
Valuation

1 Euler Number

There are two principles to follow when one counts objects of finite sets. For finite sets A and B, we have

1) Addition Principle: |A ∪B| = |A|+ |B| − |A ∩B|, and

2) Multiplication Principle: |A×B| = |A| |B|.
The two principles are necessarily true when A,B are not finite sets. For instance, if A is the set of disjoint
union of two disks and a zero-shape of R2, and B is a set of disjoint union of a disk and the same zero-shape
of R2, see Figure 1, then |A| = 3, |B| = 2, |A ∪ B| = 4, |A ∩ B| = 2. The Addition Principle implies the
contradiction

4 = |A ∪B| = |A|+ |B| − |A ∩B| = 3 + 2− 2 = 3.

However, if we think of the contribution of the zero-shape is zero to the counting of A ∪ B (the zero-shape
likes the symbol 0), then the Addition Principle is still valid. Indeed, there is a generalized counting measure
χ, whose values for finite sets are just counting and for infinite nice topological sets are Euler numbers. Since
a finite set can be viewed as a topological space with discrete topology, the the Euler characteristic (with
compact support) is a unified finitely additive measure to count both discrete and continuous sets.

B

A

Figure 1: Three disks and a zero-shape.

Given a collection S of sets containing the empty set ∅, closed under intersection and union, that is, if
A,B ∈ S then A∩B,A∪B ∈ S. A set function ν on S with values in an abelian group is called a valuation
(or finitely additive measure) on S if ν(∅) = 0 and for A,B ∈ S,

ν(A ∪B) = ν(A) + ν(B)− ν(A ∩B).

Since there is no countable additivity, the set-function ν is not necessarily a measure. The valuation here
is nothing to do with its meaning in algebra. To construct a valuation we usually begin with an intersec-
tional class, a collection of sets closed under intersection. Given an intersectional class I, the relative
Boolean algebra B(I) is a minimal class of sets containing I, closed under intersection, union, and relative
complement.

A closed interval is a set I = [a, b], where a, b are real numbers and a ≤ b. A parallelotope of Rn is a
set

∏n
i=1 Ii, where each Ii is a closed interval. We denote by Par(n) the class of parallelotopes of Rn. Let

B(Par(n)) denote the relative Boolean algebra generated by Par(n). A valuation ν on Par(n) is translation
invariant provided that for each P ∈ B(Par(n)) and a ∈ Rn,

ν(P + a) = ν(P ),

where P + a = {x + a : x ∈ P}. To exclude possible pathological valuations that we have no interest, we
require the translation invariant valuation ν on B(Par(n)) to be continuous in certain sense. A valuation ν
on B(Par(n)) is said to be continuous if

lim
k→∞

ν(Ik) = ν(I),
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where Ik = [ak, bk] is a sequence of closed intervals convergent to a closed interval I = [a, b], i.e., limk→∞ ak =
a and limk→∞ bk = b. We wish to classify all translation invariant continuous valuations on B(Par(n)).

Note that each object S of B(Par(1)) is a disjoint union of finitely many singletons and open intervals,
that is,

S =
k⊔

i=1

{ai} ∪
l⊔

j=1

(bj , cj) (disjoint union)

Then χ : B(Par(1)) → R, defined by
χ(S) = k − l,

is a translation invariant continuous valuation. Another translation invariant continuous valuation is ` :
B(Par(1)) → R, defined by

`(S) = Lesbesgue measure of S.

It is easy to see that any translation invariant continuous valuation on B(Par(1)) is a linear combination of
the two valuations χ and `.

Now consider the translation invariant valuation ν : B(Par(1)) → R[t] such that for each closed interval
I = [a, b],

µ(I) = 1 + (b− a)t = χ(I) + `(I)t.

We thus have a product valuation µn : B(Par(n)) → R[t] defined by

µn

( n∏

i=1

Ii

)
=

n∏

i=1

µ(Ii) =
n∏

i=1

(1 + xit)

=
n∑

k=0

( ∑

J⊆[n], |J|=k

∏

j∈J

xj

)
tk

=
n∑

k=0

ek(x1, . . . , xn)tk,

where Ii are closed intervals of length xi and ek are the elementary symmetric polynomials of variables
x1, . . . , xn of degree k. It follows that we have translation invariant valuations µk : B(Par(n)) → R such
that

µk(P ) = ek(x1, . . . , xk)

for parallelotopes P of lengths x1, . . . , xn. The value µk(P ) is called the kth elementary mixed volume
of P , also called the (n − k)th quermassintegral of P up to a universal constant. The valuations µi can
be extended to the class B(Kn), the relative Boolean algebra generated by Kn.

Theorem 1.1.

