Proof. Since |V(G)| > 3, G being 2-connected is equivalent to saying that there exists two
internally disjoint paths between any two vertices.

“=" Suppose (G contains a cut vertex v. Then GG\ v contains at least two components GGy
and Gy. Given vertices v; € V(G1) and vy € V(G3). Each path connecting v; and vy must
pass through the vertex v. So any two paths between v; and v, must contain the common
internal vertex v. This is a contradiction.

“<” Let u,v be two vertices of G and let d(u,v) denote their distance. We proceed by
induction on d(x,y). For d(u,v) = 1, there exists an edge e = uv in G. Note that e is not
a cut edge. (Otherwise, since between u,v there exist two internally disjoint paths, there
exists a third vertex w adjacent either to u or to v, say, adjacent to u. Then w is a cut vertex
of G, a contradiction.) The subgraph G \ e is connected. Any uv-path in G \ e and uev are
two internally disjoint paths from u to v.

Consider the case d(u,v) = d > 2. Let P = vpeqv; ...equg be a path from u(= wvg) to



N

Figure 1: No cut vertex via common cycle of two vertices

v(=vg). Since d(vg,v4_1) = d— 1, by induction there are two internally disjoint paths P;, P,
from vy to vg_1 in G. Since v4_1 is not a cut vertex of GG, the subgraph G\ v4_; is connected.
Let P35 be a path from vy to vg in G\ v,_1. Let w be the last vertex of P5 that meets P, U P,
say, w lies in P;. Let ()7 denote the subpath of P; from vy to w, and R; the subpath of P3
from w to vg. Then P/ = Q1 Ry and Pj = Pyequy are two internally disjoint paths from u to
v, see Figure 2. O]

2 Separation and Blocks

e A separation of a connected graph G is a decomposition of G into two connected
subgraphs G; and GG having a unique common vertex v and disjoint nonempty edge
sets; the common vertex v is called a separating vertex of G. A connected graph is
separable if it contains at least one separating vertex; otherwise, it is nonseparable.

e A cut vertex is a separating vertex. A separating vertex is not necessarily a cut vertex.
If v is a separating vertex but not a cut vertex, then there exists at least one loop at
v. So if a graph has no loop at a vertex v, then v is a separating vertex if and only if
v 1s a cut vertex.

e [f a graph G is nonseparable and is not a single loop, then G contains no loops.

e A block of a connected graph G is a maximal nonseparable subgraph. If G contains
some edges, i.e., G is not a single vertex, then each block of G is either a loop, or a
cut edge, or a maximal 2-connected subgraph without loops.

Theorem 2.1. Let G be a connected graph. Then G is nonseparable if and only if any two
edges lie on a common cycle.

Proof. “<” Suppose G is separable, i.e., G is separated at a vertex v into two connected
subgraphs G and Gy, such that V(G1)NV (Gy) = {v}, E(G1)NE(G2) = @, and E(G;) # @,
1 = 1,2. Take edges e; = vv; at v with e; € G;, i = 1,2. Clearly, the edges e, s cannot be
on a common cycle of GG, a contradiction.

“=" If G has only one vertex, then G is a single vertex or a single loop; nothing is to
be proved. Let GG contain at least two vertices. Clearly, G contains no loops, i.e., all edges
are links. If G is a single link edge, then again nothing is to be proved. We assume that G
contain at least two edges. Given an edge e = uv, subdivide e into two edges by introducing
a new vertex w on e to obtain a new graph G’. We claim that G’ is also nonseparable. In



fact, suppose G’ is separable. Then GG’ must be separated at the vertex w into two connected
subgraphs G/, G! with u € G} ,v € G,. Being a middle point of e, the vertex w has to be a
cut vertex of G'; consequently, the edge e is a cut edge of G. Thus G \ e has two connected
components G, G, with u € G,,v € GG,,. Since GG has at leat two edges, either GG, has some
edges at u or GG, has some edges at v, say, it is the former case. We see that G is separated at
u into GG, and G, UeUw, which contradicts the non-separablility of G. So GG’ is nonseparable.

