
Week 7-8: Flows in Network

October 28, 2020

1 Transportation Networks

• A network N = (D, x, y, c) is a digraph D = (V, A) with two distinguished vertices, a
source x and a sink y, together with a nonnegative function c : A → R≥0, called the
capacity function of N . For each arc a = (u, v), the value c(a) = c(u, v) is called the
capacity of a. The vertices other than x, y are called intermediate vertices of N .

• For each function f : A → R and a vertex subset X ⊆ V , we define

f+(X) :=
∑

a∈(X, Xc)

f(a), f−(X) :=
∑

a∈(Xc, X)

f(a).

Whenever X = {v} contains only one vertex v, we write f+(X) as f+(v) and f−(X)
as f−(v).

• An (x, y)-flow (or just flow) of a network N = (D, x, y) is a function f : E(D) → R
satisfying the circulation condition:

∑

a∈(v, vc)

f(a) =
∑

a∈(vc, v)

f(a), i.e., f+(v) = f−(v) ∀v ∈ V r {x, y}.

Let ω be the orientation on the underlying graph G such that D = (G,ω). Then
an (x, y)-flow of N is just a real-valued function f on E(D) such that for each v ∈
V r {x, y}, ∑

e∈E(D)

[v, e]f(e) = 0.

• The value of an (x, y)-flow of a network N(x, y) is the flow value out of the source x,
i.e.,

val (f) := f+(x) = f−(y).

An (x, y)-flow of a network N is said to be feasible if it satisfy the capacity con-
straint: 0 ≤ f(a) ≤ c(a) for all e ∈ E(D). A flow is called a maximum flow if there
is no flow of greater value.

Lemma 1.1. Let f be a low of a network N(x, y), and X ⊆ V (N) a vertex subset such that
x ∈ X and y 6∈ X. Then

val (f) = f+(X)− f−(X).
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Proof. By definition of flow,
∑

e∈E(D)[v, e]f(e) = 0 for all v 6= x, y. Since x ∈ X and y 6∈ X,
we have

val (f) =
∑
v∈X

∑

e∈E(D)

[v, e]f(e)

=
∑

e∈E(D)

f(e)
∑
v∈X

[v, e]

=

{ ∑

e∈[X,X]

+
∑

e∈(X,Xc)

+
∑

e∈(Xc,X)

}
f(e)

∑
v∈X

[v, e].

Note that
∑

v∈X [v, e] = [u, e] + [w, e] = 0 for each edge e = uw ∈ [X,X]. By definition of
f+(X) and f−(X), we see that val (f) = f+(X)− f−(X).

• An (x, y)-cut (or just a cut) of a network N(x, y) is cut [X,Xc] separating x from
y, i.e., x ∈ X and y ∈ Xc. The capacity of such a cut [X,Xc] is the value

c(X,Xc) :=
∑

a∈(X,Xc)

c(a).

• A cut [X,Xc] of a network N(x, y) is called a minimum cut if N has no cut of smaller
capacity.

• Let f be a flow of a network N(x, y). A cut [X,Xc] is said to be f-saturated at an
edge e if either (i) e ∈ (X,Xc) and f(e) = c(e), or (ii) e ∈ (Xc, X) and f(e) = 0;
otherwise, it is said to be f-unsaturated at e, i.e., either (i) e ∈ (X,Xc) and f(e) <
c(e), or (ii) e ∈ (Xc, X) and f(e) > 0.

If a cut [X,Xc] is f -unsaturated at its edge e, we define

ι(e) = ι(e, f) :=

{
c(e)− f(e) if e ∈ (X,Xc),
f(e) if e ∈ (Xc, X).

If [X,Xc] is f -unsaturated at an edge e, then ι(e) > 0.

• A cut [X,Xc] of a network N is said to be f-saturated if it is f -saturated at its every
edge; otherwise, it is said to be f-unsaturated, i.e., if it is f -unsaturated at one of
its edges.

Proposition 1.2. For each flow f of a network N(x, y) and any (x, y)-cut [X,Xc],

val (f) ≤ c(X,Xc).