The valuation ν, defined on B(Par(n)), can be extended to the class U(Kn) of finite union of compact
convex sets of Rn. In fact, if K is a compact convex set and B is the unit ball of Rn then νi can be extended
to U(Kn) such that

vol n(K + rB) =
n∑

i=0

νi(K)ωn−ir
n−i, (1)

where K + rB = {x + ry : x ∈ K, y ∈ B}, r ≥ 0, and ωi is the volume of the i-dimensional unit ball. The
identity (1) is called the Steiner formula.

Exercise 1. (a) Show that χ is a translation invariant valuation on B(Par(1)).
(b) Show that every member P of B(Par(n)) is a disjoint union of finitely many relatively open coordinate

parallelotopes ∏

i∈I

(ai, bi)×
∏

j∈J

{cj},

where I ∩ J = ∅ and I ∪ J = {1, . . . , n}.
Let V be a finite dimensional real vector space. A linear combination t1v1 + · · · + tmvm of vectors

v1, . . . , vm in V is called an affine linear combination if t1 + · · ·+ tm = 1, and is further called a convex
linear combination if all ti ≥ 0 and t1 + · · ·+ tm = 1. Given a nonempty subset S of V . The set S is said
to be convex if it contains segment

xy := {tx + (1− t)y : 0 ≤ t ≤ 1}
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for each pair of points x, y of S. The affine span of S, denoted 〈S〉, is the set of all possible affine linear
combinations of points of S. The convex hull of S, denoted conv(S), is the set of all possible convex linear
combinations of points of S. A convex body is a compact convex set. A polytope is a convex hull of finite
number of points. Given a closed convex set F . The interior of F in its affine span 〈F 〉, denoted F̊ , is called
a relatively open convex set. The subset

∂F := F r F̊

is called the boundary of both F and F̊ . The dimension of 〈F 〉 is called the dimension of both F and F̊ .
Given a nonzero linear functional φ : V → R and a constant a. The subsets

H(φ ≤ a) = {x ∈ Rn : φ(x) ≤ a} and H(φ < a) = {x ∈ Rn : φ(x) < a}
are called a closed half-space and an open half-space respectively. A convex polyhedron (or just
polyhedron) is an intersection of finite number of half-spaces. A closed polyhedral convex cone is an
intersection of finite number of half-spaces whose hyperplanes pass through the origin.

Given a polyhedron P . The set P̊ is known as a relatively open polyhedron. A support hyperplane
of P is a hyperplane H, given by 〈u, x〉 = c, such that P ∩ H 6= ∅ and P is contained in the half-space
〈u, x〉 ≤ c. The vector u is called a normal vector of P and the polyhedron P ∩H is called a face of P .
We always assume that P is a face of itself. We denote by σ ¹ P that σ is a face of P , and call relatively
open polyhedron σ̊ a face of P̊ ; we also call σ̊ a face of P . Every polyhedron P is the intersection of the
half-spaces of its support hyperplanes,

P =
⋂

H

H(φ ≤ c), P̊ =
⋂

H

H(φ < c),

where the intersections are extended over all supporting hyperplanes of P . Moreover, we have the disjoint
union

F =
⊔

σ¹P

σ̊.

We introduce the following classes of sets of Rn:

Pn = the class of convex polyhedra,

Pn
c = the class of polytopes (compact convex polyhedra),

Kn = the class of compact convex sets (convex bodies),

Cn = the class of closed convex sets,

On = the class of relatively open convex sets.

Exercise 2. Show that a subset P of Rn is a polytope if and only if P is bounded and is the intersection
of finitely many closed half-spaces.

Fix two real numbers r and s such that r + s = 1. For each real-valued function f on R, if f is
continuous everywhere except discontinuous at finite number of places, and f has left and right limits at
those discontinuous points (including at infinity), we introduce a so called Euler-Schanuel integral

χ(f) =
∫

f(x)dχ(x) =
∑

x∈R∪{∞}

[
f(x)− rf(x−)− sf(x+)

]
, (2)

where f(x−) and f(x+) are the left and right limits of f at x, and f(∞) = 0, f(∞+) = limx→−∞ f(x),
f(∞−) = limx→+∞. The collection of Euler-Schanuel integrable functions forms a real vector space. The
indicator function 1(a,b) of an open interval (a, b) and the delta function δc at a point c are Euler-Schanuel
integrable; moreover,

χ(1(a,b)) = −1, χ(δc) = 1,

where δc(x) = 1 if x = c and δc(x) = 0 otherwise, it is possible that a = −∞ and b = +∞. Since each step
function is a linear combination of some delta functions and indicator functions of some open intervals, all
step functions are Euler-Schanuel integrable.

More generally, for f a real-valued function on Rn with bounded support, we define the the Euler-
Schanuel integral of f as the following iterated integral

χ(f) =
∫

f(x)dχ(x) =
∫
· · ·

∫
f(x1, . . . , xn)dχ(x1) · · ·dχ(xn), (3)
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which is well-defined provided that the resulted integrand from each iterated integral is continuous, except
at finite number of points and has left and right limits at those discontinuous points. Again the class of
Euler-Schanuel integrable multivariable functions is a real vector space. For a set S of Rn, its indicator
function 1S is defined as 1S(x) = 1 for x ∈ S and 1S(x) = 0 otherwise. If 1S is Euler-Schanuel integrable,
the value χ(S) := χ(1S) is called the Euler number of S.

