
Week 6: Tree-Searching Algorithm

October 21, 2020

1 Tree-Search

• Given a tree T of a graph G. If V (T) = V (G), then G is connected.

If V (T) (V (G), let G\T denote the subgraph obtained from G by deleting all vertices
of T (any edge with an endpoint in T is also deleted.) Then either [T, G\T] = ∅ or
[T, G\T] 6= ∅. In the former case, G is disconnected. In the latter case, for each edge
e = uv ∈ [T, G\T] with u ∈ T, v ∈ G\T , the subgraph T ∪ e is again a tree of G.

• Using the idea above, one may generate a sequence of trees in G, starting with a trivial
tree consisting of a single vertex v0, and terminating either with a spanning tree of G or
with a non-spanning tree T with [T, G\T] = ∅. The procedure is called a tree-search,
and the resulting tree is called a search tree.

• Let (T, v0) be a rooted tree of G. Let P = v0e1v1 · · · elvl be the unique path in T from
v0 to a vertex v = vl. Each vertex u = vi of P , including v itself, is called an ancestor
of v; and v is called a descendent of u in T . The vertex vl−1 is called the predecessor
(or parent) of v, denoted p(v), and v is called a successor (or child) of vl−1.

• There are two typical tree-searches: Breadth-First Search (BFS) and Depth-First
Search (DFS).

Theorem 1.1 (Breadth-First Search). Search for rooted spanning tree in connected graph.
Input: a connected graph G = (V, E) with specified vertex v0.
Output: a rooted tree (T, v0) with the root v0 and a level function ` : V → N such that
`(v) = dG(v0, v) for all v ∈ V .

Step 1 Initialize T := v0 and Q := v0 a queuing sequence of vertices; set `(v0) := 0.

Step 2 If Q = ∅, Stop.

If Q 6= ∅, delete the initial vertex u of Q, then go to Step 3.

Step 3 If [u, V (T)c] = ∅, return to Step 2.

If [u, V (T)c] = {ei : 1 ≤ i ≤ k} with ei = uwi, add eiwi to T and wi to the end of
Q, set `(wi) := `(u) + 1 for i = 1, . . . , k, then return to Step 2.

1

Proof. Initially, Q = v0 6= ∅. It is clear that at any stage the subgraph T is always a tree
having root v0. Since G is connected, if V (T) = V , then T is a spanning tree of G having
root v0.

If V (T) (V , there are some vertices of T adjacent with some vertices of V (T)c. Let u
be the first vertex of Q that adjacent with vertices w1, . . . , wk of V (T)c. Then the algorithm
repeats between Step 3 and Step 2 at all vertices of Q before u. When u becomes the
initial vertex of Q, we have wi 6∈ Q, wi 6∈ T , and `(v) = dT (v0, v) ≥ dG(v0, v) for all v ∈ T .

Now we need only to show that `(wi) = dG(v0, wi). By induction we may assume that
`(v) = dG(v0, v) for all v ∈ T . Since `(u) = dG(v0, u), we have

dG(v0, wi) ≤ dG(v0, u) + dG(u,wi) = `(u) + 1 = `(wi).

Let Pi = v0e1v1 · · · elvl be a shortest path in G from v0 to vl (= wi), and vj the last vertex of Pi

belonging to T , at the time when u leaves Q, i.e., vj ∈ T with j ≤ l−1, vj+1 6∈ T, . . . , vl 6∈ T .
We claim that `(vj) ≥ `(u). In fact, if `(vj) < `(u), then by Lemma 1.2, vj enters Q before
u; consequently, vj leaves Q before u, and at the time that vj leaves Q, the vertex vj+1 enters
Q and T ; of course, at the time when u leaves Q, we have vj+1 ∈ T which is contradictory
to vj+1 6∈ T . Thus

dG(v0, wi) = l ≥ j + 1 = dG(v0, vj) + 1 = `(vj) + 1 ≥ `(u) + 1 = `(wi).

We have seen that `(wi) = dG(v0, wi).

Lemma 1.2. Let T be a BFS-tree of a connected graph G. Let Q be the queuing vertex
sequence. Given two distinct vertices u and v.

