
Week 9-10: Connectivity

1 Vertex Connectivity

Let G = (V, E) be a graph. Given two vertices x, y ∈ V .

• Two (x, y)-path are said to be internally disjoint if they have no internal vertices
in common.

• The local connectivity between two distinct vertices x and y is the maximum
number of pairwise internally disjoint (x, y)-paths, denoted p(x, y) or pG(x, y).

• A nontrivial graph G (i.e. having at least two vertices) is k-connected if p(u, v) ≥ k

for any two distinct vertices u, v. The connectivity of G is the maximum value k

for which G is k-connected, i.e., G is k-connected but not (k + 1)-connected.

• A graph is 1-connected iff it is connected. A nontrivial graph is 2-connected iff any
two vertices lie on a common cycle.

• A trivial graph (i.e. one vertex graph with possible loops) is considered to be 1-
connected, but not 2-connected; its connectivity is 1. A disconnected graph is 0-
connected, but not 1-connected; so its connectivity is 0.

• The complete graph Kn with n ≥ 2 has n − 2 internally disjoint paths of length 2
and one path of length 1. So the connectivity of Kn is n− 1.

• Let G be a complete graph with multiple edges. Let µ(x, y) be the number of edges
between x and y. Then there are µ(x, y) paths of length 1 from x to y and n − 2
internally disjoint (x, y)-paths. So the local connectivity between x and y is n− 2 +
µ(x, y).

• Let x, y be two nonadjacent in G. An (x, y)-vertex-cut is a subset S ⊆ V r{x, y} such
that x, y belong to different components of GrS. We say that such a cut separates
x and y. We denote by c(x, y) the minimum size of an (x, y)-vertex-cut.

Theorem 1.1 (Menger’s Theorem). Let G(x, y) be a graph with two nonadjacent vertices
x, y. Then the maximum number of pairwise internally disjoint (x, y)-paths is equal to the
minimum number of vertices in an (x, y)-vertex-cut, i.e.,

p(x, y) = c(x, y).
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Figure 1: Proof of Menger’s Theorem

Proof. Let p = pG(x, y) and k = cG(x, y). There are p internally disjoint (x, y)-paths,
and a vertex k-subset K ⊆ V r {x, y} that separates x and y. Since each (x, y)-path
meets K at its internal vertices at least once, the p internally disjoint (x, y)-paths meet
K at their internal vertices at least p times. Hence pG(x, y) ≤ cG(x, y). To show that
pG(x, y) ≥ cG(x, y), we proceed by induction on |E(G)|. We may assume that there is an
edge whose end-vertices are disjoint from {x, y}. Otherwise, every edge is either incident
with x or incident with y. It turns out that G is a bipartite graph with bipartition
{x, y} ∪ (V r {x, y}). Then all (x, y)-paths have length 2, and the conclusion is obviously
true.

Let e = uv be an edge such that {u, v}∩{x, y} = ∅. Consider the subgraph H := Gre.
Since |E(H)| < |E(G)|, by induction we have pH(x, y) = cH(x, y). Moreover,

cG(x, y) ≤ cH(x, y) + 1,

since any (x, y)-vertex-cut of H, together with either u or v, forms an (x, y)-vertex-cut of
G. Hence

pG(x, y) ≥ pH(x, y) = cH(x, y) ≥ cG(x, y)− 1 = k − 1.

If pG(x, y) = k, then nothing is to be proved. Suppose pG(x, y) = k − 1. We have
pG(x, y) = pH(x, y) = cH(x, y) = k − 1 and cG(x, y) = k. Let S = {v1, . . . , vk−1} be an
(x, y)-vertex-cut of H of minimum size. Let X be the set of vertices reachable from x in
H r S, and Y the set of vertices reachable from y in H r S. Then X and Y are disjoint.
Since |S| = k − 1 and cG(x, y) = k, the set S is not an (x, y)-vertex cut of G. So there is
an (x, y)-path in GrS. This path necessarily contains the edge e, otherwise, x and y are
connected in H rS, which is a contradiction. The edge e must be between X and Y , say,
u ∈ X and v ∈ Y .

Now consider the graph G/Y by contracting Y to y so that y is a vertex in G/Y .
Each (x, y)-vertex-cut of G/Y is an (x, y)-vertex-cut of G. We see that cG/Y (x, y) ≥
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cG(x, y) = k. Since S ∪ u is an (x, y)-vertex-cut of G/Y , we see that cG/Y (x, y) ≤ k.
Thus cG/Y (x, y) = k. Since |E(G/Y )| < |E(G)|, by induction there are k internally
disjoint (x, y)-paths P1, . . . , Pk in G/Y . Since S ∪ u is an (x, y)-vertex-cut of G/Y , each
vertex of S ∪ u lies exactly in one of the paths P1, . . . , Pk. We may assume, without
loss of generality, that vi ∈ Pi for i = 1, . . . , k − 1 and u ∈ Pk. Likewise, there are k

internally disjoint (x, y)-paths Q1, . . . , Qk in G/X such that vi ∈ Qi for i = 1, . . . , k − 1
and v ∈ Qk. Let P ′

i be the sub-path of Pi from x to vi, Q′
i the sub-path of Qi from vi to

y, 1 ≤ i ≤ k − 1, P ′
k the sub-path of Pk from x to u, and Q′

k the sub-path of Qk from v

to y. Then P ′
1Q

′
1, . . . , P

′
k−1Q

′
k−1, P ′

keQ
′
k are k internally disjoint (x, y)-paths in G, which

is contradictory to pG(x, y) = k − 1.