Moreover, the equality holds if and only if the cut [X,Xc] is f -saturated.

Proof. It is clear by definition that f+(X) ≤ c(X,Xc) and f−(X) ≥ 0. It follows that

val (f) = f+(X)− f−(X) ≤ c(X,Xc).

As for the equality, the sufficiency is trivial by definition of f -saturability. For necessity,
suppose [X,Xc] is f -unsaturated, i.e., [X,Xc] has an f -unsaturated edge e. If e ∈ (X,Xc),
then f(e) < c(e); thus val (f) = f+(X) − f−(X) < c(X,Xc) − f−(X) ≤ c(X,Xc). If
e ∈ (Xc, X), then f(e) > 0; thus val (f) = f+(X)− f−(X) < f+(X) ≤ c(X,Xc). In either
case, we have val (f) < c(X,Xc) which is a contradiction.
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Corollary 1.3. Let f be a flow and (X,Xc) a cut of a network N(x, y). If val (f) = c(X,Xc),
then f is a maximum flow and [X,Xc] is a minimum cut.

Proof. Let f ∗ be a maximum flow and (X∗, X∗c) a minimum cut of N(x, y). Proposition 1.2
implies

val (f) ≤ val (f ∗) ≤ c(X∗, X∗c) ≤ c(X,Xc).

Since val (f) = c(X,Xc), we must have val (f) = val (f ∗) and c(C, Xc) = c(X∗, X∗c).

2 The Maxi-Flow and Min-Cut Theorem

• Let f be a flow of a network N(x, y), and P an x-path (not necessarily a directed path)
whose positive direction is denoted by ωP . The f-increment of P is

ε(P ) = ε(P, f) := min{ε(e, f) : e ∈ E(P )}, where

ε(e, f) :=

{
c(e)− f(e) if ~e is forward arc in P , i.e., [ω, ωP ](e) = 1,
f(e) if ~e is a reverse arc in P , i.e., [ω, ωP ](e) = −1.

• Given a flow of network N(x, y). An x-path P is said to be f-saturated if ε(P, f) = 0
and f-unsaturated if ε(P, f) > 0.

• An (x, y)-path is called an f-incrementing path if it is f -unsaturated.

Proposition 2.1. Let f be a flow of a network N(x, y) and P an (x, y)-path. Then ε(P, f) ≥
0 and f ′ := f+ε(e, f)[ω, ωP ] is a flow of N with val (f ′) = val (f)+ε(P ), where f ′ is explicitly
given by

f ′(e) :=





f(e) + ε(e, f) if ~e is a forward arc in P ,
f(e)− ε(e, f) if ~e is a reverse arc in P ,
f(e) otherwise.

Consequently, if f is a maximum flow, then f has no f -incrementing path.

Proof. We only need to show that f ′ is a flow. Clearly, f ′ is feasible. Since any linear
combination of flows is also a flow, it suffices to check that [ω, ωP ] is a flow. In fact, for each
internal vertex v of P ,

∑
e∈E

ω(v, e)[ω, ωP ](e) =
∑
e∈E

ω(v, e)ω(v, e)ωP (v, e) =
∑
e∈E

ωP (v, e)

which is zero at each internal vertex v of P by definition of direction of a path. This means
that [ω, ωP ] is a flow.

Proposition 2.2. Let f be a flow of a network N(x, y), and X be the set of vertices reachable
from x by f -unsaturated paths, including x itself. If there is no f -incrementing path from x
to y in N , then f is a maximum flow, [X,Xc] is a minimum cut, and val (f) = c(X,Xc).
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Proof. Obviously, X 6= V , so [X,Xc] is an (x, y)-cut. We claim that [X,Xc] is f -saturated.
In fact, suppose [X,Xc] has an f -unsaturated edge e = uv with u ∈ X and v ∈ Xc. Let
Pu be an f -unsaturated path from x to u. Then Pv := Pev is an f -unsaturated path
from x to v, i.e., v ∈ X, which is contradictory to v ∈ Xc. Now Proposition 1.2 implies
val (f) = c(X,Xc). Consequently, f is a maximum flow and (X,Xc) is a minimum cut by
Corollary 1.3.