Now given two edges e; = u;v; of G, i = 1,2. Subdivide e; by introducing a new vertex
w; on e; to obtain a new graph H. Then H is nonseparable and has at least 3 vertices. Since
nonseparable graphs have no cut vertices, by Theorem 1.1 there exist two internally disjoint
paths P, P, from w; to wy. The closed path P, P{l forms a cycle of G, which contains both

edges ey, 5. ]

Corollary 2.2 (Classification of Nonseparable Graphs). A nonseparable graph is either a
single vertex, or a single loop, or a single link, or a 2-connected graph having at least two
vertices and no loops.

Theorem 2.3 (Block-Tree Decomposition). Fvery connected graph G can be decomposed
into blocks satisfying the following properties:

(a) Any two blocks of G have at most one vertex in common.
(b) Every cycle is contained in a block of G.

(¢c) There is no sequence By, By, ..., By of blocks of G such that B; N\ Biy1 # & for i =
0,1,...,k, where k > 1 and By, = By.

Proof. (a) Let By, By be two blocks having vertices vy, ..., v, in common. It is easy to see
that both By, By have no loops. So B := By U B, has no loops; consequently, each separating
vertex of B is a cut vertex. Since Bj, B, are maximal nonseparable subgraphs of G, it
follows that B is separable. Let B be separated at a vertex v into GG, G5. Note that one of
G1 N By, G5 N By contains the other; otherwise, By has a separation at v into G; N By and
G5 N By, contradictory to the non-separability of B;. Thus either Go N By € G N By or
G1N By C GyN By, ie., either By C G or By C (G. Likewise, we have either By C (1 or
By C Gy. Say, By C Gy, we must have By C (G5. Since By U By = G U Go, it follows that
By = G, By = G, and k = 1 with v = v;. We have seen that By, By have only one vertex
in common.

(b) and (c) are equivalent. We prove (c). Suppose there is a sequence By, By, ..., By
of blocks such that B; N B;y1 = {v;}, 7 =0,1,...,k, where By,; = By and k > 1. Then
B = Uf:o B; is connected and cannot be separated at its any vertex. So B is a block,
contradict to the maximality of B;. ]

e Let B be the set of all blocks of a connected graph G, and S the set of separating
vertices. Denote by BT(G) the bipartite graph whose vertex set has the bipartition
{S, B}, and whose edges are the pairs {v,b}, where v € S, v € b € B. Then BT(G) is
a tree, known as the block tree of G.

e An end block of G is a block corresponding to a leaf of the block tree BT(G).

e Any vertex of a block of G other than the separating vertices is called an internal
vertex of the block.
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Figure 2: A block-tree decomposition and its block tree

3 Ear Decomposition

e Every nonseparable graph other than a single vertex or a link contains a cycle.

e Given a subgraph H of a graph G. An ear of H is a path P in G such that P is not a
closed path, its initial and terminal vertices lie in H, and its edges and internal vertices
lie outside H.

Proposition 3.1. Let H be a subgraph of a nonseparable graph G. If H 1is not a trivial
subgraph (i.e. neither a single vertex nor the whole graph G), then H has an ear in G.

Proof. If H is a spanning subgraph, then E(H) C E(G) is a proper subset, thus each edge
e € E(G) N\ E(H) is an ear of H in G. If H is not a spanning subgraph, then there exists
an edge e = uwv with u € H and v € G\ H, since G is connected. Moreover, u is connected
to some other vertices in H, as H is not a single vertex. Since (G is nonseparable, the edge
e cannot be a cut edge of G, so G \ e is connected. Then there exist (v, H)-paths in G.
We claim that one of such (v, H)-paths is from v to a vertex w other than w. In fact, if
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Figure 3: Existence of an ear

all (v, H)-paths are from v to u, then u is a separating vertex of GG, contradictory to the
non-separability of G. Each (v, H)-path P from v to a vertex w other than w is an ear of H
in G. See Figure 3. [

Proposition 3.2. Let H be a subgraph of a graph G with an ear P in G. If H is nonseparable,
then H U P 1s also nonseparable.