A vertex cut of a graph G is a vertex subset S ⊂ V (G) which separates some nonad-
jacent vertices, i.e., GrS has at least two connected components. Complete graphs have
no vertex cut, and they are the only simple graphs having no vertex cut.

Recall that the connectivity of a nontrivial graph G is defined as the integer κ that there
are κ internally disjoint paths between any two vertices (either adjacent or nonadjacent),
and there exist two vertices between them there are no κ + 1 internally disjoint paths.
The following theorem says that to determine κ(G) we only need to consider the local
connectivity for the pairs of nonadjacent vertices, no need to consider the pairs of adjacent
vertices.

Theorem 1.2. Let G be a graph having at least one pair of nonadjacent vertices. Then
the connectivity of G is

κ(G) = min{pG(u, v) : u, v ∈ V (G), u 6= v, uv 6∈ E(G)}.
Proof. We may assume that G is simple. Otherwise, take an edge e which is either a loop
or one of multiple links. Clearly, the graph H := Gre has at least one pair of nonadjacent
vertices. By induction on the number of edges,

κ(H) = min{pH(u, v) : u, v ∈ V (H), u 6= v, uv 6∈ E(H)}.
Let x, y be nonadjacent vertices in H such that κ(H) = pH(x, y). Since any k internally
disjoint (x, y)-paths in G can be adapted to k internally disjoint (x, y)-paths in H, we see
that pG(x, y) = pH(x, y). Note that κ(H) ≤ κ(G) ≤ pG(x, y), and x, y are nonadjacent in
G by the choice of e. It turns out that

κ(G) = pG(x, y) = pH(x, y) = κ(H), xy 6∈ E(G).

We have seen that the theorem is true for G. This is why we only need to consider simple
graphs.

Recall that κ(G) = min{pG(u, v) : u, v ∈ V (G), u 6= v}. Let x, y be vertices such that
pG(x, y) = κ(G). If x, y are nonadjacent in G, nothing is to be proved. So we assume that
xy is an edge of G. Consider the graph H := G r xy. Clearly, pG(x, y) = pH(x, y) + 1.
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Since x, y are not adjacent in H, by Menger’s Theorem, pH(x, y) = cH(x, y). Let S be a
minimum (x, y)-vertex-cut in H. Then

pH(x, y) = cH(x, y) = |S|, pG(x, y) = |S|+ 1.

If V (Gr S) = {x, y}, then

κ(G) = pG(x, y) = |S|+ 1 = |V | − 2 + 1 = |V | − 1.

It turns out that G must be complete, which is contrary to the hypothesis. So we may
assume that Gr S contains at least three vertices x, y, z. The component of z in H r S

should be different from one of the two components of x and y, say, different from the
component of x in H r S. Since {x, y} ∩ S = ∅, it forces that x, z are nonadjacent in G.
Since Gr (S ∪ y) = H r (S ∪ y), the set S ∪ y is a vertex cut in both G and H separating
x and z. Thus

cG(x, z) ≤ |S ∪ y| = |S|+ 1 = pG(x, y).

Now by Menger’s Theorem, pG(x, z) = cG(x, z). We then have pG(x, z) ≤ pG(x, y). By the
minimality pG(x, y) among all pairs {u, v}, we have pG(x, z) = pG(x, y). Thus we obtain

κ(G) = pG(x, y) = pG(x, z), xz 6∈ E(G).

We have proved that the theorem is true for G.

Corollary 1.3. If a graph G has at least one pair of nonadjacent vertices, then

κ(G) = min{c(u, v) : u, v ∈ V (G), u 6= v, uv 6∈ E(G)},
i.e., κ(G) is equal to the size of a minimum vertex cut of G.

Corollary 1.4. Let G be a graph having at leat two vertices not adjacent. If G is k-
connected with k ≥ 1, then Gr S is connected for any (k − 1)-subset S ⊂ V (G).

2 The Fan Lemma

Many properties about connectivity can be derived from Menger’s Theorem.

Lemma 2.1. Let G be a k-connected graph. Let H be a graph obtained from G by adding
a new vertex v and joining it to at least k vertices of G. Then H is also k-connected.