Theorem 2.3 (Max-Flow Min-Cut Theorem). The value of a maximum flow in a network
is equal to the capacity of a minimum cut.

Proof. Let f be a maximum flow. Then there is no f -incrementing path by Proposition 2.1.
Thus [X,Xc] is a minimum cut and val (f) = c(X,Xc), where X is the set of vertices
reachable by f -unsaturated paths, by Proposition 2.2.

Theorem 2.4 (Ford-Fulkerson Algorithm). Input: a network N = (D, x, y) with a capacity
function c : A(D) → R≥0; a feasible flow f . Output: a maximum flow f and a minimum
cut [T, T c].

Step 1 Initialize a tree T := x, set ι(x) := ∞, then go to Step 2.

Step 2 If y ∈ T , set f := f + ι(y)[ω, ωP ] with P the unique path from x to y in T , then
return to Step 1.

If y 6∈ T , got to Step 3.

Step 3 If [T, V (T )c] is f -saturated, Stop. (f is a miximum flow and [T, V (T )c] is a mini-
mum cut.)

If [T, V (T )c] is f -unsaturated, select an f -unsaturated arc e = uv ∈ [T, V (T )c] with
u ∈ T and v ∈ V (T )c, add ev to T , set ι(ev) := min{ι(u), ι(e)}, then go to Step 2.

Proof. Trivial with previous preparations.

Theorem 2.5 (Labeling Procedure). Input: a network N = (D, x, y, c) with c(a) ≥ 0 for
each a ∈ A(D). Output: a maximum flow f and a minimum cut [T, V (T )c]

Step 1 Start with a feasible flow f . Initially, f = 0. Label the source x with (∅, ∆x), where
∆x = ∞.

Step 2 For each arc # »uv that u is labeled and v is not labeled, label v as follows:

If c( # »uv)− f( # »uv) > 0, set ∆v := min{∆u, c(
# »uv)− f( # »uv)} and label v with (u, ∆v).

If c( # »uv)− f( # »uv) = 0, leave v unlabeled.

Step 3 For each arc # »vu that u is labeled and v is not labeled, label v as follows:

If f( # »vu) > 0, set ∆v := min{∆u, f( # »vu)} and label v with (u, ∆v).

If f( # »vu) = 0, leave v unlabeled.
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Step 4 If the sink y is labeled with ∆y, then an f -incrementing (x, y)-path P is found by
chasing back to the source x. Set f(a) := f(a) + ∆y if the arc a is forward in P ,
f(a) := f(a)−∆y if the arc a is backward in P , and keep f(a) unchanged if a 6∈ P .
Return to Step 1.

If the sink y is unlabeled, then f is a maximum flow, and the arcs between labeled
vertices and unlabeled vertices form a minimum cut.

Example 2.1. Consider the following network with capacity function specified on the edges
inside the parenthesis. The following Figures demonstrate how a maximum flow and mini-
mum cut are found by the Labeling Algorithm.

(a,7)

b

d

e

a (x,7)

0 (7) 0 (3)

0 (3)

(x,9)

(a,5)

(c,3)

0 (2)

0 (7)

0 (8)

0 (9)

0 (7)

0 (8)

0 (4)

0 (5)

0 (6)

(,   )*x y (d,5)c

Figure 1: A directed path xady of value 5 is found.

(e,6)

b

d

e

a

0 (3)

0 (3)

(x,9)

0 (2)

0 (7)0 (9)

0 (7)

0 (8)

0 (4)

0 (6)

(,   )*x y

5 (7)

5 (5)

5 (8)

c (a,2)

(x,2)

(b,6)

Figure 2: A directed path xbey of value 6 is found.
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(e,1)

b

d

e

a

0 (3)

0 (3)

0 (2)0 (7)

0 (8)

0 (4)
(,   )*x y

5 (7)

5 (5)

5 (8)

c

6 (9)

6 (6)

6 (7)

(x,3)

(b,3)

(a,3)

(c,3)

Figure 3: A directed path xbacey of value 1 is found.