Proof. We may assume G = H U P. Suppose G is separated at a vertex v into (G; and
G2, no one is contained in another and have exactly one vertex v in common. Since H is
nonseparable, by block-tree decomposition H must be contained in either G or G5, say,
H C G4. Then G5 C P. So (G5 is a subpath of P. This is impossible. O



A sequence Gy, G1,...,G} of graphs is said to be nested if Gy C Gy C Gy C --- C Gy.
An ear decomposition of a nonseparable graph G is a nested sequence Gg, G, ...,Gy of
subgraphs of G such that

(ED1) Gy is a cycle,
(ED2) G;11 = G; U P;, where P; is an ear of G; in G for all i = 0,1,...,k — 1, and
(ED3) G = G.

Theorem 3.3 (Ear Decomposition Theorem). Let G be a nonseparable graph. If G is neither
a single vertex nor a link, then G has an ear decomposition.

Proof. 1t is trivial when G is a single loop, just take G to the loop. We consider that G is
not a single vertex, not a single link, and not a single loop. Then G must contain at least
two edges. Theorem 2.1 implies that the two edges lie on a common cycle ', which has
at least two vertices. Set Gy := C. If Gy € G is a proper subgraph, then Proposition 3.1
implies that Gy has an ear Fy in GG, since Gy is not a single vertex. Thus G := Gq U F)
is nonseparable. Likewise, if (G; is a proper subgraph of GG, then G; has an ear P; in G.
Continue this procedure, we obtain nonseparable subgraphs G; and their ears P; in G such
that G;,1 := G; U P,. Since G is finite, the procedure must end up with G, = G at some
step k. O

Recall that a digraph D is strongly connected (or just strong) if for each proper vertex
subset X C V(D), the set (X, X¢), consisting of all arcs having tails in X and heads in X¢,
is nonempty. Note that (X¢ X) is also nonempty.

Proposition 3.4. A digraph D is strongly connected if and only if for any two vertices u
and v in D, there exist a directed path from uw to v and a directed path from v to u, i.e., u
and v are strongly connected.

Proof. The sufficiency is trivial. For necessity, fix two vertices u and v, let V,, denote the set
of all vertices w such that there exists a directed path (allowing zero length) from u to w in
D. Then for each w’ € V¢ there is no directed path from u to w’. Clearly, u € V,, # @.

If V,, # V(D), then (V,, V,¢) # @, since D is strongly connected. Take an arc e = wjws €
(Vi, V&) with wy € V,, and wy € V¢, and directed path P from u to wy. Then @ := Pew is
a directed path from u to ws, contradictory to the fact that there is no directed path from
u to wy. Hence V,, = V(D). Likewise, V,, = V(D). This means that u and v are strongly
connected. O

Proposition 3.5. A connected digraph is strongly connected if and only if each of its blocks
15 strongly connected.

Proof. Trivial. O

Proposition 3.6. Let P be an ear of a sub-digraph H in a digraph D (viewed as their
underlying graphs). If H is strongly connected and P is a directed path, then H U P is also
strongly connected.



Proof. Let P = vgeqvy - - - e,v, be directed path from vy to v,. For two vertices u and v of
H U P, if u,v € H, nothing is to be proved, since H is strongly connected. If u,v € P, say,
u = v; and v = v; with ¢ < j, take a directed path F in H from v,, to vo. Write P = PP, P,
where P, is the directed subpath from v; to v;. Then Q := P3Py P, is a directed path from
v; to v;. So w and v are strongly connected.

If u € Pand v € H with u = v;, take a directed path Py in H from v,, to v and a directed
path Qg in H from v to vy. Then v;e;1v;11---€,F is a directed path from u to v, and
Qoe1vy - - - e;v; is a directed path from v to u. Thus v and v are strongly connected.

Proposition 3.4 implies that H U P is strongly connected. O]

Theorem 3.7. Every connected graph G without cut edge has a strong orientation.