Lemma 1.2. For each bounded relatively open convex set U , its Euler-Schanuel integral

χ(U) = χ(1U ) = (−1)dim U . (4)

Proof. It is true when n = 1 since either dim U = 0 or dimU = 1. For n ≥ 2, consider the orthogonal
projection π : Rn → Rn−1. It is clear that π(U) is a bounded relatively open convex set of Rn−1. For each
point p ∈ Rn−1, the intersection π−1(p)∩U is either empty or a singleton or an open interval, we then have

∫
1U (p, xn)dχ(xn) =

∫
1π−1(p)∩U (xn)dχ(xn)

=





0 if π−1(p) ∩ U is empty,
1 if π−1(p) ∩ U is a singleton,

−1 if π−1(p) ∩ U is an open interval.

It is easy to see that π−1(p)∩U = ∅ if and only p 6∈ π(U). Note that if π−1(p)∩U is a singleton for one point
p ∈ π(U), then π−1(y) ∩ U is a singleton for all y ∈ π(U); if π−1(p) ∩ U is an open integral for one point
p ∈ π(U), then π−1(y)∩U is an open interval for all y ∈ π(U). We see that dim π−1(p)∩U = dim U−dimπ(U)
for p ∈ π(U). Thus ∫

1U (y, xn)dχ(xn) = (−1)dim U−dim π(U)1π(U).

By induction,
∫

1π(U)(y)dχ(y) = (−1)dim π(U); it then follows that

χ(U) = (−1)dim U−dim π(U)

∫
1π(U)(y)dχ(y) = (−1)dim U .

A subset of a real vector space of finite dimension is said to be polyhedral if it can be obtained by taking
union, intersection, and relative complement finitely many times of half-spaces. The class of polyhedral sets
of Rd is the relative Boolean algebra B(P̃n) generated by the class Pn of convex polyhedra of Rn. It is
known that every polyhedral set is a disjoint union of finitely many relatively open convex polyhedra.

Theorem 1.3. Let P be a polyhedral set decomposed into disjoint relatively open polyhedra. Let αk denote
the number of k-dimensional relatively open polyhedra in the decomposition. Then

χ(P ) =
∑

k

(−1)kαk. (5)

Proof. Let P be decomposed into a disjoint relatively open convex polyhedra σi. Then 1P =
∑

i 1σi
and

χ(1σi
) = (−1)dim σi . Thus

χ(P ) = χ(1P ) =
∑

i

χ(1σi
) =

∑

i

(−1)dim σi =
∑

k

(−1)kαk.

Example 1. The Euler number of an oriented surface Σg of genus g in R3 is

χ(Σg) = 2− 2g.

Assume that Σg is standardly sitting in R3 and its orthogonal projection to R2 is the figure in Figure 2
with g = 3. Taking the Euler-Schanuel integral of the indicator function 1Σ3 of Σ3 along the last coordinate
x3, the result is a function f(x1, x2) on R2, whose level set is indicated in Figure 2. Taking the Euler-Schanuel
integral of f along the coordinate x2, we obtain a function h(x1) on R whose graph is given in Figure 3.
Taking the Euler-Schanuel integration for h, we see that the Euler number of Σ3 is χ(1Σ3) = 2 − 6 = −4.
The general case of χ(Σg) = 2− 2g is analogous.
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Figure 2: Projection of Σ3 to R2.
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Figure 3: Projection of Σ3 to R.

2 Gram-Sommerville Theorem and Gauss-Bonnet Theorem

Recall the class Pd of convex polyhedra of Rd and the relative Boolean algebra B(Pd) generated by Pd. Let
F(Pd) denote the vector space of functions of the form

∑
i ai1Pi

, where ai ∈ R and Pi ∈ Pd. Each member
f of B(Pd) can be characterized as a function f : Rd → R, called a polyhedral function, such that (i)
the image of f is a finite set, (ii) for each value c of f the inverse image f−1(c) is a polyhedral set. Every
polyhedral function is Euler-Schanuel integrable.

Let P be a polyhedral set of Rd. A face system of P is a collection F(P ) of relatively open convex
polyhedra such that

P̄ =
⋃

σ∈F(P )

σ (disjoint)

and the faces of each member σ of F(P ) are also members of F(P ). Each member of F(P ) is called a face
of P with respect to F(P ).