(a) If `(u) < `(v), then u enters Q before v.

(b) If u enters Q before v, then `(u) ≤ `(v).

(c) If u, v are endpoints of an edge e 6∈ T , then |`(u)− `(v)| ≤ 1.

Proof. (a) We proceed by induction on `(u). When `(u) = 0, then u = v0 and v0 enters
Q before every other vertex of G. Assume that it is true when `(u) < l, and consider the
case `(u) = l ≥ 1. Let x, y be parents of u, v respectively in the rooted tree (T, v0). Then
`(x) = `(u)− 1 and `(y) = `(v)− 1. Clearly, `(x) < `(y), by induction x enters Q before y;
consequently, x leaves Q before y. Note that u enters Q right after x leaves Q, and at that
time v did not enter Q yet, for it is not yet the turn for y to leave Q. Thus u enters Q before
v.

(b) is an equivalent version to (a).
(c) If `(u) = `(v), nothing is to be proved. If `(u) 6= `(v), we may assume `(u) < `(v).

Then u enters Q before v. At the time when u leaves Q, if v 6∈ Q, then `(v) = `(u) + 1 by
definition; if v ∈ Q, let y be the parent of v, then `(v) = `(y) + 1, and by definition y enters
Q before u, hence `(y) ≤ `(u) by (b). Now we have

`(u) < `(v) = `(y) + 1 ≤ `(u) + 1,

which forces that `(v) = `(u) + 1.

2

Theorem 1.3 (Depth-First Search-Tree Algorithm). Input: a connected graph G = (V, E)
with specified vertex v0.
Output: a rooted tree (T, v0) with the root v0, a closed walk W = v0e1v1 · · · e2n−2v2n−2

with n = |V |, a parent function p : V r {v0} → V , and two time functions l, ` : V → N.

Step 1 Initialize a vertex variable x and a rooted tree (T, v0) with T := v0, assign v0 to x,
set W := v0, l(v0) := 0, ind (x) := 0, then go to Step 2.

Step 2 If [x, V (T)c] 6= ∅, select an edge e = xw with w ∈ V (T)c, add ew to T and to the
end of W , set p(w) := x, l(w) := ind (x) + 1, assign w to x and set ind (x) := l(w),
then return to Step 2.

If [x, V (T)c] = ∅, set `(x) := ind (x), then go to Step 3.

Step 3 If x = v0, then Stop. (A spanning rooted tree T is found.)

If x 6= v0, backtrack from x to its parent u through an edge e = xu in T , add eu to
the end of W , set ind (u) := ind (x) + 1, assign u to x and set ind (x) := ind (u),
then return to Step 2.

Proof. It is clear that at any stage the constructed subgraph T is always a tree and the
algorithm stops eventually. When the algorithm reaches the stage `(v0), the tree T is pro-
duced by the walk W , and [v0, V (T)c] = ∅. Then by Lemma 1.4, [Tv0 , V (T)c] = ∅, i.e.,
[T, V (T)c] = ∅. Since G is connected, it forces that V (T) = V , i.e., T is a spanning tree of
G.

The time functions l and ` are actually given by

l(v) = min{i : v = vi ∈ W}, `(v) = max{i : v = vi ∈ W}

Lemma 1.4. Let W (k) be a walk resulted by the DFS-Tree Algorithm when a vertex v is
assigned to x with ind (x) = k. Let T (k) denote the rooted tree produced by W (k). For
each vertex u ∈ T (k), let Tu(k) denote the rooted subtree of T (k) having its root at u. If
[v, T (k)c] = ∅, then [Tv(k), T (k)c] = ∅.
Proof. We proceed by induction on the number of vertices of Tv(k). It is trivially true if
Tv(k) = v. If v has children w1, . . . , wj in T (k), the children must have been added to W (k)
in its current order. To have v assigned to the vertex variable x, it must be backtracked
from wi to v in order w1, . . . , wj. This means that [wi, T (k)c] = ∅ for i = 1, . . . , j. Since
Twi

(k) has less number of vertices than Tv(k), by induction we have [Twi
(k), T (k)c] = ∅.