(c,2)b

d

e

a

0 (3)

0 (2)
0 (4)

(,   )*x y

5 (7)

5 (5)

5 (8)

c

6 (6)

7 (7)1 (3)

1 (8)

1 (7)

7 (9)

(x,2)

(x,2)

(a,2)

Figure 4: A minimum cut {ad, cd, ed, ey} is found.

The maximum flow is f with f(x, a) = 5, f(x, b) = 6, f(b, a) = 0, f(a, d) = 5, f(a, c) = 0,
f(c, b) = 0, f(d, c) = 0, f(c, e) = 0, f(d, y) = 5, f(e, y) = 7, and maximum flow value is
val (f) = 12.

Remark. The Step 3 has to be performed sometimes. For instance, when one label
the vertices in order x, a, d, c, b, e, y, an incrementing path xadcey is found starting with the
zero flow. See Figure 5, where the first entry of the vector on an arc denotes the capacity of
the arc, the subsequent entries are value of flows at the arc.

Another way to find a maximum flow and a minimum cut:

(2;0,0,0,0,0)

d

e

(,   )*x y

b

(7;0,3,3,3,6)

(e,3;e,4;d,2;d,3)

(8;0,0,0,2,3)

(7;0,3,7,7,7)

(c,3;x,9;x,5;x,3;x,2)

(9;0,0,4,6,6)

(c,3;b,6;b,2;b,2;b,2)

(a,5;a,2;a,2;c,3)(x,7;x,4;b,5;x,4;x,1)
a

(4;0,0,0,0,0) (3;0,3,3,3,3)

(8;0,0,0,0,3) (3;0,3,3,3,0)

(6;0,0,4,4,4)

(5;0,3,3,5,5)

c
(d,3;a,4;a,5;a,4;a,1)

(7;0,0,0,2,2)

Figure 5: A dif and only iferent maximum flow and the same minimum cut are found.
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3 Arc Disjoint Paths

Proposition 3.1. Given a digraph D and function f : A(D) → R. The support of f is
the set supp (f) of arcs a such that f(a) 6= 0.

(a) If f is a nonzero flow, then supp (f) contains a cycle.

(b) If f is a nonzero and nonnegative flow, then supp (f) contains a directed cycle.

Proof. Let D1 be a connected nontrivial component of the sub-digraph of D induced by the
arc set supp (f). Recall that the values of f on the arcs at each fixed vertex add up to zero.
Choose an arc a1 = (v0, v1) ∈ D1 (with f(a1) > 0 when f ≥ 0). If v1 = v0, then v0a1v1

is a (directed) loop. If v1 6= v0, since the contribution of f on the arc a1 at v1 is nonzero
(negative when f ≥ 0), the contribution of f must be nonzero (positive when f ≥ 0) on
another arc a2 at v1. Then there exists an arc a2 = (v1, v2) such that f(a2) 6= 0 (f(a2) > 0
when f ≥ 0), of course, a2 ∈ D1.

If v2 ∈ {v0, v1}, we obtain a (directed) cycle either v0a1a2v2 or v1a2v2 in D. If v2 6∈
{v0, v1}, likewise, there exists another arc a3 = (v2, v3) such that f(a3) 6= 0 (f(a3) > 0 when
f ≥ 0), of course, a3 ∈ D1. If v3 ∈ {v0, v1, v2}, then we obtain a (directed) cycle either
v0a1v1a2v2a3v3 or v1a2v2a3v3 or v2a3v3 in D. Continue this procedure, since D is a finite
digraph, eventually, we reach a situation vk ∈ {v0, . . . , vk−1}, say, vk = vi with i < k. Then
viai+1vi · · · akvk is a (directed) cycle in D.