A cone with apex 0 is a subset C of Rd such that if v ∈ C then tv ∈ C for all t > 0. The tangent cone
of P at a point p of Rd is the set

cone(P, p) = {v ∈ Rd : ∃ ε > 0 s.t. p + tv ∈ P ∀ 0 < t < ε}. (6)

The tangent cone is empty if p 6∈ P̄ . The tangent cone of P at a face ρ with respect to a face system F(P )
is

cone(P, ρ) := cone(P, p), p ∈ ρ. (7)

The tangent indicator of P at ρ is the function

Tρ(P ) := 1cone(P, ρ). (8)

Given a relatively open convex polyhedron σ. The tangent cone of σ at its face ρ is

cone(σ, ρ) := cone(σ, p), p ∈ ρ.

Let f be a polyhedron function on Rd. A face system of f is a face system of supp (f), the closure of
the support {x ∈ Rd : f(x) 6= 0} of f , such that f(x) is constant on each σ of F(f). The tangent indicator
of f at its face ρ with respect to a face system F(f) is

Tρ(f) =
∑

σ∈F(f)

f(σ)Tρ(σ),

where f(σ) = f(x) for any x ∈ σ, and the tangent indicator of f at ∞ is

T∞(f) =
∑

σ∈F(f)

f(σ)T∞(σ).

One can define tangent indicator intrinsically for polyhedral functions without face system. The tangent
indicator of f at a point x is a function Tx(f) : Rd → R, defined for v ∈ Rd by

Tx(f)(v) = lim
t→0+

f(x + tv). (9)
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Each vector v can be viewed as a linear operator on F(Pd) such that v(f)(x) = Tx(f)(v). The tangent
cone of f at x is the set

cone(f, x) = {v ∈ Rd : Tx(f)(v) 6= 0}. (10)

The map T (f) : Rd × Rd → R, (x, v) 7→ fv(x), is called the tangent indicator of f . The tangent
curvature of f at a face ρ with respect to a face system F(f) and at a point x ∈ ρ is

τρ(f) = τx(f) =
1

vol (Bd)

∫

Bd

Tx(f)(v)dv, (11)

where Bd is the unit ball centered at the origin of Rd.

Lemma 2.1. Let f ∈ F(Pd) and v ∈ Rd. The map T (f) : Rd → F(Pd
0 ), x 7→ Tx(f), is a polyhedral map,

and fv : Rd → R, x 7→ Tx(f)(v), is a polyhedral function. Moreover,

T (f) =
∑

ρ∈F(f)

1ρ · Tρ(f) =
∑

ρ∈F(f)

1ρ ·
∑

σºρ

f(σ)1cone(σ, ρ),

where Tρ(f) = Tx(f) with x ∈ ρ; and T (f) and T (f)(v) are integrable with respect to the Euler valuation χ.

Proof. Given a face system F(f) of f . Notice that f =
∑

σ∈F(f) f(σ)1σ, where f(σ) = f(x) with x ∈ σ, and
Tσ(f) = Tx(f) for each σ ∈ F(f) and all x ∈ σ. Then for v ∈ Rd,

Tx(f)(v) =
∑

σ∈F(f)

f(σ)Tx(1σ)(v).

Let σ′ denote the side of σ that can be seen from −∞v. Then σ′ is a disjoint union of some faces of σ, and
T (1σ)(v) = 1σ∪σ′ is a polyhedral function of variable x. By linearity fv := T (f)(v) is a polyhedral function
of variable x. Of course, fv is integrable with respect to χ. Moreover,

T (f) =
∑

ρ∈F(f)

1ρ · Tρ(f) =
∑

ρ∈F(f)

1ρ ·
∑

σºρ

f(σ)1cone(σ, ρ),

which can be viewed as a function with values in F(Pd
0 ).

Theorem 2.2 (Gram-Sommerville Formula). Let f be a polyhedral function on Rd with bounded support
and a face system F(f). Then

∫

Rd

Tx(f)dχ(x) =
∑

ρ∈F(f)

(−1)dim ρTρ(f) = χ(f)1{0}, (12)

where 1{0} is the indicator function of the set whose only element is the origin 0 of Rd.

Proof. First Proof. For each face ρ of f with respect to F(f), note that Tρ(f) = Tx(f) for x ∈ ρ. For each
fixed vector v ∈ Rd, we have

∫

Rd

Tx(f)(v)dχ(x) =
∫ ∑

ρ∈F(f)

Tρ(f)(v)1ρdχ(x) =
∑

ρ∈F(f)

(−1)dim ρTρ(f)(v),

which is the first identity in (12). To see the second identity, note that Tx(f)(v) = fv(x) and
∫

Rd

Tx(f)(v)dχ(x) =
∫

Rd

fv(x)dχ(x).

If v 6= 0, then for each point p ∈ Rd, the support of fv on the line p +Rv is a disjoint union of finitely many
half-closed and half-open intervals, and fv is constant on each of such intervals. In order to compute the
integral

∫
fv(x)dχ(x), we choose a frame (v1, . . . , vd) of Rd with vd = v. We see that

∫
fv(x1v1 + · · ·+ xdvd)dχ(xd) = 0,

consequently,
∫
Rd fv(x)dχ(x) = 0. If v = 0, then fv(x) = f(x), consequently,

∫
fv(x)dχ(x) = χ(f).