Thus [Tv(k), T (k)c] = [v, T (k)c] ∪⋃j
i=1[Twi

(k), T (k)c] = ∅.
Proposition 1.5. Let (T, v0) be a rooted tree of a connected graph G resulted by the DFS-Tree
Algorithm. Given two distinct vertices u and v.

(a) The vertex v is a descendant of u iff l(u) < l(v) ≤ `(v) < `(u).

(b) If u, v are end-vertices of an edge e 6∈ T , then u is either an ancestor or a descendant of
v in T .

(c) If l(u) < l(v), then either `(v) < `(u) or `(u) < l(v).

3

Proof. (a) It is trivial by definition that l(v) ≤ `(v). Let v be a descendant of u, i.e, v ∈ Tu.
Let u0u1 . . . uk be the unique shortest path from u to v in Tu. Then

l(v) = l(uk) = l(u0) + k = l(u) + k > l(u).

When the vertex variable x is at v, to reach u again, x must be backtracked from v. Thus by
definition `(v) < `(u). Conversely, let l(u) < l(v) ≤ `(v) < `(u). Clearly, l(u) < l(v) implies
that v enters W after u. Suppose v is not a descendant of u, i.e., v 6∈ Tu. Then v enters W
after all vertices of Tu, i.e., after Tu finished. Thus we have `(u) < l(v) by definition of l and
`, which is contradictory to l(v) < `(u).

(b) We may assume that l(u) < l(v), i.e., v enters W after u. Suppose v is not a
descendant of u, i.e., v 6∈ Tu. Then v enters W after all vertices of Tu. Thus at the stage
`(u), we have [u, T c

u] = ∅. However, e = uv ∈ [u, T c
u] 6= ∅, which is a conradiction.

(c) Note that v ∈ Tu iff `(v) < `(u) under the given condition l(u) < l(v) by (a). If
`(v) < `(u) is not valid, i.e., v 6∈ Tu, then v enters W after all vertices of Tu; thus `(u) < l(v)
by definition.

Corollary 1.6. Let (T, v0) be a DFS-tree of a connected graph G. Then

(a) Each leaf of T is not a cut vertex of G.

(b) The root v0 is a cut vertex of G iff v0 has at least two children in T .

(c) A vertex v other than v0 and leaves of T is a cut vertex of G iff v has a child w in T
such that there is no edge between a proper ancestor of v to a descendant of w.

Proof. (a) This is trivially true for any spanning tree T .
(b) For necessity, if v0 has only one child, i.e., v0 is a leaf, then v0 cannot be a cut vertex

by (a), a contradiction. For sufficiency, let w1, w2 be two children of v0 in T . We may assume
`(w1) < l(w2). Then w2 ∈ Tw1 and [Tw1 , T

c
w1

] = ∅ by Lemma 1.4. Thus G r v0 has at least
components G1, G2 with wi ∈ G1 and w2 ∈ G2. Hence v0 is a cut a vertex of G.

(c) Lemma 1.4 implies that there are no edges between any two rooted sub-trees whose
roots have a common parent. At the time l(v) in the DFS-Tree Algorithm, let w1, . . . , wk be
the vertices such that ei = vwi ∈ [v, T c], i = 1, . . . , k. Then v is not a cut vertex for G iff
there are edges from some ancestors of v to each of the rooted sub-trees Tw1 , . . . , Twk

, i.e., to
some descendants of each child wi of v.

2 Minimum Weight Spanning Tree

• A weighted graph is a graph G = (V, E) together with a weight function w : E →
R, denoted (G,w). For each edge e ∈ E, the value w(e) is called the weight of e. The
weight of G is the value

w(G) :=
∑
e∈E

w(e).

• A minimum-weight spanning tree (MST) of weighted graph (G,w) is a spanning
tree whose weight is minimum among all spanning trees of G.

4

Theorem 2.1 (Prim’s Algorithm). Input: a connected graph G = (V, E) with a weight
function w : E → R. Output: a minimum-weight spanning tree T of G.

Step 1 Choose a vertex u of G, initialize a tree T := u, then go to Step 2.

Step 2 If V (T) = V , Stop.