Proposition 3.2. Let D = (V, A) be a digraph whose underlying graph is G = (V, E). Let

W be a directed walk in the digraph (V, ~E). Then the function fW : A → Z, defined by

fW (a) =
∑

~e∈W

[a,~e ],

where W is considered as multiset on ~E and

[a,~e ] =





1 if a = ~e
−1 if a = −~e

0 otherwise

satisfies the circulation condition at all vertices, except the initial and terminal vertices of
W . Moreover,

(a) If W is a closed walk, then fW is a flow of D.

(b) If W has no opposite arcs, then either fW ≥ 0 or fW ≤ 0 on D with

supp (fW ) = {a : a ∈ W}.

Proof. Let W be written as the vertex-arc sequence v0a1v1a2v2 · · · alvl. Give a vertex v other
than v0, vl. If v 6∈ W , it is clear that f satisfies the circulation condition at v, since f is zero on
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all arcs at v. If v ∈ W but v 6= v0, vl, say, vi1 = · · · = vik = v, where 1 ≤ i1 < · · · < ik ≤ l−1,
then

f+
W (v)− f−W (v) =

∑

a∈(v,{v}c)

fW (a)−
∑

a∈({v}c,v)

fW (a)

=
∑

a∈(v,{v}c)

∑

a′∈W

[a, a′]−
∑

a∈({v}c,v)

∑

a′∈W

[a, a′]

=
∑

a′∈W

( ∑

a∈(v,{v}c)

[a, a′]−
∑

a∈({v}c,v)

[a, a′]
)

.

Since [a, a′] is zero unless the underline edges of a, a′ are the same and a is at the vertex v,
it follows that we only need to consider those a′ ∈ W incident with v. Thus

f+
W (v)− f−W (v) =

k∑
j=1

( ∑

a∈(v,{v}c)

[a, aij ]−
∑

a∈({v}c,v)

[a, aij ]

)

+
k∑

j=1

( ∑

a∈(v,{v}c)

[a, aij+1]−
∑

a∈({v}c,v)

[a, aij+1]

)

= −k + k = 0.

If W is closed, then fW is clearly a flow of D. If W is not closed, i.e., v0 6= vl, then

f+
W (v0)− f−W (v0) = 1, f+

W (vl)− f−W (vl) = −1.

Theorem 3.3. Let f be a nonzero integral flow of a digraph D = (V, A). Let D′ = (V, A′)
be the digraph obtained from D by reversing the orientations of the arcs a that f(a) < 0.

(a) Then |f | is a flow of D′.

(b) If supp (f) is connected, then there exists a directed closed walk W in D′ such that

fW = f.

(c) There exists a directed closed walk W in (V, ~E) such that fW = f .

Proof. (a) Trivial.
(b) We may assume f ≥ 0, and consequently, D′ = D. We apply induction on ‖f‖ :=∑

a∈A f(a). Choose an arc a1 = (v0, v1) ∈ supp (f). If v1 = v0, then v0a1v1 is a (directed)
loop. If v1 6= v0, since the contribution of f on the arc a1 at v1 is negative, the contribution
of f must be positive on another arc at v1, then there exists an arc a2 = (v1, v2) ∈ supp (f)
at v1 other than a1. If v2 ∈ {v0, v1}, we obtain a directed cycle either v0a1a2v2 or v1a2v2 in
D. If v2 6∈ {v0, v1}, likewise, there exists an arc a3 = (v2, v3) ∈ supp (f) at v2 other than
a2. If v3 ∈ {v0, v1, v2}, then we obtain a directed cycle either v0a1v1a2v2a3v3 or v1a2v2a3v3

or v2a3v3 in D. Continue this procedure, since D is a finite digraph, eventually, we reach a
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situation vl ∈ {v0, . . . , vl−1}, say, vl = vi with i < l. Then W0 := viai+1vi · · · alvl is a directed
closed walk in D. Thus fW0 is a nonnegative integral flow of D and fW0 ≤ f .

Now set f ′ := f − fW0 , which is a nonnegative integral flow of D. Decompose f ′ into
f ′ =

∑k
i=1 fi of nonzero integral flows fi ≥ 0 such that fi cannot be further decomposed.