Second Proof. Since f =
∑

f(σ)1σ, it suffices to show that it is true for each indicator 1σ. Clearly,
(1σ)v(x) is either 0 or 1 for all x. If v 6= 0, then (1σ)v(x) = 1 iff v ∈ cone(σ, x), i.e., σ ∩ (x + Rv) is an open

6



segment (p, q) with direction v and x ∈ [p, q). It follows that if v 6= 0, the support of (1σ)v is the union of σ
and the boundary side of σ that can be seen from the direction v, and this boundary side is homeomorphic
to a cell of dimension dimσ − 1. Thus χ((1σ)v) = 0 if v 6= 0. If v = 0, then (1σ)v = 1σ, consequently,
χ((1σ)0) = χ(1σ). Now by linearity of χ, we have

∫

Rd

fv(x)dχ(x) =
∑

σ

f(σ)
∫

Rd

(1σ)v(x)dχ(x)

=
∑

σ

f(σ)χ(1σ)1{0} = χ(f)1{0}.

Corollary 2.3. Let f be a polyhedral function on Rd with bounded support. Then
∫

τx(f)dχ(x) =
∑

ρ∈F(f)

(−1)dim ρτρ(f) = 0.

Let Pd
0 denote the class of closed polyhedral convex cones of Rd with apex 0. Let F(Pd

0 ) denote the
vector space generated by indicator functions of polyhedral cones with apex 0. There is a linear operator
N : F(Pd

0 ) → F(Pd
0 ), defined for g ∈ F(Pd

0 ) and u ∈ Rd by

N(g)(u) = χ
(
g · 1{v∈Rd:〈u,v〉≤0}

)
=

∫

{v∈Rd:〈u,v〉≤0}
g(x)dχ(x). (13)

Let C be a relatively open convex cone of Rd with apex 0. The normal cone of C is the closed convex
cone

C∗ = {u ∈ Rd : 〈u, v〉 ≤ 0 for all v ∈ C}.
Lemma 2.4. For each relatively open convex cone C ∈ Pd, we have

N(1C) = (−1)dim C1C∗ .

Proof. The map N is well-defined and is linear since χ is a linear functional. Given C a relatively open
convex cone. For each u ∈ C∗, it is clear that C ⊆ H−

u , we then have

N(1C)(u) = χ(C ∩H−
u ) = χ(C) = (−1)dim C .

For u 6∈ C∗, we have either C ∩H−
u = ∅ or C ∩H−

u 6= ∅. In latter case the set C ∩H−
u is a half-closed and

half-open convex cone. Thus N(1C)(u) = χ(C ∩H−
u ) = 0.

Let f ∈ F(Pd) be a polyhedron function with a face system F(f). The normal indicator of f at a face
ρ with respect to a face system F(f) and at a point x ∈ ρ is

Kρ(f) = Kx(f) := N(Tx(f)). (14)

The Gaussian curvature of f at a face ρ with respect to F(f) and at point x ∈ ρ is

κρ(f) = κx(f) :=
1

vol (Bd)

∫
Kx(f)(v)dv. (15)

Theorem 2.5 (Generalized Gauss-Bonnet Formula). Let f be a polyhedron function on Rd with bounded
support and a face system F(f). Then

∫

Rd

Kx(f)dχ(x) =
∑

ρ∈F(f)

Kρ(f) = χ(f)1Rd , (16)

where 1Rd is the indicator function of the whole space Rd.

Proof. For each face ρ ∈ F(f), note that Tx(f) = Tρ(f), we have Kx(f) = Kρ(f). Then
∫

Rd

Kx(f)dχ(x) =
∑

ρ∈F(f)

(−1)dim ρKρ(f)

=
∑

ρ∈F(f)

(−1)dim ρN(Tρ(f))

= N

( ∑

ρ∈F(f)

(−1)dim ρTρ(f)

)

= N(χ(f)1{0}) = χ(f)1Rd .
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It is trivial when v = 0, the values at v of both sides are the same. Assume v 6= 0. Let π : Rd → L⊥

and πv : Rd → L be the orthogonal projections, where L = Rv. Let X be decomposed into frame cells σi

with respect to a frame, where v is a member of the frame. For the cell σi, we may further assume that
σ̄i∩π−1(ai+1) is a closed frame cell; otherwise we may divide σi∩π−1

v (ai+1) so that . Thus Kx(σi)(v) = χ(σi)
if x ∈ π−1

v (ai+1) and Kx(σi)(v) = 0 otherwise. Then
∫

Kx(σi)(v)dχ(x) = χ(σi).

Hence ∫
Kx(X)(v)dχ(x) =

∑ ∫
Kx(σi)(v)dχ(x) =

∑
χ(σi) = χ(X).