Proof. 1t suffices to show that each block of G has a strong orientation. We may assume
that G is nonseparable. If G is a single vertex or a loop, it is trivial that G has a strong
orientation. Note that G cannot be a single link. So we assume that G is not a vertex,
not a link, and not a loop. The Ear Decomposition Theorem 3.3 implies that G has an
ear decomposition (G, Gy, ...,Gy), where Gy = G; U P, and P; is an ear of G; in G,
1=20,1,...,k—1. We now orient the edges of Gy and P; so that Gy becomes a directed cycle
and P; becomes directed paths. Initially, Gy is strongly connected. Proposition 3.6 implies
that all G, 1 = G; U P; are strongly connected. Hence G = G, is strongly connected. m

4 Ear Decomposition of Digraphs

A directed ear of a sub-digraph H in a digraph D is a directed path P whose distinct
initial and terminal vertices lie in H and internal vertices lie outside H.



Proposition 4.1. Let H be a sub-digraph of a nonseparable and strongly connected digraph
D. If H is strongly connected, but not a vertex, not a loop, and not the whole digraph D,
then H has a directed ear in D.

Proof. Since D is nonseparable and H is nontrivial subgraph of D, then H has some ears in
D by Proposition 3.1. Among these ears we choose one ear P having minimum number of
reversing arcs relative to the order of P. We claim that such an ear P is actually a directed
ear of H in D. Write P as the sequence vge vy - - - e,vy, of vertices and arcs in D. If kK =1,
then either P or P71 is a directed ear of H in D.

R, P,
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Figure 4: Existence of directed ear

Suppose P is not a directed path. Clearly, £k > 2. Let e; be an arc having its tail at v;
and head at v;_;. Then one of v; and v;_; is outside H. Since D is strongly connected, there
is a directed path P; from v;_; to v; in D. Then

Q1 = voe1vy - - ei—1Preip1vig1 - - - epvy

is a walk from vy to vy, having less number of reversing arcs comparing with the walk P.

Suppose Q1 N H = @. Then @ is disjoint from H, except vy, vy € H. Let ) be a path
followed the walk (); from vy to vg, having no repeating vertices. Then @ is a directed ear
of H in D, having less number of reversing arcs comparing with P, which is contradictory
to the choice of P. So we must have Q1 N H # @.

Let uw be the first vertex and v the last vertex of ()1 such that u,v € H. Let Ry be
the subpath of )1 from v;_; to u, and Ry the subpath of @); from v to v;. If u # v, then
Q@ = Rse; Ry is a directed ear of H in D; see the left of Figure 4 below. If u = v, we have
two cases: u # vg and u # vg. In the former case, the directed walk vgeivy - - - v;_0e; 1 Ry
contains a directed ear () of H in D. In the latter case, the directed walk Roe;1v;11 - - - exvg
contains a directed ear ) of H in D. See the right of Figure 4. In both cases the directed
path @ has less number of reversing arcs comparing with P, which is contradictory to the
choice of P. m

A directed ear decomposition of a nonseparable strong digraph D is a nested sequence
Dy, Dy, ..., Dy of nonseparable strong sub-digraphs of D such that

(DED1) Dy is a directed cycle,
(DED2) D;;; = D; U P;, where P; is a directed ear of D; in D, i=0,1,...,k— 1, and
(DED3) Dy, = D.



Theorem 4.2. Let D be a nonseparable and strongly directed digraph. If D is nontrivial,
i.e., not a single vertex, then D has a directed ear decomposition.

Proof. 1t is trivial when D is a directed loop. When D is not a loop, D must have at least
two vertices, say, u and v. Let P be a directed path from u to v and @) a directed path from
vtowin D. Then W := PQ~!is a closed directed walk containing both u and v. Of course,
W contains a directed cycle Dy, whose all edges are links. Clearly, Dy is nonseparable and
strongly connected. If Dy C D, then Dy has a directed ear P, in D by Proposition 4.1, and
D, := DyU P, is nonseparable and strongly connected by Propositions 3.2 and 3.6. Continue

this procedure, we obtain a nested sequence Dy, D1, ..., D, of nonseparable and strongly
connected sub-digraphs of D such that D, = D; U P;, where P; is a directed ear of D; in
D fori=0,1,...,k—1, and Dy = D. This is a directed ear decomposition of D. n

e A feedback set of a digraph D is an arc subset S of D such that D ~ S contains no
directed cycle.