Then Di := supp (fi) are connected components and supp (f ′) = D1∪· · ·∪Dk. By induction
there exist directed closed walks Wi in D such that fi = fWi

. Clearly, f =
∑k

i=0 fWi
. Since

supp (f) is connected, W0 intersections each of W1, . . . , Wk, say, at the vertices u1, . . . , uk

respectively. The vertices u1, . . . , uk appear in W0 in some linear order, which may be
assumed to be in the same order u1, . . . , uk without loss of generality.

We are ready to construct a directed closed walk W in D as follows: Start at u1 to
finish the walk W1 first, next finish the segment from u1 to u2 on W0, again finish the walk
W2, then finish the segment from u2 to u3 on W0, and continue this procedure; when Wk is
finished, we then finish the segment from uk to u1, returned back to the starting vertex u1.
Clearly,

∑k
i=0 fWi

= fW . We have f = fW .
(c) For directed closed walks constructed inside the connected components of supp (f),

we use directed paths P and their reverses P−1 to connect them to construct the required
directed closed walk W in (V, ~E).

Proposition 3.4. Let f be a flow of D. Let C be a directed cycle in (V, ~E), written as a
directed closed walk W . The flow fW of D is called the directed cycle flow associated with
C. Moreover,

(a) Every nonnegative flow of D is a nonnegative linear combinations of directed cycle flows.

(b) If f is a (nonnegative) integer-valued flow of D, then f is a (nonnegative) integer linear
combination of directed cycle flows.

Proof. (a) Let P = v0a1v1a2 · · · anvn, where ai = (vi−1, vi) and i = 1, . . . , n. Then (∂1P )(vi)
is the addition of contributions of ai and ai+1 at vi, which are −1 and 1 respectively, added
up to zero, for all i = 1, . . . , n− 1.

(b)

Corollary 3.5. Let N = (D, x, y, c) be a network with source x, sink y, and constant capacity
function c ≡ 1. Then N has an (x, y)-flow of value k if and only if N has k arc-disjoint
directed (x, y)-path.

Proof. The sufficiency is trivial, since each directed path P produces an (x, y)-flow fP of
value 1. The k arc-disjoint directed (x, y)-paths produce an (x, y)-flow of value k.

For necessity, let f be an (x, y)-flow of N having flow value k. When k = 0, nothing is to
be proved. For k ≥ 1, we claim that supp f contains a directed (x, y)-path. Let X ( V (D)
be such that x ∈ X and y ∈ Xc. Recall that

f+(X) ≥ f+(X)− f−(X) = val (f) > 0.

Clearly, [X,Xc] contains an arc a = uv ∈ with tail u ∈ X and head v ∈ Xc. Initially, we
may take X = {x}; since x ∈ X and y ∈ Xc, there exists an arc a = xx′ ∈ (X,Xc). Set
X := {x, x′}; there exists a directed path from x to each vertex of X on supp f . If y ∈ X, we
already see that there exists a directed (x, y)-path on supp f . If y 6∈ X, there exists an arc
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a = uv ∈ (X,Xc) so that we enlarge X by setting X := X ∪ v, and there exists a directed
path from x to eah vertex of the new X on supp f . Continue this procedure, we eventually
reach the situation that y ∈ X, as N is finite. We then obtain a directed (x, y)-path P such
that f(a) > 0 for all a ∈ P . Since f(a) ≤ c(a) = 1, we see that f = 1P on P .

Now f ′ := f − 1P is an (x, y)-flow of value k − 1 and f ′ = 0 on P . We think of f ′ as an
(x, y)-flow on the digraph D′, obtained from D by deleting the arcs of P . By induction, there
are k − 1 arc-disjoint (x, y)-paths in D′. Consequently, the k − 1 arc-disjoint (x, y)-paths in
D′ plus P constitute k arc-disjoint (x, y)-paths in D.

Theorem 3.6 (Menger’s Theorem). (a) In any digraph D(x, y), the maximum number of
arc-disjoint directed (x, y)-paths is equal to the minimum of forward arcs in an (x, y)-
cut.

