Gauss-Bonnet formula, finiteness condition, and
characterizations for graphs embedded in surfaces
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ABSTRACT. Let G be an infinite graph embedded in a closed 2-manifold, such
that each open face of the embedding is homeomorphic to an open disk and
is bounded by finite number of edges. For each vertex x of G, define the
combinatorial curvature
d(z) 1
Ko@) =1-—>+ Y —
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as that of [9], where d(z) is the degree of z, F'(x) is the multiset of all open faces
o in the embedding such that the closure & contains x (the multiplicity of o is
the number of times that z is visited along dc), and |o| is the number of sides
of edges bounding the face o. In this paper, we first show that if the absolute
total curvature ZZEV(G) |Kg(z)| is finite, then G has only finite number of
vertices of non-vanishing curvature. Next we present a Gauss-Bonnet formula
for embedded infinite graphs with finite number of accumulation points. At
last, for a finite simple graph G with 3 < dg(z) < oo and Kg(z) > 0 for all
z € V(G), we have (i) if G is embedded in a projective plane and #(V(G)) =
n > 1722, then G is isomorphic to Pp; (ii) if G is embedded in a sphere and
#(V(G)) = n > 3444, then G is isomorphic to either A, or Bp; and (iii) if
dg(z) =5 for all z € V(G), then there are only 49 possible embedded plane
graphs and 16 possible embedded projective plane graphs.

1. Introduction

The notion of combinatorial curvature was introduced by Gromov [8] to study
hyperbolic groups. Later it was modified by Ishida [12] and was defined directly
for embedded plane graphs. Using this combinatorial curvature, Higuchi [9] consid-
ered discrete analogs of isoperimetric inequality and Myer’s theorem of Riemannian
geometry for embedded plane graphs. In fact, Higuchi [9] obtained certain isoperi-
metric constant and asked for a combinatorial analog of Myer’s theorem.

Myer’s theorem originally states that if a Riemannian n-manifold M has posi-
tive Ricci curvature bounded away from zero, say, Ric > ”T_l, then M is compact
and has diameter at most 7. Higuchi’s isoperimetric constant is interesting be-
cause it is quite different from that of continuous case. The difference perhaps lies
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in the fact that the combinatorial curvature does not approximate the curvature in
the continuous case. For instance, for a closed 2-manifold with a triangulation in
an Euclidean space, one easily finds that there is no logical relation in general be-
tween the combinatorial curvature and the curvature of the surface. However, the
notion of discrete curvature that does approximate the curvature in the continuous
case were considered by some others, for example, [1, 2, 3, 4]. Other notions of
combinatorial or discrete curvature are studied in [7, 13, 14, 16]. In particular,
a discrete curvature for triangulations of 3-manifolds is introduced in [13] and is
applied to characterize 3-spheres. The discrete curvature that is related to image
processing are discussed in [6, 10, 11].

Since the difference in nature between the combinatorial curvature and the
curvature in the continuous case, the discrete analogs of the isoperimetric inequal-
ity and the discrete analogs of Myer’s theorem might be quite different from their
continuous forms. The main purpose of this paper is to give one of such discrete
analogs of Myer’s theorem. A notable feature of our statement (certain finiteness
theorem) for embedded graphs does not have similar continuous forms for Riemann-
ian manifolds in the continuous case.

Let G be a graph embedded in a closed 2-manifold S. The graph G may
have infinite number of vertices and edges, and may have loops and multiple edges.
However, each vertex is required to have finite degree. We view the vertex set V(G)
as a subset of S and each edge of G as an open arc. We consider G as the union of
V(@) and all arcs, so that G is a subset of S. If V(@) is infinite, the accumulation
set

V(G):=G-G
may be non-empty, where G is the closure of the subset G C S. To avoid patholog-
ical cases that we have no interest, it is assumed that the embedding satisfies the
following properties:

(E1) The accumulation set V'(G) is finite.
(E2) The complement S — G is a disjoint union of connected open sets, each
such open set U is homeomorphic to an open disk, and its boundary
OU :=U — U is a finite subgraph of G.

Then the punctured surface S — V/(G) is decomposed into a collection of (possibly
infinitely many) vertices, open arcs, and open regions. We call each open region an
open face (or just face) of G, and call each accumulation point in V/(G) an end.

Note that the closure of a face may not be homeomorphic to a closed disk.
This means that the boundary of a face may not be a cycle of G. Since each edge
of G in the surface has two sides, we say that a side of an edge bounds a face o
provided that o is exactly on that side of the edge. The number of sides of a face
o is called the the length of o, denoted |o|. A face may be on both sides of an
edge; if so the face has the two sides of the edge. For instance, viewing the graph
in FIGURE 1 embedded in a sphere, the length of the face o7 is 4, its closure &7 is
homeomorphic to a closed disk, but its boundary is not a cycle; the length of the
face o3 is 6, its closure &3 is not homeomorphic to a closed disk, and its boundary
is not a cycle; the length of the face o3 is 2, its closure is homeomorphic to a disk,
and its boundary is a cycle of length 2.

For each vertex z of G, we denote by dg(z) or just d(x) the degree of x (the
number of edges incident with z, having loops counted twice), and by F(z) the
multiset of faces o such that z is contained in the closure &; the multiplicity of
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F1GURE 1. An embedding with faces whose boundaries are not cycles.

a face o is the number of times that z is visited when one travels along the sides
of ¢ in an orientation. For instance, in FIGURE 1, the multiplicity of o2 is 1 at
vertices u; and uyg, while the multiplicity of o9 is 2 at the vertices us and ws; the
multiplicity of o7 is 1 at both us and us, while the multiplicity of o7 at uy4 is 2.
Thus 1 < d(x) = |F(x)| < oo for all vertices z. We denote by V(G), E(G), and
F(G) the sets of vertices, edges, and faces of G, respectively. The cell complex of
G is the collection

A(G) := V(G) U E(G) U F(G).

DEFINITION 1.1. Let G be a graph (finite or infinite) embedded in a closed 2-
manifold S, satisfying (E1) and (E2). The combinatorial curvature of G is the
function K¢ : V(G) — R, given by

d(x
Kg(x)zl—%-&- >

cEF(x

%', 2 V(@) (1.1)
)

The number Kq(z) is called the curvature of G at the vertex x.