Proof. If H is the complete graph Kn, then κ(H) = n − 1 = |V (G)| ≥ k. If H is not a
complete graph then H has at leat one pair of nonadjacent vertices. It suffices to show
that HrS is connected for any (k−1)-subset S ⊂ V (H). Fix a (k−1)-subset S ⊂ V (H).
If v ∈ S, then H r S = G− (S r v) and is connected, since |S r v| = k− 2. If v 6∈ S, i.e.,
S ⊂ V (G), then GrS is connected and is contained in HrS, for G is k-connected. Since
v is adjacent to at least k vertices of G, there is at least one vertex of Gr S adjacent to
v in H r S. So H r S is connected.
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Proposition 2.2. Let G be a k-connected graph with k ≥ 1. Let X,Y be two vertex
subsets of cardinality at least k. Then there exists in G a family of k pairwise disjoint
(X,Y )-paths.

Proof. Let H be a graph obtained from G by adding two new vertices x, y and joining x

to each vertex of X and y to each vertex of Y . Then H is still k-connected by Lemma 2.1.
Thus there exist in H internally disjoint (x, y)-paths P1, . . . , Pk. Delete the first and the
last edges of these paths, we obtain a family of k disjoint (X,Y )-paths in G.

A k-fan from a vertex x to a vertex subset Y in a graph G, where x 6∈ Y , is a family
of k pairwise disjoint (x, Y )-paths except their initial vertex x.

Corollary 2.3. Let G be a k-connected graph. Given a vertex x and vertex subset Y of G
such that x 6∈ Y . Then for each d ≤ min{k, |Y |} there exists a d-fan from x to Y .

Proof. Let X be the set of neighbors of x in G. Clearly, |X| ≥ k. Extend Y to a k-set
if |Y | < k. Then there are k pairwise disjoint (X,Y )-paths in G of shortest total length.
Connecting x to each of these paths, we obtain k pairwise disjoint paths from x to Y

except their common initial vertex x.

Proposition 2.4. Let G be a k-connected graph with k ≥ 2. The any k vertices of G lie
on a common cycle of G.

Proof. We apply induction on k. For k = 2, it is trivially true. For k ≥ 3, assume that
it is true for (k − 1)-connected graphs. Given k distinct vertices v1, . . . , vk of G. Since
G is automatically (k − 1)-connected, there exists a cycle C in G such that C contains
the vertices v1, . . . , vk−1. We may assume that v1, . . . , vk−1 are arranged in order along a
direction of C. Then there exists a (k − 1)-fan from vk to {v1, . . . , vk−1}, i.e., internally
disjoint paths Pi from vk to vi, i = 1, . . . , k − 1. Now replacing the path segment of C

from vk−1 to v1 by the path P−1
k−1P1, we obtain a cycle C ′ which contains all the vertices

v1, . . . , vk.

Corollary 2.5. Let G be a k connected graph with k ≥ 2. Then for any distinct vertices
v0, v1, . . . , vk, there exists a cycle C containing v1, . . . , vk and k internally disjoint paths
from v0 to v1, . . . , vk.

3 Edge Connectivity

• The local edge connectivity between two distinct vertices x, y in a graph G is the
maximum number of pairwise edge-disjoint (x, y)-path, denoted p′G(x, y).

• A nontrivial graph G is k-edge-connected if p′(u, v) ≥ k for all two distinct vertices
u, v of G. By convention, a trivial graph (i.e. having one vertex) is considered to be
1-edge-connected.
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• The edge connectivity κ′(G) of a graph G is the maximum value of k for which G

is k-edge-connected.

• For two distinct vertices x, y of a graph G, let c′(x, y) or c′G(x, y) denote the minimum
size of an edge cut [X,Xc] that separates x and y, i.e., x ∈ X and y ∈ Xc.

Theorem 3.1 (Menger’s Theorem, Edge Version). For any graph G with two distinct
prescribed vertices x, y,

p′(x, y) = c′(x, y).

The vertex connectivity κ, the edge connectivity κ′, and the minimum degree δ of a
graph G are related by

κ ≤ κ′ ≤ δ.

The second inequality is trivial; the first one is also trivial when G has a pair of nonadjacent
vertices.

A trivial edge cut is one associated with a single vertex. A k-edge-connected graph
is said to be essentially (k + 1)-edge-connected if all its k-edge cuts are trivial.

4 Connectivity in Digraphs

Theorem 4.1 (Menger’s Theorem, Directed Version). Let D(x, y) be a digraph with two
prescribed vertices x, y, where (x, y) 6∈ S(D). Then the maximum number of pairwise
internally disjoint directed (x, y)-paths is equal to the minimum number of vertices in an
(x, y)-vertex cut.

Exercises
Ch9: 9.1.1; 9.1.8; 9.1.9; 9.2.1; 9.3.2; 9.3.7.
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