(b) In any graph G(x, y), the number of edge-disjoint (x, y)-paths is equal to the minimum
number of edges in an (x, y)-cut.

Proof. (a) Trivial by the Max-Flow Min-Cut Theorem.
(b) First of all, its is clear that the number of edge-disjoint (x, y)-paths is always less

than or equal to the number of edges in any (x, y)-cut, since each such path crosses such an
cut at least once. We claim that the equality holds when one takes max in one side and min
in the other side of the inequality.

Let D be the digraph obtained from G by replacing each edge e = uv of G with two
directed arcs (u, v) and (v, u). Clearly, edge-disjoint path can be transformed into arc-disjoint
directed paths. Likewise, maximum number of arc-disjoint directed (x, y)-paths of shortest
total length can be transformed into edge-disjoint paths just by ignoring their orientations
on the edges. In fact, let k be the maximum flow value. Suppose two such arc-disjoint paths
P,Q have a common edge e = uv with opposite orientations, say, (u, v) ∈ P and (v, u) ∈ Q.
Let P1 be the directed sub-path of P from x to u, and P2 the directed sub-path from v to
y. Let Q1 be the directed sub-path of Q from x to v, and Q2 the directed sub-path from
u to y. Then P ′ := P1Q2 and Q′ := P2Q1 are arc-disjoint directed (x, y)-paths. Replace
P,Q by P ′, Q′ respectively, we obtain the same maximum number of arc-disjoint directed
(x, y)-paths of shorter total length, which is a contradiction.

4 Matchings in Bipartite Graphs

• A matching in a graph G is a subset M ⊂ E of link edges such that no two edges of
M share a common vertex. The two vertices of an edge of M are said to be matched
under M , and the vertices incident with edges of M are said to be covered by M .

• A matching in G is said to be maximum if it covers as many vertices as possible; the
number of edges of such a matching is called the matching number of the graph,
denoted α′(G).

• A matching is said to be perfect if every vertex is incident with an edge of the match-
ing.
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• Let G = (V, E) be a bipartite graph with bipartition V = X ∪ Y and |X| ≤ |Y |. The
edge set E can be viewed as a binary relation R of X to Y , where

R = {(u, v) : u ∈ X, v ∈ Y, uv ∈ E}.

A matching of G is said to be complete if every vertex of X is incident with an edge
of the matching. A complete matching is perfect if and only if |X| = |Y |. Finding a
complete matching of G is equivalent to finding an injective mapping f : X → Y such
that f(x) ∈ R(x), where R(x) = {y ∈ Y : (x, y) ∈ R}.

Theorem 4.1 (Hall’s Theorem). Let G = (V, E) be a bipartite graph with bipartition V =
X ∪ Y and |X| ≤ |Y |, which can be considered as a binary relation R from X to Y . There
exists a complete matching of X to Y if and only if for each subset A ⊆ X,

|A| ≤ |R(A)|,

where R(A) is the set of vertices v such that there exists an edge e = uv with u ∈ A.

Proof. The necessity is trivial. For sufficiency, let X = {x1, . . . , xm}, Y = {y1, . . . , yn}, and
m ≤ n. We construct a network N with a source x, a sink y, and intermediate vertex set V ,
where (x, xi) and (yj, y) have capacity 1, (xi, yj) has capacity at least m. It is easy to see
that having a complete matching in G is equivalent to having a flow of N that uses all arcs
(x, xi), 1 ≤ i ≤ m, i.e., to having a flow of value m. We claim that the maximum flow value
of N is m. To this end, it suffices to show that c(S, Sc) ≥ m for any (x, y)-cut [S, Sc] of N ,
and the equality holds for at least one such cut.

We only need to show the inequality since the equality holds when S = {x}. Given
an (x, y)-cut [S, Sc], set A := S ∩ X and B := S ∩ Y . Then S = {x} ∪ A ∪ B, Sc =
(X r A) ∪ (Y rB) ∪ {y}, and

(S, Sc) = (x,X r A) ∪ (A, Y rB) ∪ (B, y).