π : Rd → L be the orthogonal projection, where L = Rv. Then R can be divided into finite singletons
{ai} and open intervals (ai, ai+1) so that π−1(ai, ai+1) ' (ai, ai+1)× π−1(a), where a ∈ (ai, ai+1) is a fixed
number. Let π−1(a) be decomposed into disjoint cells σij . Then Kx(σij)(v) = 0 for x ∈ π−1(ai, ai+1) and
Kx(σij)(v) = (−1)dim σij for x ∈ σ̄ij ∩ π−1(ai+1).

Corollary 2.6. Let f be a polyhedral function on Rd with bounded support. Then
∫

κx(f)dχ(x) =
∑

v∈V (f)

κv(f) = χ(f).

K∞(f)(v) =

Proposition 2.7 (Frame Dependence). Given a function on a real vector n-space V . If χ(f, v) = χ(f, vπ)
for each frame v = (v1, . . . , vn) and all permutations π of {1, . . . , n}, where vπ = (vπ(1), . . . , vπ(n)), then
χ(f, v) is independent of the chosen frame v.

Proof. Given two frames u and v of V , there exists nonsingular n × n matrix A such that u = vA. Note
that A can be decomposed into a product of elementary matrices. For A = Diag[1, . . . , a, . . . , 1] with a 6= 0,
we have u = (v1, . . . , avi, . . . , vn). For each fixed coordinate x = (xi+1, . . . , xn), the function

g(xi, x) :=
∫

f
(
x1u1 + · · ·+ xiui + · · ·+ xnun

)
dχ(x1) · · ·dχ(xi−1)

of one variable xi is discontinuous at (finitely many) points pk(x). Then the function

g1(xi, x) =
∫

f
(
x1u1 + · · ·+ xi(aui) + · · ·+ xnun

)
dχ(x1) · · ·dχ(xi−1)

= g(axi, x)

of one variable xi is discontinuous at points of pk(x)/a. Thus
∫

g(xi, x)dχ(xi) =
∑

k

(
g
(
pk(x), x

)− rg
(
pk(x)−, x

)− sg
(
pk(x)+, x

))

=
∑

k

(
g1

(
pk(x)/a, x

)− rg1

(
(pk(x)/a)−, x

)− sg1

(
(pk(x)/a)+, x

))

=
∫

g1(xi, x)dχ(xi).

It follows that
χ(f, u) =

∫
g(xi, x)dχ(xi)dχ(x) =

∫
g(xi, x)dχ(xi)dχ(x) = χ(f, v).

Let A be an elementary matrix such that u = (v1, . . . , vi, . . . , vj + avi, . . . , vn) and i < j. Then ‖vj‖ =
b‖vj + avi‖ for some b 6= 0. Note that for x = (xj+1, . . . , xn),

g2(xj , x) :=
∫

f(x1v1 + · · ·+ xj(vj + auvi) + · · ·+ xnvn)dχ(x1) · · ·dχ(xj−1) = g(bxj , x).

Likewise,

χ(f, u) =
∫

g(xj , x)dχ(xj)dχ(x) =
∫

g2(xj , x)dχ(xj)dχ(x) = χ(f, v).
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Now if the matrix A is such that u = (v1, . . . , vj , . . . , vi, . . . , vn) with i < j, then we have χ(f, u) = χ(f, v)
by assumption. It follows from the previous argument that χ(f, u) = χ(f, v′), where v′ = (v1, . . . , vj , . . . , vi +
avj , . . . , vn). Switching the entries at i and j in v′, we see that χ(f, v′) = χ(f, v′′), where v′′ = (v1, . . . , vi +
avj , . . . , vj , . . . , vn). We thus have χ(f, v) = χ(f, v′′). We have shown that the Euler-Schanuel integral of f
is independent of the selection of frames.

Example 2. The iterated Euler-Schanuel integral depends on the order of a basis. Consider the function

f(x, y) =
{

y2 if x2 + y2 < 4,
0 otherwise.

The Euler-Schanuel integral if f with respect to the frame (e1, e2) is
∫∫

fdχ(x)dχ(y) =
∫

(−2,2)

y2dχ(y)
∫
(
−
√

4−y2,
√

4−y2
) dχ(x)

=
∫

(−2,2)

(−y2)dχ(y) = 4.

However, the Euler-Schanuel integral of f with respect to the frame (e2, e1) is
∫∫

fdχ(y)dχ(x) =
∫

(−2,2)

dχ(x)
∫

(−√4−x2,
√

4−x2)

y2dχ(y)

=
∫

(−2,2)

(−(4− x2))dχ(x) = 0.

3 Another Eulerian valuation

Let P be a relatively open convex polyhedron, possibly unbounded. We introduce tangent cone of P at
∞ as the set

cone(P,∞) = {−v ∈ V : v 6= 0,∃ p ∈ P s.t. p + tv ∈ P ∀ t > 0}. (17)

The tangent indicator of σ at ∞ is the function

T∞(P ) = (−1)dim P−11cone(P,∞).