We write K (z) instead of Kg(z) whenever the graph G is clear in the context.
It is observed by Higuchi [9] that K (z) may be used to measure the difficulty of
tiling a plane by regular polygons at the vertex z in the following sense: each face
o incident with x forms an angle; if we regard o as a regular |o|-gon and assign
7 — 2% to this angle, then

o]
2
Z r— =27T<1—K(a:)).
lo
ocEF (x)

Thus, if K(z) # 0, the union {J,cp(,) 0 can not be embedded in the plane “con-
formally”. However, if K(x) = 0, d(z) = d, and |o| = const at every vertex x of
o, then |o| = 2% There are three possibilities for the pair (|o|,d): (6,3), (4,4),
(3,6), which correspond to the tilings of the plane by triangles, rectangles, and
hexagons, respectively. Higuchi [9] made the following finiteness conjecture.

CONJECTURE 1.2. (Higuchi) If K(x) > 0 for all x € V(G), then G has finite
number of vertices.

The conjecture was partly confirmed by Higuchi himself [9] for some special
cases, and by Sun and Yu [15] for the case of 3-regular graphs. We learnt recently
from Mohar that the conjecture was fully solved geometrically by Devos and Mo-
har [5] in the sense that the closed 2-manifold S is a polygonal surface and the



4 BEIFANG CHEN AND GUANTAO CHEN

embedding is geodesic. However, Huguchi’s conjecture [9] seems still open from
topological viewpoint. We are interested in finding the relationship between the
finiteness of the number of vertices with non-vanishing curvature and the finiteness
of the following absolute total curvature.

DEFINITION 1.3. Let G be a graph (finite or infinite) embedded in a closed
2-manifold S. The absolute total curvature of G is the sum

K@) = Y |K(2)].

zeV(G)
The first main result of the paper is the following theorem.

THEOREM 1.4. Let G be a graph embedded in a closed 2-manifold, satisfying
(E1) and (E2). Then G has finite number of vertices of non-vanishing curvature if

and only if 3-, ey () K ()] < oco.

It is trivial that the finiteness of the number of vertices with non-vanishing cur-
vature implies the finiteness of the absolute total curvature. However, the converse
is not obvious. The graphs in FIGURE 16 are non-trivial examples regarding the
Theorem 1.4. The proof of Theorem 1.4 is given in Section 3.

DEFINITION 1.5. Let G be a graph (finite or infinite) embedded in a closed 2-
manifold S. For each end p € V'(G), let U, be a sequence of open neighborhoods
of p such that, (i) each U, is homeomorphic to an open disk, its closure U, is
homeomorphic to a closed disk, and U, C U,_1; (ii) all the boundaries OU,, are
disjoint cycles of G; and (iii) (o—, U, = {p}. Set G, = GN (S —U,). The

n=1
curvature of G at p is the limit (whenever exists)

Ka(p) = lim > Kg, (). (1.2)
eV (0Uy,)

The limit in (1.2) may not exist. However, if the absolute total curvature is
finite, the limit does exist and is unique; see Lemma 3.2. Conversely, if the limit
exits at each end, it is obvious that the absolute total curvature must be finite. The
next main result of the paper is the following Gauss-Bonnet formula (or Euler’s
relation).

THEOREM 1.6. Let G be a graph embedded in a closed 2-manifold S, satisfying
(E1) and (E2). If the absolute total curvature |K|(G) is finite, then

> Kola) = x(s-v'(@), (13)

z€V(G)

where V(G) = V(G)UV'(G), x(S — V'(G)) is the Buler characteristic of the
punctured surface S —V'(G), and x(S —V'(G)) = x(9) — #(V'(G)).

The most interesting and important problem about the combinatorial curvature
is perhaps to classify embedded graphs whose curvatures satisfy certain properties.
We are interested in classifying the embedded graphs with positive curvature at
every vertex. To state our result on such classification of finite graphs with positive
curvature everywhere, we introduce a special type of projective wheel graphs Py,
and two types of sphere annulus graphs A,, and B,, with n > 3 vertices. The vertex
set of P, is

V(P,) = {xl,xg, .. ,xn}
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and the edge set of P, is given as follows:
Let z; = x4 for 1 <i <n. For odd n = 2s + 1,

E(Pysi1) = {@i%spi, iToqip1 : 1 < i < s+ 1},

and for even n = 2s,
E(Pys) = {wiweyi : 1 <1 < s}
The examples for P, are demonstrated in FIGURE 2. The vertex sets of A,, and B,

X

Xy Xs Xy Xs
F1GURE 2. The projective wheel graphs Ps and P;.

are the same, having 2n vertices as
V(A,) =V(B,) = {xl, B T P ,yn}.
The edge set of A,, is
E(Ay) = {zixis1, vivie1, ziyi - 1 < i <n},
and the edge set of B, is
E(By) = {iTit1, YiYit1, TiVis TiYip1 1 1 <i <n},

where x,41 = 21, Ynt1 = y1. The examples for A,, and B,, are demonstrated in
FIGURE 3.

FicURE 3. The sphere annulus graphs Ag and Bg.

The third main result of the paper is the classification of finite graphs having
positive curvature at every vertex and having large enough number of vertices. De-
vos and Mohar [5] independently obtained almost the same results, using different
methods.

THEOREM 1.7. Let G be a finite graph embedded in a closed 2-manifold such
that 3 < d(x) < 0o and K(z) > 0 for all x € V(G).
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(a) If G is embedded in a projective plane with n > 1722 vertices, then G is
isomorphic to P,.

(b) If G is embedded in a sphere with n > 3444 vertices, then G is isomorphic
either to A,, or to B,.

The lower bounds 1722 and 3444 are conveniently selected so that the proof
of our statement can be easily obtained. Of course, the lower bounds may be
drastically lowered. Finally, for 5-regular graphs we further obtain that there are
only possibly 16 such projective plane graphs and possibly 49 such plane graphs
as stated in Theorem 1.8. Some of these graphs are illustrated in FIGURE 13 and
FIGURE 14. We believe that there may be only a few of such graphs.

THEOREM 1.8. Let G be a finite 5-regular simple graph such that 3 < d(z) < oo
and K(x) > 0 for all z € V(G).