If (A, Y r B) 6= ∅, it is clear that c(S, Sc) ≥ m, as each arc in (A, Y r B) has capacity m.
If (A, Y rB) = ∅, i.e., B ⊇ R(A), then

c(S, Sc) = |X r A|+ |B| ≥ |X r A|+ |R(A)| ≥ |X r A|+ |A| = m.

Note that by the Labeling Algorithm the integer-valued maximum flow can be attained
whenever the capacity function is integer-valued. Let f be a maximum integer-valued flow
of the network N . Since val (f) = m, we must have f(x, xi) = 1 for all xi ∈ X. At each
vertex xi, there exists an edge (xi, yj) such that f(xi, yj) = 1, since f satisfies the circulation
condition at xi. Suppose there there are two vertices xi, xj such that f(xi, yk) = f(xj, yk) = 1,
then f cannot satisfy the circulation condition at yk, since 1 ≥ f+(yk) = f−(yk) ≥ 2, which
is a contradiction. So the support of f on E is a complete matching of G.

• Let M be a matching in a graph G. An M-alternating path (cycle) in G is a path
(cycle) P whose edges along its direction are alternating between M and M c. The
starting (ending) edge of an M -alternating path may or may not be an edge of M .
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Figure 6: An arbitary (x, y)-cut of the bipartite graph

• An M-augmenting path is an M -alternating path in which none of its initial and
terminal vertices is covered by M .

Lemma 4.2. Let M be a matching in a graph G, and P am M-alternating trail. We have

(a) P has no self-section vertices.

(b) If P is an M-augmenting path, then M ′ := M∆P is a matching and |M ′| = |M |+ 1.

Proof. (a) Suppose that the path P = v0v1 . . . v2m+1 has self-intersection, i.e., two of the
vertices v0, v1, . . . , v2m+1 are the same, say, vi = vj with i < j. There are two possibilities:
j − i is odd and j − i is even. In the former case, we see that either the edges vi−1vi, vjvj+1

belong to M or the edges vivi+1, vj−1vj belong to M . This is a contradiction since two
edges of M share the common vertex vi(vj). In the latter case, we see that either the edges
vi−1vi, vj−1vj belong to M or the edges vivi+1, vjvj+1 belong to M , so two edges of M share
the common vertex vi(vj).

v

1

v27v

v v5v6

v4v3

0v

8

2

7v v6

v5

v43v

v1

9v

0v 8v v

(b) Since M is a matching, no two edges of M r P share a common vertex. Since P has
no self-intersection, no two edges of P rM share a common vertex.

Note that the vertices of M ∩ P are internal vertices of P , and neither the initial vertex
nor the terminal vertex of P is an endpoint of M . We see that the endpoints of M r P
are disjoint from P , of course, disjoint from P rM . Thus the symmetric difference M ′ =
M∆P := (M r P ) ∪ (P rM) is a matching. Clearly, |M ′| = |M |+ 1.

Theorem 4.3 (Berge’s Theorem). A matching M in a graph G is a maximum matching if
and only if G contains no M-augmenting path.
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Proof. “⇒” Suppose that G contains an M -augmenting path P . Then P has more edges
in M c than in M , and the initial and terminal vertices are not covered by M . Thus M ′ :=
M∆E(P ) is a matching in G with |M ′| > |M |, contradictory to the maximality of |M |.

“⇒” Suppose that M is not a maximum matching. Given a maximum matching M∗.
The subgraph H := G(M∆M∗) has degree at most 2 at every vertex. Thus H is a vertex-
disjoint union of path and cycles, whose edges are alternating between M and M∗. Since
|M∗| > |M |, H contains more edges of M∗ than of M . It follows that H has at least one
path component P , whose initial and terminal vertices are covered by M∗, i.e., not covered
by M). So P is an M -augmenting path, which is a contradiction.

Exercises
Ch7: 7.1.4; 7.2.2; 7.3.1; 7.3.3.
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