If V (T) (V , choose an edge e = vw ∈ [T, T c] such that

w(e) = min
{
w(e′) : e′ ∈ [T, T c]

}
,

add ew to T , then return to Step 2.

Proof. It is clear that in Step 2 the subgraph T ∪ e, constructed by adding the edge e from
[T, T c] to the tree T , is still a tree. Finally, the tree T grows up to a spanning tree when
the algorithm stops. We are left to show that the produced tree is optimal. It is enough to
show that at any stage the tree is contained in an optimal spanning tree of G. We proceed
by induction on the number of edges of T .

Initially, the tree T := v0 is obviously contained in an optimal spanning tree of G. Assume
that in Step 2 the tree is contained in an optimal spanning tree T ∗. Note that w(e) ≤ w(e′)
for all e′ ∈ [T, T c] by Step 2. If e ∈ T ∗, then the optmal spanning tree T ∗ contains T ∪ e
already. If e 6∈ T ∗, then T ∗ ∪ e contains a unique cycle Ce and e ∈ Ce. Since Ce intersects
the cut [T, T c], there exists an edge e∗ ∈ Ce∩ [T, T c] other than e. Clearly, the spanning tree
T ∗∗ := (T ∗ ∪ e)r e∗ contains T ∪ e, and

w(T ∗∗) = w(T ∗) + w(e)− w(e∗) ≤ w(T ∗).

The optimality of T ∗ implies that T ∗∗ is an optimal spanning tree containing T ∪ e.

Theorem 2.2 (Kruskal’s Algorithm). Input: a connected graph G = (V, E) with a weight
function w : E → R. Output: a minimum-weight spanning tree T of G.

Step 1 Choose an edge e0 of E(G) such that w(e0) = min{w(e) : e ∈ G}, initialize a tree
T := e0, then go to Step 2.

Step 2 If |E(T)| = |V | − 1, Stop.

Step 3 If |E(T)| < |V |− 1, choose an edge e ∈ ErE(T) such that T ∪ e contains no cycles
and

w(e) = min
{
w(e′) : e′ ∈ T c, T ∪ e′ contains no cycle

}
,

add e to T , then return to Step 2.

Proof. It is enough to show that at any stage the subgraph T is always contained in an
optimal spanning tree of G. We proceed by induction on the number of edges of T . Initially,
T := e0, and w(e0) is the minimum weight. Let T ∗ be an optimal spanning tree of G.
If e0 ∈ T ∗, the optimal spanning tree T ∗ contains T already. If e0 6∈ T ∗, then T ∗ ∪ e0

contains a unique cycle Ce0 . Select an edge e1 from Ce0 other than e0; the spanning tree
T ∗∗ := (T ∗ ∪ e0)r e1 contains e0. Since w(e0) ≤ w(e′) for all e′ ∈ E, we have

w(T ∗∗) = w(T ∗) + w(e0)− w(e1) ≤ w(T ∗).

5

The optimality of T ∗ implies that T ∗∗ is an optimal spanning tree of G and contains T .
Assume that in Step 3 the subgraph T is contained in an optimal spanning tree T ∗. Note

that T ∪e contains no cycles, and w(e) ≤ w(e′) for all e′ ∈ ErE(T) such that T ∪e′ contains
no cycles. If e ∈ T ∗, then the optimal spanning tree T ∗ contains T ∪ e already. If e 6∈ T ∗,
then T ∗ ∪ e contains a unique cycle Ce and e ∈ Ce. Since Ce intersects the cut [T, T c], there
exists an edge e∗ ∈ Ce ∩ [T, T c] other than e. Clearly, the spanning tree T ∗∗ := (T ∗ ∪ e)r e∗

contains T ∪ e, and
w(T ∗∗) = w(T ∗) + w(e)− w(e∗) ≤ w(T ∗).

The optimality of T ∗ implies that T ∗∗ is an optimal spanning tree containing T ∪ e.

3 Branching-Search

A branching is a rooted tree with an orientation such that every vertex but the root has
in-degree 1. A branching with a root u is called a u-branching.

Theorem 3.1 (Breadth-First Search for Spanning Branching Forest).
Input: a digraph D = (V, A).
Output: a spanning branching forest F in D with a root set R, a parent function p :
V rR → V , and a level function ` : V → N such that `(v) = 0 for all v ∈ R.