(a) If G is embedded in a projective plane, then G has 16 possible cases listed
in the proof, each contains at most 30 vertices.

(b) If G is embedded in a sphere, then G has 49 possible cases listed in the
proof, each contains at most 60 vertices, and there exists a graph G having
ezxactly 60 vertices.

It is interesting and important to construct a concrete example of infinite graph
whose curvature is non-negative at every vertex but there are infinitely many ver-
tices with positive curvature. We doubt the existence of such an infinite graph.
However, there exist infinite plane graphs having non-negative curvature at every
vertex but having only finite number vertices of positive curvature; see FIGURE 16.
We end up the introduction by making the following conjecture.

CONJECTURE 1.9. Let G be an infinite plane graph with non-negative curvature
at every vertex. Then there are only finite number of vertices with non-vanishing
curvature.

2. Properties of combinatorial curvature

In this section we follow the book [17] on notations of graphs. We assume that
G is a simple graph (no loops and multiple edges) embedded in a closed 2-manifold
S, satisfying (F1) and (E2). Let = be a vertex of G. The degree of x is denoted by
d=d(z). Let 01,...,04 be faces of G incident with z, listed in increasing order of
lengths |o1] < --- < |og|. The face vector of G at the vertex x is the ordered tuple

f(x) = (|Ul|a sy |0d‘)'
A cycle of G is called a face cycle if it bounds a face of G.

LEMMA 2.1. If K(z) > 0 at a vertex z, then 1 < d(x) < 5. Moreover, the face
vectors and the curvatures for each of the cases are characterized into the following
patterns.

(1) For d(z) =1, we have f(z) = (k) with k >5 and K(z) = 3 + 1 > 1.
(2) For d(z) = 2, we have f(x) = (3,k) with k > 4, K(z) = 3 + § > 3;
f(@)=(mk) withda<m <k Klz)=L+1>L1>41
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(3) Ford(z) =3,

f(z) | (3,3,k), kE>31(3,4,k), k>41(3,5,k), k>5
(3,6,k),  k>6|(3,7.k), T<k<4l|(3,8k), 8<k<23
(3,9,k),9 < k <17 | (3,10,k),10 < k <14 | (3,11,k),11 < k < 13
(4,4, k), k>4 (4,5k), 5<k<19|(4,6k), 6<k<11
4,7,k), T<k<9|(55k), 5<k<9|(5.6k, 6<k<7

K@) | =1/6 +1/k —1/12+1/k —1/30+ 1/k
= 1/k >1/1722 > 1/552
> 1/306 > 1/210 > 1/858
= 1/k > 1/380 > 1/132
> 1/252 > 1/90 > 1/105

(4) For d(z) =4,

7@ (3338, k>3](3B3,4k4<k<Il
(3,3,5,k),5 <k <T7|(3,4,4,k), 4<k<5
K@) | =1/k > 1/132
> 1/105 > 1/30

(5) Ford(x) =5, we have f(x) = (3,3,3,3,k) with3 < k <5 and K(z) > 55.
PrOOF. For d(z) > 6, the face vector f(z) at the vertex x with the largest

curvature is the vector f(x) = (3,...,3) and the corresponding curvature at x is
d d d—=6
K@) =1-c+c=-2"""<0.
(=) 573 6
The other five cases are routine enumerations. O

The following Lemma 2.2 is due to Higuchi [9].
LEMMA 2.2. If K(z) <0 at a vertex x, then K(x) < —e, where € = 1/1806.

LEMMA 2.3. If K(z) =0 at a vertex x, then 3 < d(z) < 6. Moreover, the face
vectors for each case are characterized into the following patterns.
(1) For d(z) = 3, f(z) = (3,7,42),(3,8,24),(3,9,18),(3,10,15),(3,11,12),
(3,12,12), (4, 5,20), (4,6,12), (4,8,8), (5,5, 10), (6,6, 6).
(2) Ford(z) =4, f(x)=(3,3,4,12), (3,3,6,6), (3,4,4,6), (4,4,4,4).
(3) Ford(z) =5, f(x) =(3,3,3,3,6), (3,3,3,4,4).
(4) Ford(z) =6, f(x) = (3, 3,3,3,3,3).

9

PRrROOF. For d = d(x) > 7, the face vector with the largest curvature is f(z) =
(3,...,3) and the curvature at x is

d d d—©6
K =]l--—+-=———<0
(z) 213 6
The other cases are routine calculations. O

COROLLARY 2.4. Let o be a face of an embedded graph G such that |o| > 13
and K(x) > 0 for allx € V(o). Then do is a cycle of G. Moreover, if Cy and Cy
are cycles of lengths |C1| > 13 and |Cs| > 13, then C1 and Cs are disjoint.

PRrROOF. Note that the boundary of a face is a cycle if and only if the face is
counted once at each of its vertices. It is easily checked from the dada in Lemma 2.1
and Lemma 2.3 that there are no two faces of both length at least 13 near a common
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vertex. So do is a cycle if |0o| > 13. Moreover, if C; and C; are cycles of G such
that |Cq] > 13 and |Cs| > 13, then C; and Cs must be disjoint. O

Contrary to the phenomenon that the combinatorial curvature is bounded away
from zero whenever it is negative, the combinatorial curvature being positive does
not imply that it is bounded away from zero. Actually there is no universal lower
bound for positive combinatorial curvature. For example, the projective wheel
graphs P, and the sphere annulus graphs A4,, and B, have curvature K(z) = 1/n
at every vertex x.

LEMMA 2.5. Let o be a face of the graph G. If either |o| > 43 and K(z) > 0
for all x € V(90), or |o| > 42 and K(x) > 0 for all x € V(90), then the o is a

cycle of G and
> K@) >1
z€eV (9o)

PROOF. It follows directly from Corollary 2.4 that the boundary do is a cycle
of G. Write k = |o|. By Lemma 2.1 and Lemma 2.3, the face vector f(x) at each
vertex = € do has the following possible patterns:

(k), (m,k), (3,3,k), (3,4,k), (3,5,k), (3,6,k), (4,4, k), (3,3,3,k).
Note that K (z) > 1 for each of these patterns. Hence Y 5, K(z) > 1. O

COROLLARY 2.6. Let o1,...,0, be faces of the graph G. If K(x) > 0 for all
x € 0oy U---Udoy, and |o;| > 43 for 1 < i < n, then

Z K(z) > n.

z€V (901U --Uday,)
Moreover, the boundaries 0oy, ...,00, are actually disjoint cycles of G.