We shall see that
T∞(P ) +

∑

σ¹P

(−1)dim σTσ(P ) = χ(P )1{o}.

Given a function f ∈ F(Pd). We introduce a tangent indicator of f at ∞ is a function T∞(f) : Rd → R,
defined for nonzero v ∈ Rd by

T∞(f)(−v) = − lim
r→∞

∫

cone(o,B(rv))ro∗B(rv)

f(x)dχ(x) (18)

and T∞(f)(0) = 0, where B(rv) is the unit open ball of Rd centered at tv, 0 ∗ B(rv) is the join of o and
B(rv), and cone(o,B(tv)) is the open convex cone generated by B(rv).

Lemma 3.1. Let P be a relatively open convex polyhedron of Rd, given as the intersection of half-spaces
H(φi < ai) and hyperplanes H(ψj = bj). Then cone(P,∞) is a convex polyhedral cone and

cone(P,∞) =
⋂

i,j

H(φi ≥ 0) ∩H(ψj = 0)r {0}.

Moreover, the tangent indicator of 1P at infinity is given by

T∞(1P ) = (−1)dim P−11cone(P,∞).

Proof. Let −v ∈ cone(P,∞), i.e., v 6= 0 and p + R+v ⊆ P for some p ∈ P . Clearly, it is equivalent
to p + R+v ⊆ H(φi ≤ ai) for all i. By translation it is further equivalent to R+v ⊆ H(φi ≤ 0), i.e.,
v ∈ ⋂

i H(φi ≤ 0). This the same same −v ∈ ⋂
i H(φi ≥ 0).

As for the tangent indicator at infinity, since p + R+v and R+v are parallel half-lines of same direction,
we see that p + Rvv intersects the truncated infinite cone cone(o,B(tv)) r o ∗ B(tv) for all t > 0, of course
P intersects the truncated cone. So T∞(1P )(−v) = (−1)dim P−1.

Let −v 6∈ cone(σ,∞) and v 6= 0. Then there exists an i such that v 6∈ H(φi ≥ 0), i.e., φi(v) < 0. Let t0
a positive real number be such that the distance of t0v to H(φi = ai) is larger than t0. Then H(φi < ai) is
disjoint from the truncated cones cone(o,B(tv))r o ∗B(tv) for all t > t0. Of course, P is disjoint from the
truncated cones. It follows that T∞(1P )(−v) = 0.
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We refer each ordered basis of a finite dimensional vector space a frame. A real-valued function f on
a real vector n-space V is Euler-Schanuel integrable with respect to the frame v = (v1, . . . , vn) the
function F (x) = f(x1v1 + · · ·+ xnvn) with x = (x1, . . . , xn) is Euler-Schanuel integrable. If so,

χ(f,v) =
∫

Rn

F (x)dχ(x), (19)

is called the Euler-Schanuel integral of f with respect to the frame v. If f is Euler-Schanuel integrable
with respect to all frames, we simply say that f is Euler-Schanuel integrable. Let Er,s(V ) denote the
set of Euler-Schanuel integrable functions on a real vector n-space V . It is clear that Er,s(V ) forms a vector
space under ordinary additions and scalar multiplication of functions.

Theorem 3.2. Let E be a subset of real vector n-space V . If 1E is Euler-Schanuel integrable, then its Euler
valuation χ(E, v) with respect to each fame v is an integer, and is independent of the numbers r, s such that
r + s = 1.

Proof. We proceed by induction on the dimension n. For n = 1, the set E is a disjoint union of finitely many
open intervals (may be unbounded) and singleton sets. Each open interval interval has Euler measure −1
and each singleton has Euler measure 1. The Euler-Schanuel integral is an integer.

Assume that it is true for Euler sets of real vector spaces of dimension n−1. Given a frame v = (v1, . . . , vn)
of V . For each fixed x ∈ R, the function Fx : Rn−1 → R, defined by Fx(x1, . . . , xn−1) = 1E(x1v1 + · · · +
xn−1vn−1 + xvn), is Euler-Schanuel integrable with respect to the fame (v1, . . . , vn−1). Then the function

f(x) =
∫

Fx(x1, . . . , xn−1)dχ(x1) · · ·dχ(xn−1)

is integer-valued by induction and is Euler-Schanuel integrable. It follows that f(x) has the form

f =
∑

i

αi1(ai,bi) +
∑

j

βj1{cj},

where αi and βj are integers independent of r and s such that r + s = 1. Hence
∫

1E(x1v1 + · · ·+ xnvn)dχ(x1) · · ·dχ(xn) =
∫

f(x)dχ(x)

is an integer and is independent of r and s such that r + s = 1.

Definition 3.3. Frame cellular sets are defined inductively as follows:

(FC1) Every open segment or a singleton of any one-dimensional real vector space L is a frame cell
with respect to each frame of L.