Step 1 Initialize F := ∅, R := ∅, and a vertex queuing sequence Q := ∅; then go to Step 2.

Step 2 If V (F) = V , Stop. (A spanning branching forest F with root set R is found.)

If V (F) (V and Q = ∅, choose a vertex u ∈ V (F)c; add u to F , R, and Q; set
`(u) := 0; then return to Step 2.

If V (F) (V and Q 6= ∅, delete the initial vertex u of Q; then go to Step 3.

Step 3 If (u, V (F)c) = ∅, then return to Step 2

If
(
u, V (F)c

)
= {a1, . . . , ak}, where ai = uwi with wi ∈ V (F)c; add aiwi to F and

wi to the end of Q in the order w1, . . . , wk; set p(wi) := u, `(wi) := `(u) + 1; then
return to Step 2.

Proof. Similar to the proof of Theorem 1.2.

Let D = (V, A) be a digraph with a positive weigh function w : A → R+. Fix a vertex v0

and a vertex v reachable from v0. Let dD(v0, v) denote the shortest directed distance from
v0 to v in D. For each vertex subset S ⊂ V that there exists a directed path from v0 to a
vertex of S, we denote by dD(v0, S) the shortest directed distance from v0 to S.

Lemma 3.2. Let D = (V, A) be a digraph with a positive weight function w : A → R+.
Given a vertex proper subset S (V with v0 ∈ S. If Sc is reachable from v0, then

dD(v0, S
c) = min{dD(v0, u) + w(a) : a = uv ∈ (S, Sc)}.

Moreover, if P = v0a1v1 · · · vk−1akvk is a shortest directed path from v0 to Sc, then vk−1 ∈ S
and P1 = v0e1v1 · · · ek−1vk−1 is a shortest directed path from v0 to vk−1.

6

a

d

ip

m

s

t v
u

r

k j

q

e f g

h

w

lno

b

c

Figure 1: A BFS-branching forest F with the root set {a, d, v}

Proof. Suppose vk−1 6∈ S, i.e., vk−1 ∈ Sc. Then P1 is a shorter path than P from v0 to Sc,
which is contradictory to that P is a shortest directed path from v0 to Sc. Suppose there is
a directed path P ′

1 shorter than P1 from v0 to vk−1. Then P ′
1akvk is a directed path shorter

than P from v0 to Sc, which is a contradiction.
Since dD(v0, S

c) =
∑k

i=1 w(ai) and dD(v0, vk−1) =
∑k−1

i=1 w(ai), we have dD(v0, S
c) =

dD(v0, vk−1) + w(ak). Since vk−1 ∈ S and ak = vk−1vk ∈ (S, Sc), we see that

dD(v0, vSc) ≥ min{dD(v0, u) + w(a) : a = uv ∈ (S, Sc)}.

For each a = uv ∈ (S, Sc) and dD(v0, u), there exists a directed path P ′ from v0 to vk−1.
Then P ′av is a directed path from v0 to Sc. Thus dD(v0, S

c) ≤ dD(v0, u) + w(a). It follows
that dD(v0, vSc) ≤ min{dD(v0, u) + w(a) : a = uv ∈ (S, Sc)}.
Theorem 3.3 (Dijkstra’s Algorithm for Shortest Path). Input: a digraph D = (V, A) with
a specified vertex v0 and a positive weight function w : A → R+. Output: a branching
(T, v0) in D with root v0, a parent function p : V (T) r {v0} → V (T), and a level function
` : V (T) → N such that `(v) = dD(v0, v) for all v ∈ V (T).

Step 1 Initialize a branching (T, v0) with T := v0; set `(v0) := 0, p(v0) := ∅; then go to
Step 2.

Step 2 If
(
V (T), V (T)c

)
= ∅, Stop.

If
(
V (T), V (T)c

) 6= ∅, choose an arc a = uv ∈ (
V (T), V (T)c

)
such that

`(u) + w(a) = min
{
`(u′) + w(a′) : a′ = u′v′ ∈ (

V (T), V (T)c
)}

;

add av to T ; set p(v) := u, `(v) := `(u) + w(a); then return to Step 2.