PROOF. Since K(z) > 0 for every vertex x of G and |o;| > 43 for all i, then
by Corollary 2.4 the boundaries doy,...,Jd0, are disjoint cycles. The inequality
follows immediately from Lemma 2.5. O

LEMMA 2.7. Let x be a vertex of the graph G such that 0 < K(z) < 1/1722.
Then x is on a cycle C' of G, bounding a face of length at least 43.

PRrROOF. We first show that there is a face at x whose length is at least 43.
Suppose this is not true. Then all faces at « have length at most 42. Since K (x) > 0,
by Lemma 2.1, we have

111 1 1 1 1 1

1 1 1 1 1 11 1
1722’

where k < 42. This is contradictory to K(z) < 1753. Thus = must be on the
boundary of a face whose length is at least 43. Since there are no two faces of
length at least 12 at any vertex by Lemma 2.1, the boundary of any face of length
at least 43 is actually a cycle of G. (]
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3. The Proof of Theorem 1.4 and Theorem 1.6

Let D be the unit open disk of R? with the center at the origin. The boundary
of D, denoted by 0D, is the unit circle. Let A be an open subset of the surface S.
The boundary of A is the set 0A = A — A, which is not necessarily homeomorphic
to a circle. We say that a pair (A,0A) is homeomorphic to (D,0D) if there is a
homeomorphism ¢ : A — D such that ¢(A) = D and ¢(0A) = dD.

FIRST PROOF OF THEOREM 1.4. We shall show that if >, v [K(2)] < oo,
there are finite number of vertices having non-vanishing curvature. By Lemma 2.2,
if K(z) < 0 then K(z) < —1/1806. So the number of vertices with negative
curvature must be finite. Suppose there are infinitely many vertices of positive
curvature. These infinitely many vertices must have an accumulation point p in the
closed 2-manifold S.

Let v, be a sequence of vertices convergent to p and K(v,) > 0 for all n.
Since Y07, |K(vy)| < oo, then K(v,) — 0 (n — o0). Since negative curvature is
bounded away from zero, there is a positive integer N such that 0 < K (v,,) < 1/1722
for all n > N.

Let Uy be an open neighborhood of p such that OU; is a cycle of G and K () > 0
for all z € V(U1). We then have

Z K(z) < oo. (3.1)

z€V (U1)

Let v, be avertex in U; withn; > N. Then 0 < K (v,,) < 1/1722. By Lemma 2.7,
there is a face o at v, such that |oy| > 43. Clearly, 5, C Uy, so K(z) > 0 for all
z € V(0o1). Hence by Lemma 2.5, }° v 5,,) K(z) > 1.

Let U; be an open neighborhood of p such that U, C U; and U, is disjoint
from &;1. Let vy, be a vertex in Us with ng > ny. Again 0 < K (v,,) < 1/1722; and
by Lemma 2.7, there is a face o2 at v,, such that |oa| > 43. Clearly, 2 C Us, so
K(z) = 0 for all z € V(02). By Lemma 2.5, 3 v (55,) K(2) = 1.

Continuing this procedure we obtain a sequence o, (m = 1,2,...) of faces
whose closures 7, are disjoint. Thus

Y K(x)> > K@) =Y > K@) =o.

zeV(Uh) weV(Us_; dom) m=1zeV(dom)

m=1

This is contradictory to (3.1). O

SECOND PROOF OF THEOREM 1.4. We only need to show that if the absolute
total curvature | K |(G) is finite, then G has finite number of vertices of non-vanishing
curvature. Suppose this is not true, that is, there is a graph G such that |K|(G) <
00, but G has infinitely many vertices of non-vanishing curvature. Let ¢ = 1/1806
and

V. = {x V(@) :0< |K(z)| < e}.

If K(x) <0, then |K(z)| > € by Lemma 2.2. Thus K(z) > 0 for all x € V.. Since
2K (x)20 K ()] < 00, the complement V' — V. must be a finite set. In other words

1

555, there is a face o, of length at

V. is an infinite set. Since Lemma 2.7 and € <
least 43 at each vertex v € V..
Note that the number of vertices having negative curvature is finite. The set

of these finite number of vertices can intersect only finite number of closed faces in
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{7, : v € V.}. In other words, there are infinitely many closed faces in {5, : v € V.}
whose vertices have non-negative curvature. By Lemma 2.5, 3 v/ (95,) K(2) = 1
for each of these closed faces 7, with non-negative curvature. On the other hand,
since |G,| > 43, then by Corollary 2.4 the faces &, with non-negative curvature are

disjoint. Thus 3, v (g [K(x)| = co. This is contradictory to (3.1). O

LEMMA 3.1. Let G be an infinite graph embedded in a closed 2-manifold S, and
let p be an end of G. Let W be an open neighborhood of p such that (W,0W) is
homeomorphic to (D,0D). Then W contains an open neighborhood U of p such
that (U,0U) is homeomorphic to (D,0D) and OU is a cycle of G.

PRrOOF. Let A(G) denote the cell complex whose cells are vertices, open edges,
and open faces of G on the closed 2-manifold S. Let A(G,W) be the subcomplex
of A(G), generated by the cells intersecting the boundary OW, that is,

A(G7W):{JEA(G):JQT,TH@W#@}.

Then the union [A(G,W)| = U,ca(qw)0 is a closed subset of S, and p ¢
|A(G,W)|. So the relative complement W — |A(G, W)| is an open neighborhood
of p. Let U be the connected component of W — |A(G, W)| that contains p. Thus
U is an open neighborhood of p, and (U,dU) is homeomorphic to (D,0D). The

boundary U = U — U must be a cycle of G by the construction. O

LEMMA 3.2. Let G be a graph embedded in a closed 2-manifold S. If |[K|(G)
is finite, then for each end p € V'(G), the curvature Kg(p) exists and does not
depend on the graph sequence G,, in Definition 1.5.