e A feedback set S of a digraph D is minimal if for each arc e € S the sub-digraph
(D~ S)Ue contains some directed cycles. Each such directed cycle intersects S at the
unique arc e, and is called a fundamental directed cycle of D with respect to S.

e A minimal feedback set S of a digraph D is coherent if each arc of D is contained in
some fundamental directed cycles of D with respect to S.

e If a digraph D admits a coherent feedback set, then every component of D must be
strongly connected, for every edge is contained in a fundamental directed cycle and
the union of directed cycles is obviously strongly connected.

Theorem 4.3. Let D be a nontrivial (i.e. not a single vertez) connected digraph. Then D
1s strongly connected if and only if D admits a coherent feedback set.

Proof. The sufficiency is trivial. For necessity, let D be a strongly connected digraph with at
least two vertices. If D is separable, then each its block is strongly connected, and we may
consider each of its blocks. So we may assume that D is nonseparable. By Theorem 4.2, D
has a directed ear decomposition Dy, Dy, ..., Dy, where Dy is a directed cycle, D; .1 = D;UP;,
P; is a directed ear of D; in D, i=0,1,...,k—1, and D = D. Now choose an arc ¢y from
Dy and set Sy := {eg}. If Dy \ Sy contains no directed cycles, set S; := Sp. If Dy Sy
contains a directed cycle, then the directed cycle must contain the directed path Fy; choose
an edge e; € Py and set S := Sy Ue;. Thus Dy \ 5] contains no directed cycles.

In general for ¢ > 1, the digraph D;_; \. .S;_; contains no directed cycle, and D; . S;_1
may and may not contain directed cycles. If D; \ S;_; contains a directed cycle C', then C'
must contain the directed path P;_;. Let

g Si_1 if D; . S;_1 contains no directed cycle,
‘] S;_1Ue; otherwise, choose an edge e; € P;_;.

We see that D; . S; contains no directed cycle. Finally, we have constructed a coherent

feedback set S = S}, for D. O



Proposition 4.4. Fvery strongly connected digraph D has a strongly connected spanning
sub-digraph of at most 2(|V (D)| — 1) arcs.

Proof. Delete all loops of D if necessary. We may assume that D contains no loops. If D is
a single vertex, it is clearly true. We assume that D has at least two vertices and no loops.
Then each block of D is strongly connected, containing at least two vertices. For each block
B of D, consider a directed ear decomposition of B. Delete from B the edges in the directed
ears of length one. We obtain a nonseparable and strongly connected spanning sub-digraph
H of B, and a directed ear decomposition Dy, D+, ..., D, of H, where Dy is a directed cycle,
D,y = D;UP;, P;is adirected ear of D; in D of length at least two, ¢ =0,1,...,k—1, and
Dy = H. Since each ear contains at least one internal vertex and |V(D)| > 2, we have

k< |V(H)| = |V(Do)| < |[V(H)| - 2.
Since Dy is a cycle and P, is a path, we have
|E(Do)| = [V(Do)l, [ER)|=V(P)|-1, i=0,1,.... k=1

It follows that

B(H)| = | DOHZrE =1Vl + 3 (V) - 1)
= DOH—Z (IV(P)| =2) +1] = |V(H)| + &

< 2|V(H )|—2 (o k<I|V(H)|-2).

Now the union of the strongly connected sub-digraphs H, one for each block of D, is a
strongly connected spanning sub-digraph of D. It then follows that

E(UH)| =) |EH |<2Z V(H)| - 1) =2(V(D)| - 1),

by induction on the number of H'’s. O

Exercises

Chb5: 5.1.2; 5.2.1; 5.2.2; 5.2.5; 5.3.3; 5.3.6; 5.3.8; 5.4.2; 5.4.4; 5.4.5.