Proof. Lemma 3.2 implies that dD(v0, V (T)c) = `(u)+w(a), where a = uv ∈ (
V (T), V (T)c

)
.

It follows that dD(v0, v) = `(u) + w(a) = `(v).

Theorem 3.4 (Depth-First Search for Spanning Branching Forest). Input: a digraph D =
(V, A). Output: a spanning branching forest F of D with a root set R, a closed walk
W = v0e1v1 · · · e2n−r−1v2n−r−1, where n = |V | and r = |R|, a parent function V r R → V ,
and two time functions l, ` : V → N such that l(v) ≤ `(v) for all v ∈ V .

7

Step 1 Initialize F := ∅, R := ∅, W := ∅, a vertex variable x := ∅; set ind (x) := −1 and
l(x) := −1; then go to Step 2.

Step 2 If V (F)c = ∅, Stop.

If V (F)c 6= ∅, choose a vertex u ∈ V (F)c; add u to F , R, and to the end of W ; set
l(u) := ind (x) + 1; assign u to the vertex variable x and set ind (x) := l(u); then go
to Step 3.

Step 3 If
(
x, V (F)c

) 6= ∅, select an arc a = xw with w ∈ V (F)c; add aw to F and to the end
of W ; set p(w) := x and l(w) := ind (x) + 1; assign w to x and set ind (x) := l(w);
then go to Step 3.

If
(
x, V (F)c

)
= ∅, set `(x) := ind (x); then go to Step 4.

Step 4 If x = u, then go to Step 2.

If x 6= u, backtrack from x to its parent p(x) through an arc a in F ; add ap(x)
to the end of W ; set ind (p(x)) := ind (x) + 1; assign p(x) to x and set ind (x) :=
ind (p(x)) + 1; then go to Step 3.

Proof. It is similar to that of Theorem 1.3.

w
9

8

6 13

15

7

16

17

19

21
23

25

27 38 2930

39
43

1

5

2
4

10

3 28
18

26 31 33 32

42

40

36373522
24

20

12

11

34

h

fedc

a

o

b

g

ip

m

kl j

q 41

0

n14

r
s

t v
u

Figure 2: A DFS-branching forest F with the root set {a, d, v}

Lemma 3.5. Let W be a walk resulted by the DFS-Branching Forest Algorithm, with the end
vertex v assigned to to the vertex variable x. Let F (k) denote the branching forest produced
by W at stage `(v) = k, i.e., (v, F (k)c) = ∅. For each vertex u ∈ F (k), let Fu(k) denote the
branching of F (k) rooted at u. Then

(
Fv(k), F (k)c

)
= ∅.

Proof. We proceed by induction on the number of vertices of Fv(k). It is trivially true
when Fv(k) contains the only vertex v, i.e., v has no children in Fv(k). Let v have children
w1, . . . , wj in Fv(k), been added to W in its current order. For the vertex variable x to each
the vertex v, it must be backtracked from wi to v in order w1, . . . , wj. This means that the di-
rected cuts

(
wi, F (`(wi))

c
)

are empty. By induction, the directed cuts
(
Fwi

(`(wi)), F (`(wi))
c
)

8

are empty. Note that Fwi
(`(v)) = Fwi

(`(wi)) and F (`(wi)) ⊆ F (`(v)). We see that the di-
rected cut

(
Fv(`(v)), F (`(v))c

)
=

(
v, F (`(v))c

) ∪
j⋃

i=1

(
Fwi

(`(v)), F (`(v))c
)

⊆
j⋃

i=1

(
Fwi

(`(wi)), F (`(wi))
c
)

= ∅.

4 Finding Strong Components of Digraphs

Definition 4.1. Let F be a branching spanning forest of a digraph D. An arc a with tail u
and head v, written a = (u, v), is called a

(a) forward arc if u is an ancestor of v in F , i.e., l(u) < l(v) and `(v) < `(u);

(b) back arc if u is a descendant of v in F , i.e., l(v) < l(u) and `(u) < `(v); and

(c) cross arc if u is neither ancestor nor a descendant of v in F , i.e., `(v) < l(u).