PrOOF. Let U,, and W,, be two sequences of open neighborhoods of the end p,
satisfying the conditions in Definition 1.5. That is, (U,, 0U,) and (W,,,0W,,) are
homeomorphic to (D,0D); U,, C U,_1, W,, C Wy_1, N, Un =N, Wn = {p}; OU,
and OW,, are cycles of G. Let G,, =GN (S —-U,) and H, =GN (S —-W,).

FIGURE 4. The surface S,,, and the graph G,, .

For a fixed m and an arbitrary n such that U, C W,,, we define a cylinder
surface Sy, := Wy, — U, and a finite graph G, , := G NSy, , embedded in Sy, »;
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see FIGURE 4. Since the Euler characteristic of Sy, ,, is zero, we have

0 = Z Kg,, ,(z) = Z Ka,, . (x)

€V (Gm,n) eV (9U,,)
+ Z KGm,n (x) + Z KGm,n(CC)
zeV (0Wp,) zEV(Gm,n)

2@V (0WmUdUn)
= a(m,n)+ B(m,n) +y(m,n),

where a(m,n), 3(m,n), and y(m,n) are defined as the last three sums of the above
right-hand side, respectively. Notice that

K¢, (z) for z e V(0U,),
Kg,, . (v) = Koo, () for x € V(OWy),
Ka(z) for € V(Gmn)—V (0U, UOWy,).

Applying Theorem 1.4, we see that the number of vertices with non-vanishing
curvature is finite. We may choose m large enough so that W, contains no vertices
of non-vanishing curvature. It then follows that when n is large enough, a(m,n) is
independent of m, so we may write a(m,n) = a(n); B(m,n) is independent of n,
so we may write 3(m,n) = 8(m); and y(m,n) = 0. Thus for large enough fixed m

we have a(n) = —f(m) for large n. Of course lim,, o, a(n) exists and
lim a(n) = lim Z Kg, (z) = =p(m)
n— 00 n—o0 weV (B0,

for large enough m. Similarly, for a fixed n and an arbitrary m such that W, C U,,,
we shall obtain sequences o’(m) and §’(n) such that for large enough fixed n,

o/ (m) = —p'(n) for large m. Hence lim,, o &/(m) exists and
lim o/(m) = lim Z Kg,, (z) = =5 (n).

On the other hand, since there are only finite number of vertices with non-
vanishing curvature, then for large enough n we have

Y Ka@)= Y Kax)=0.

z€eV (9U,) z€V(OW,,)
This is equivalent to a(n) + #'(n) = 0 and B(n) + o/(n) = 0 for large n. Thus
a(n) = —=f'(n) = o/(m) for large enough m and n. It follows that lim, . a(n) =
lim,,— o0 @' (m). Hence the limit in question is unique. a

PROOF OF THEOREM 1.6. For each end p € V'(G), let U, (p) be a sequence of
open neighborhoods of p such that (U,,,dU,,) is homeomorphic to (D,dD), U,, C
Un—1, OU, is a cycle of G, and N, U, = {p}. We may further assume that U, (p)
for all p € V'(G) are disjoint. Let

Sp=8— |J Unlp) and G,=GnNS,.
peEV'(G)
Then S, is a 2-manifold with boundary ¢y () OUn(p). Let 0G = GNOS,. 1t is
clear that
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Let S,(p) = S — Un(p), Gu(p) = G N S,(p), and G, (p) = G N OU,(p). Then
0Gn = U,evr(q) 0Gn(p). Applying the Euler formula for the surface S, with the
embedded finite graph G,,, we have

XS) = Y Ke, (@)

zeV(Gy)

Z Kg, () + Z Kg, ()

€V (0G,) 2EV(Gn)—V (8Gy)

Z Z KGn(p)(l‘) + Z Kg(x)

pEV!(G) 2EV (3G (p)) 2€V(Gn)—V(8Gy)

Let n tend to co and make use of definition of K¢ (p). We obtain

XS -#(V'(@) = Y. Kelp)+ >, Ka().

peEV’(G) zeV(Q)

4. Proof of Theorem 1.7 and Theorem 1.8

We first prove the the statement of Theorem 1.7 for the case of projective plane.
To do this we need the following lemma.

LEMMA 4.1. Let G be a finite simple graph embedded in a projective plane such
that 3 < d(z) < oo and K(z) > 0 for all x € V(G). If #(V(G)) > 1722, then all
vertices of G are contained in a cycle bounding a face of length #(V(G)).

PROOF. We first claim that there is a face ¢ of G whose length is at least 43.
If there is one vertex z such that K (z) < 1755, then by Lemma 2.7, there is a cycle
C of length at least 43 such that C' bounds a face o.

If, on the other hand, K () > 175 for all z € V(G), we must have K (z) = =55
for all x € V(QG) and there are exactly 1722 vertices. Then by Lemma 2.1 that either
there is one vertex of G which is on a cycle of length 1722, or every vertex of G has
the face vector (3,7,41). In the formal case we have had a face of length 1722 which
is larger than 43. In the latter case every vertex of G has three faces of lengths 3,

7, and 41, respectively. Take a vertex x and draw its faces as in FIGURES 5. Since

face of length 41 face of length 7

face of length 41
FIGURE 5. Impossibility of face vector (3,7,41) at every vertex of G.

every vertex has the face vector (3,7,41) and the vertex u has had faces of lengths
3 and 7, then the vertex u must have a face of length 41. Thus the edge uv must
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be on the boundary of a face of length 41. It follows that the vertex v has two faces
of length 41. This is contradictory to Corollary 2.4.

Now we have seen that the graph G has a face o of length at least 43. By
Corollary 2.4 the boundary 0o must be a cycle of G. Thus by Lemma 2.5 we have

1= > Kgl@)> > K@) >L

2eV(G) 2€V(90)
It forces that V(G) = V(90). So all vertices of G are on a face cycle of G. O

THE PROOF OF THEOREM 1.7 PART (a):

Since n > 1722, it follows from Lemma 4.1 that all vertices of G are on a cycle
bounding a face o of length n.

CASE 1: There exists a vertex of degree 4.