(FC2) Let v = (v1, . . . , vn) be a frame of real vector d-space V , Hi = span{v1, . . . , v̂i, . . . , vn}, and let
πi : V → Hi be the projection with ker(πi) = span{vi}. A subset σ ⊆ V is a frame cell with
respect to u provided that πi(σ) is a frame cell with respect to the frame (v1, . . . , v̂i, . . . , vn), and
either π−1

i (x) ∩ σ are open intervals for all x ∈ π(σ) or are singletons for all x ∈ πi(σ).

(FC3) A subset X of a real vector n-space V is frame cellular if X can be decomposed into a disjoint
union of finitely many frame cells with respect to each frame of V .

Proposition 3.4. The indicator function of any frame cellular set E is Euler-Schanuel integrable. Moreover,
if {σi} is a frame cellular decomposition of E with respect to a frame v, then

χ(E) =
∑

i

(−1)dim σi . (20)

Proof. Let E be a frame cellular set of a real vector n-space V , and let v = (v1, . . . , vn) be a frame of V . It
is clear that {σi} is a frame cellular decomposition of E with respect to the frame (vπ(1), . . . , vπ(n)) for all
permutations π of {1, . . . , n}. Since χ(1σi

, v) =
Thus

χ(1E , v) =
∑

i

(−1)dim σi = χ(1E , vπ).

It follows from Proposition 2.7 that 1E is Euler-Schanuel integrable, its integral is independent of the selection
of frames, and χ(E, v) =

∑
i(−1)dim σi .
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Let σ be a frame cell of Rd. The tangent cone
Let X be a nonempty closed subset of Rd. A smooth stratification of X is a finite collection {Xa|a ∈ P}

of subsets of Rd, such that the following three conditions are satisfied.

• Each Xa is a smooth submanifold of Rd, called a pure stratum of X.

• X =
⋃

a∈P Xa (disjoint).

• If Xa ∩ X̄b then X̄a ⊆ X̄b; we say that Xa is a face of Xb if X̄a ⊆ X̄b, written Xa ≤ Xb. So P becomes
a poset, called the poset of strata.

The space X together with a stratification {Xa | a ∈ P} is called a stratified space.
Given a nonzero vector v ∈ Rd; let L = Rv be the subspace spanned by v and V = L⊥ the orthogonal

complement of L. Let φ : Rd → L be the orthogonal projection. A nonempty closed subset X of Rd is said
to be cylindric along v if L can be divided into

set function φ : L → V
Given a nonzero vector v ∈ Rd; we say that X is

• locally finite at a point x along v if the intersection X ∩ {x + tv : 0 ≤ t < ε} is either an empty
set, or a singlton, or an half-closed and half-open segment, when ε is small enough.

• finite with respect to v if for each point x ∈ Rd, the intersection X ∩ {x + tv : t ∈ R} is a finite
union of singletons, or closed segments, or half-closed and half-open segments.

• finite along v if X ∩ {x + tv : t ∈ R} is a finite union of singletons, or closed segments, or half-closed
and half-open segments.

4 Group Arrangements

5 Grassmannian

Let Grn(Rn+k) be the set of all n-dimensional vector subspaces of Rn+k, and Grn(R∞) the set of all n-
dimensional vector subspaces of R∞. We shall make both Grn(Rn+k) and Grn(R∞) into CW-complexes so
that Grn(Rn+k) is a subcomplex of Grn(R∞).

Let Bd denote the unit ball of Rd, consisting of all vectors v with ‖v‖ = 1. The interior of Bd is defined
to be the subset Bd

0 consisting of all vectors v with ‖v‖ < 1. For the special case p = 0, both Bd and Bd
0

consist of the single zero vector.
Any space homeomorphic to Bp is called a closed p-cell, and any space homeomorphic to Bp

0 is called an
open p-cell. For instance Rp is an open p-cell.

A CW complex is a Hausdorff space X, called the underlying space, together with a partition of X
into a collection {eα} of disjoint subsets, such that the following four conditions are satisfied.

CW1 Each eα is a topologically an open cell of dimension d(α) ≥ 0, that is, there exists a
continuous map

φα : Bd(α) → X,

called the characteristic map for the cell eα, such that φα

(
B̊d(α)

)
= eα and the restriction

φα : B̊d(α) → eα is a homeomorphism.

CW2 If eα ∩ ēβ 6= ∅ then ēα ⊂ ēβ ; we say that eα is a face of eβ if ēα ⊆ ēβ . If {eα} contain only
finite number of cells, we say that X satisfying CW1 and CW2 is a finite CW complex.

CW3 Closure Finiteness. Each point of X is contained in a finite subcomplex.

CW4 Whitehead Topology. The space X is topologized as the direct limit of its finite sub-
complexes, that is, a subset of X is closed if and only if its intersection with each finite
subcomplex is closed in the finite subcomplex.
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