Cross arcs can be happened inside a branching tree component of a DFS-branching forest
F . The branching components of F can be linearly ordered as T1, . . . , Tk so that there are
no directed edges from Ti to Tj, i.e., (Ti, Tj) = ∅, for all i < j.

Proposition 4.2. Let F be a DBS-branching forest of a digraph D. Given two vertices
u, v ∈ V (D), let Fu = Fu(`(u)). Then

(a) v ∈ Fu iff l(u) < l(v) ≤ `(v) < `(u).

(b) Fu ∩ Fv = ∅ iff either l(u) ≤ `(u) < l(v) ≤ `(v) or l(v) ≤ `(v) < l(u) ≤ `(u).

Proof. Parts (a) and (b) follow from Lemma 3.5.

Proposition 4.3. Let F be a DBS-branching forest of a digraph D. If C is a strong com-
ponent of D, then F ∩ C = (V (F) ∩ V (C), A(F) ∩ A(C)) is a spanning branching of C.

Proof. Let u be the first vertex of C entered W , i.e., l(u) is smallest on C. Let Fu be the
sub-branching of F rooted at u. We claim that Fu ∩ C is a branching with root u. In fact,
for each vertex v ∈ Fu ∩ C, let Puv be the unique directed path from u to v in Fu. Since
C is strongly connected, we see that C ∪ Puv is also strongly connected. It follows that Puv

is contained in C, consequently, Puv is contained in Fu ∩ C. This means that Fu ∩ C is a
branching rooted at u.

Next it suffices to show that V (Fu ∩ C) = V (C). Suppose V (Fu ∩ C) (V (C). Take a
vertex w ∈ V (C)rV (Fu∩C), i.e., w ∈ V (C), w 6∈ V (Fu). By the Directed DFS Algorithm,
there is no arc from Fu to F c

u. Since u,w ∈ V (C), there exists a directed path P in C from
u to w. Since u ∈ V (Fu) and w 6∈ V (Fu), the path P has an arc from Fu to F c

u, which is a
contradiction.

9

Proposition 4.4. Let D be a digraph. Applying Directed DFS to find a spanning forest F
of D. For each strong component C of D we associate with C a unique vertex, the root of
F ∩ C. Let D′ denote the digraph obtained from D by deleting all cross edges relative to F
and reversing orientations of the remaining edges. Then the set of vertices reachable from a
root u in D′ induces a strong component of D.

Proof. Given a branching T with a root u. For any two branching tree components Tx, Ty

of T with `(x) < l(y) there is no direct edge from Tx to Ty. If a vertex x′ ∈ Tx other than
x is strongly connected to a vertex y′ ∈ Ty other than y, there must be a shortest directed
path from x′ to y′ via a common ancestor of x′ and y′. So deleting cross edges between tree
components does not change strong connectedness.

For the branching T with the root u, let Let U be the set of vertices reachable from u in
D′. Each directed path P ′ from u to a vertex v ∈ U in D′ can be transformed into a directed
path P from v to u by reversing the arc of P ′. So the sub-digraph D(U) of D generated by
U is a strong component of D.

Delete U from T to obtain sub-branchings Tu1 , . . . , Tuk
. Let Ui be the set of vertices

reachable from ui in D. Then D(Ui) are strong components of D. Continue this procedure,
one obtain all strong components of D.

Example 4.1. Consider the DFS-branchings Ta, Td, Tw of D in Figure 2. For Ta, the set
of vertices reachable from a in D′ is {a}. For the tre components Tb, To, Tp, the sets of
vertices reachable from b, o, p respectively in D′(Tb), D

′(To), D
′(Tp) are {b}, {o, n, r}, {p, s}

respectively. The branching Ta induces strong components:

{a}, {b}, {c}, {p, }, {q}, {s}, {o, n, r}.

The branching Td induces strong components: {d, e, t}, {m, l, u}. The branching Tw induces
strong components: {w, j, k, v, f, g}, {g}, {h}, {i}.
Exercises

Ch6: 6.1.1; 6.1.4; 6.2.2; 6.2.3; 6.3.7; 6.3.12.

10