Let x; be a vertex whose degree is 4. Then there are two edges incident with
21 other than the edges on the cycle do; we label the two edges by 1 and 2 as shown
in FIGURE 6. Let the edge with label 1 be incident with a vertex yy. We label the
vertices on the cycle Jo starting from z; in counterclockwise by x1, 2, x3,...,2;
and label the vertices on the same cycle starting from yy in counterclockwise by
Y0, Y1, Y2, - - -, Yj, respectively. Then ¢ + j + 1 = n; see FIGURE 6.

FIGURE 6.

Recall from Lemma 2.1 that the face vector at any vertex of degree 4 on the
cycle do is (3,3,3,k) with k& > 1722. Since d(z1) = 4 and G has had the face
o of length larger than or equal to 1722, the edges x1yo and yoy; must bound a
triangular face. It forces that z1y; is an edge (label 2) of G. Thus z; is adjacent to
yo and y;. Similarly, since the edges y;x1 and z122 must bound a triangular face,
it forces that y;z2 (label 3) is an edge of G. Hence d(y;) = 4. By the same token
the edges z2y1 and y;y2 must bound a triangular face so that xzoys (label 4) is also
an edge of G. Therefore x2 is adjacent to y; and y2. Now d(yz2) = 4; the edges
Yoo and xox3 must bound a triangular face so that yoxs (label 5) is an edge of Gj
and the edges x3y2 and yoys must bound a triangular face so that xz3ys is an edge
(label 6) of G. We thus conclude that x5 is adjacent to ys and y3. Continuing this
procedure we see that z, is adjacent to y,_1 and y,, 1 < r < min{i, j}. We divide
the situation into three subcases.

CASE 1.1: ¢ < j.

The edges yox1 and x;y; must bound a triangular face so that yoy; is also an
edge of G. Then d(yo) = 5. This is a contradiction; see FIGURE 7(a).
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(a) i< j (b)i>j

FIGURE 7. The impossibility cases of i # j.

CASE 1.2: ¢ > j.

The edges x1y; and y;x; must bound a triangular face so that x,x; is an edge
of G. Thus d(z1) = 5. This is a contradiction; see FIGURE 7(b).

CASE 1.3: i =j =s.

It follows that the graph G is isomorphic to the graph Ps,.1; see FIGURE 8(a).

2j-1

S 25

A i 2 1

(a) Post+1 (b) Pas

F1GURE 8. The projective plane graph isomorphic to P,.

CASE 2: There is no vertex of degree 4.

This means that every vertex of G has degree 3. Then every vertex on the cycle
Jo is adjacent to another vertex on the same cycle. It forces that the number of
vertices on the cycle must be even. Let n = 2s and let the vertices x1,xo,...,xs be
adjacent to the vertices y1,¥a, ..., ys, respectively. Since the graph G is embedded
in the projective plane, it forces that the order of y1,ys, ..., ys are the same as that
of 21, xa,...,2s; see FIGURE 8(Db). O

Now we prove the statement of Theorem 1.7 for the case of sphere.

LEMMA 4.2. Let C be a face cycle of length at least 43 of a graph G embedded
in a sphere such that 3 < d(z) < oo and K(x) > 0 for all vertices x € C. Let u
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and v be two vertices of C. If u and v are not adjacent in C, then u and v are not
adjacent in G.

PROOF. Suppose this is not true; that is, there are two vertices u and v of C
such that w and v are not adjacent in C' but adjacent in G. Given an orientation
of C so that the vertices of C are cyclically ordered. Let v’ and u” be the vertices
that are adjacent with w in C; and let v' and v” be the vertices that are adjacent
with v in C; see FIGURE 9(a). We may have u” = v'. The degree dg(u) must be
either 3 or 4, and can not be 5 by Lemma 2.1.

. RZ . RZ
(a) (b)

FIGURE 9. wu and v are not adjacent in C' but adjacent in G.

CASE 1: dg(u) = 4.

Let w be a vertex adjacent to u but w is not on C'. Then w is located either in
the region R; or in the region R,.

CASE 1.1: The vertex w is located in the region R;. See FIGURE 10(a).

(a) w is located in Ry vw is an edge (c) v'w is an edge

FiGURE 10.

By Lemma 2.1, the face vector at u must be (3,3,3,k) with k& > 43. So the
face bounding the edges uv and ww must be a triangle. This forces that v and w
must be adjacent; see FIGURE 10(b). By the same token, the face bounding the
edges uu’ and uv must be a triangle. This forces that v’ and v must be adjacent,
or ' =v". In the former case we have dg(v) = 5; this is impossible because there
is no face of length at least 43 at a vertex of degree 5; see FIGURE 10(c). In the
latter case we have dg(u') = 2, which is not allowed.

CASE 1.2: The vertex w is located in the region Rs. See FIGURE 11(a).

Similarly, by Lemma 2.1, the face vector at u must be (3,3,3,k) with k& > 43.
Then the face bounding the edges uv and uw must be a triangle. So v and w must
be adjacent; FIGURE 11(b). By the same token, the face bounding the edges uu’
and uwv must be a triangle. This forces that u” and v must be adjacent, or u” = v’.
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In the former case we have dg(v) = 5; this is impossible by Lemma 2.1. In the
latter case we have dg(u”) = 2, which is not allowed.

R,

(a) w is located in Ra (b) vw is an edge (c) v"w is an edge

FIGURE 11.

CASE 2: dg(u) = 3.

By symmetry we may assume dg(v) = 3. We may further assume that u and
v are such a pair of adjacent vertices so that the distance d¢(u,v) in C' is minimal.
By Lemma 2.1, the face vector at u is one of (3,3,k), (3,4,k), (3,5,k), (3,6,k),
and (4,4,k) with k& > 43. Note that u” # v'; otherwise dg(u”) = dg(v') = 2,
which is not allowed. Similarly, u’ # v”. If there is a triangular face at u, then v
is adjacent to either u’ or u”. In either case we have dg(v) = 4, which has been
shown impossible in Case 1. If the face vector at w is (4,4, k), then u” must be
adjacent to v', and v’ is adjacent to v”. Hence one of the distances dg(u',v”) and
dg(u”,v") must be shorter than dg(u,v), which is contradictory to the minimality
of dg(u,v); see FIGURE 9(b). O

LEMMA 4.3. Let G be a finite graph embedded in a sphere such that 3 < d(z) <
oo and K(x) > 0 for all x € V(G). If |V(G)| > 3444, then all vertices of G are
ezxactly located on two disjoint face cycles of length at least 43.

PrOOF. Since the Euler characteristic of a sphere is 2, there is at least one
vertex whose curvature is less than or equal to ﬁ

CASE 1: There exists one vertex 1 such that K(z1) < 175

By Lemma 2.7 there is a face o incident with z; and |o| > 43. By Lemma 2.5
we have Y-y 5, K(z) = 1.

CASE 1.1: The length |o| < 1722.

In this case we have [V (G) =V (90)| > 1722. Since }_, oy (5, K (2) < 1, there s
another vertex y; ¢ V(do) such that K(y1) < 1755. Similarly, by Lemma 2.5 there
is a face 7 near y; such that |7| > 43, and by Lemma 2.5 we have }_ vy K(z) =

1. The two cycles do and O must be disjoint by Lemma 2.4. It then follows that

2= Y K@=> Y K@) =>2
zeV(QG) €V (oUdT)
Hence V(G) = V(9o U 97) is on exactly two cycles of G.

CASE 1.2: The length |0c| = k > 1722.

Let a3, a4, a5, ag, b, and ¢ be the numbers of vertices on the cycle 0o whose face
vectors are (3,3, k), (3,4, k), (3,5, k), (3,6,k), (4,4,k), and (3, 3,3, k), respectively.
Let G; be the subgraph of G induced by the vertex set V(G) — V(90), that is, Gy
is obtained by deleting the vertices of do and all edges incident with vertices of do.
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Obviously, G; is a plane graph with a face oy that contains o; the boundary do;
may not be a cycle of G. Note that

as Qa4 ag
K =14 =+ —=+—=<2.
2 Kw=1+F+p+gs
eV (9o)

We then have a3z < 6, a4 < 12, and a5 < 30. Since each vertex with the face vector
(3,3,k) may result three vertices of do corresponding to one vertex of doq, the
number of vertices of do; may be reduced by 2a3. Similarly, each vertex with the
face vector (3,4, k) may result two vertices of 9o corresponding to one vertex of
0Jo1, the number of vertices of do; may be further reduced by 2a,. However, the
vertices of o with the face vector (3,5, k) or (3,6, k) or (3,3, 3, k) can be arranged
to correspond to distinct vertices of doy. It follows that
001| > [00| — 2a3 — as > 1722 — 26 — 12 = 1698.

If a3z > 1 or ag > 1, then erv(aal)K(z) <1-— % = %; it follows that
there is at least one vertex y € V(do1) such that K(y) < pibes < 13- By
Lemma 2.7 there is a face 7 of length at least 43 incident with the vertex y; and
by Lemma 2.5 we have 37, v, (5,) = 1. It then forces that V(07) = V(G) — V(00);
and subsequently, V(07) = V(G,) and Gy = doy.

If a3 = a4 = 0, then |0o1| > |0o| > 1722. We claim that V(G) = V(o U do),
and if so, oy is obviously a face cycle of length at least 1722. Suppose |V (G)| >
|V (0o1 U Oo)|, we have |V (G1)| > |0c| > 1722. Then there is a vertex y € V(Gy)
such that K(y) < 17% By Lemma 2.7 there is a face 7 of length at least 43
incident with the vertex y, and by Lemma 2.5 we have ZxGV(a‘r) > 1. Hence
> rev(oruoe) K (z) = 2. This forces that V(0r) = V(G) — V(do); so we have
Ot = Joy and V(G) = V(001 U Oo) which is a contradiction.

CASE 2: K(z) > 155 for allz € V(G).

In this case we must have K(z) = =55 for all z € V(G) and |V (G)| = 3444.
Then the face vector at each vertex takes one of the forms (3,6,1722), (4,4,1722),
(3,3,3,1722), and (3,7,41). If there is a vertex x whose face vector is (3,7,41), we
draw the faces at x as in FIGURE 5 on the plane. Then the face vector at the vertex
v must be (3,7,41) and the edge uv is bounding a face of length 41. Thus there are
two faces of length 41 at the vertex w; this is a contradiction. So there is no vertex
with the face vector (3,7,41). It follows that every vertex is on a face of length
1722. Take a face o of length 1722 and a vertex v not on the boundary do. There is
a face 7 of length 1722 at v. Then do and 07 are disjoint by Corollary 2.4, and by
Corollary 2.6 we have }, v (9,000 K () = 2. 1t follows that V(G) = V(9o U 97)
and all vertices of G are on two face cycles do and 07 of equal length 1722. O

PrROOF OF THEOREM 1.7 PART (b):

Let Cy and C; be two face cycles of length at least 43 and V(G) = V(C1 UCy).
Let B(C1,Cs) be the bipartite graph whose vertex set is V(C1) U V(C3) and the
edge set is E(G) — E(Cy) — E(C3). Note that the degree of every vertex of G
is either 3 or 4 by Lemma 2.1. It follows that the degree of every vertex of the
bipartite graph B(Cy,C5) is either 1 or 2. Hence B(C1,Cs) is a disjoint union of
cycles and paths.

If there is one cycle C in B(Cy, Bs), since G is a plane graph and B(CY, Bs) is
in the annulus between the face cycles C; and Cy, the cycle C must be a Hamilton
cycle and all edges of B(Ci,C3) are on the Hamilton cycle C. Thus the cycles
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C: and C3 have the same length n, and the graph G is isomorphic to the sphere
annulus graph B,.

If, on the other hand, there is no cycle in B(Cy,Cs), that is, all connected
components are paths, we claim that all the paths are single edges. Suppose there
are paths of length larger than 1; see FIGURE 12 for example. Then the curvatures
at the marked vertices are negative, which is a contradiction. Thus all the paths in
B(C1, Cs) have length one, that is, all the paths are single edges. Hence the cycles
C1 and (3 have the same length n, and the graph G is isomorphic to the sphere
annulus graph A,,.

&)

FI1GURE 12. The negative curvature at the marked vertices.

PrOOF OF THEOREM 1.8.

Let G be a 5-regular and finite simple graph embedded in a closed 2-manifold
with positive curvature at every vertex. By Lemma 2.1 the face vector at any
vertex x is (3,3,3,3,k) with £ = 3,4,5. Let v, e, and f be the number of vertices,
edges, and faces of G, respectively. We denote by v; the number of vertices whose
face vector is (3,3,3,3,k) and by fi the number of faces whose length is k, where
k=3,4,5.

Since 5v = 2e and the Euler relation v—e+ f = x(.5), we have f = 3v/2+x(5),
where x(S) = 1if S is a projective plane and x(S) = 2 if S is a sphere. Note that
there are no two faces of length larger than or equal to 4 at any vertex. The
boundaries for faces of length larger than or equal to 4 must be disjoint. Using the
relation among the vertices, edges, and faces, we obtain

vy =4f4, vs=5f5, bv=2e=3f3+4f1+5[5.
Since v = v + vy +v5 and f = f3 + fy4 + f5, we further obtain
10v = 5vyq + 8vs + 60x, 2v + 8vg + 3vg = 60y, 10v3 + Svg + 2v5 = 60x.
We thus have the following inequality relations
6x <v <30y, w3 <6y, wvg<12x.

Applying f = f3 + fs + f5 again, we have f = 3f; + 6f5 + 10x. This implies
J3 > 10x.
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Now, when S is a projective plane, the vectors (vs, vs, vs) and (fs, f1, f5) have
the possibilities of the table

v3 | (v3,04,05) | (f3, fa, [5) 2| (2,8,0) | (14,2,0)
0 [ (0,12,0) | (16,3,0) (2,4,10) | (22,1,2)
(0,8,10) | (24,2,2) (2,0,20) | (30,0,4)
(0,4,20) | (32,1,4) 31 (3,4,5) | (17,1,1)
(0,0,30) | (40,0,6) (3,0,15) | (25,0,3)

T (.85 | (1921 1 (44,0) [ (121,0)
(1,4,15) | (27,1,3) (4,0,10) | (20,0,2)
(1,0,25) | (35,0,5) 51 (5,0,5) | (15,0,1)

6| (6,0,0) | (10,0,0)

while when S is a sphere, the possibilities for the vectors (vs, vg, vs) and (fs3, fa, f5)
are listed in the following table

v | (v3,v4,v5) | (f3,.f1, f5) 4] (4,16,0) | (28,4,0)
0 [ (0,24,0) | (32,6,0) (4,12,10) | (36,3,2)
(0,20,10) | (40,5,2) (4,8,20) | (44,2, 4)
(0,16,20) | (48,4, 4) (4,4,30) | (52,1,6)
(0,12,30) | (56,3,6) (4,0,40) | (60,0,8)
(0,8,40) | (64,2,8) 51 (5,12,5) | (31,3,1)
(0,4,50) | (72, 1,10) (5,8,15) | (39,2,3)
(0,0,60) | (80,0,12) (5,4,25) | (47,1,5)
11 (1,20,5) | (35,5,1) (5,0,35) | (55,0,7)
(1,16,15) | (43,4,3) 6 | (6,12,0) | (26,3,0)
(1,12,25) | (51,3,5) (6,8,10) | (34,2,2)
(1,8,35) | (59,2,7) (6.4,20) | (42,1,4)
(1,4,45) | (67,1,9) (6.0,30) | (50,0,6)
(1,0,55) | (75,0,11) T (7.8,5) [(29,2,1)
2 [ (2,20,0) | (30,5,0) (7,4,15) | (37,1,3)
(2,16,10) | (38,4,2) (7,0,25) | (45,0,5)
(2,12,20) | (46,3, 4) 8| (8,8,0) | (24,2,0)
(2,8,30) | (54,2,6) (8.4,10) | (32,1,2)
(2,4,40) | (62,1,8) (8,0,20) | (40,0,4)
(2,0,50) | (70,0, 10) 9 [ (9,4,5) |(@7,11)
31 (3,165 | (33,4,1) (9,0,15) | (35,0,3)
(3,12,15) | (41,3,3) 10| (10,4,0) | (22,1,0)
(3,8,25) | (49,2,5) (10,0,10) | (30,0,2)
(3,4,35) | (57,1,7) 111 (15,0,5) | (25,0,1)
(3,0,45) | (65,0,9) 12 (12,0,0) | (20,0,0)

O

At the end we illustrate some 5-regular projective graphs (FIGURE 13) and

5-regular plane graphs (FIGURE 14). The upper bound of 60 vertices for 5-regular

plane graphs can be reached; see FIGURE 15. However, it is not clear whether the
upper bound of 30 vertices for 5-regular projective graphs can be reached.
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1
2 3
3 2
1
(a) (v3,v4,v5)=(6,0,0) (b) (v3,v4,v5)=(5,0,5)
(f3,f4,f5)=(10,0,0) (f3,fa,f5)=(15,0,1)

FIGURE 13. 5-regular projective graphs with positive curvature
at every vertex.

(a) (vs3,v4,v5)=(12,0,0) (b) (v3,v4,v5)=(8,8,0)
(f3,f1,f5)=(20,0,0) (f3,f4,f5)=(24,2,0)

(v3,v4,v5)=(10,0,10) (v3,v4,v5)=(0,24,0)
(©) (s i f=(30,0.2) (@) (3 Faf2)=(32,6.0)

FIGURE 14. 5-regular plane graphs with positive curvature at
every vertex.

FIGURE 16 demonstrates some examples of plane infinite graphs with non-
negative curvature at every vertex but having only finite number of vertices of pos-
itive curvature. These graphs confirm Theorem 1.4 and support CONJECTURE 1.9.
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=
=

]
TS

FIGURE 15. (U37 V4, ’U5) = (O’ 07 60)? (f37 f47 f5) = (80a 07 12)7 the
5-regular plane graph of maximal number of vertices with positive
curvature everywhere.

More such graphs can be constructed by pinching with these sample graphs in
different directions.
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1/4

1/12

1/12 1/12

T T [ Tw w] [ ]

N O 7
T T == T ]

T [ [we w] [ ]

‘ ‘ 1/12 1/12 ‘ ‘

(d)

FIGURE 16. Infinite plane graphs with non-negative curvature at
every vertex and positive curvature at finite number of vertices.
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