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Preface
What follows are my lecture notes for a mathematics course offered to second-year
engineering students at the the Hong Kong University of Science and Technology.
Material from our usual courses on linear algebra and differential equations have
been combined into a single course (essentially, two half-semester courses) at the
request of our Engineering School. I have tried my best to select the most essential
and interesting topics from both courses, and to show how knowledge of linear
algebra can improve students’ understanding of differential equations.

All web surfers are welcome to download these notes and to use the notes and
videos freely for teaching and learning.

I also have some online courses on Coursera. You can click on the links below to
explore these courses.

If you want to learn differential equations, have a look at

Differential Equations for Engineers

If your interests are matrices and elementary linear algebra, try

Matrix Algebra for Engineers

If you want to learn vector calculus (also known as multivariable calculus, or calcu-
lus three), you can sign up for

Vector Calculus for Engineers

And if your interest is numerical methods, have a go at

Numerical Methods for Engineers

Jeffrey R. Chasnov

Hong Kong
January 2020
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Chapter 0

A short mathematical review
A basic understanding of pre-calculus, calculus, and complex numbers is required
for this course. This zero chapter presents a concise review.

0.1 The trigonometric functions

The Pythagorean trigonometric identity is

sin2 x + cos2 x = 1,

and the addition theorems are

sin(x + y) = sin(x) cos(y) + cos(x) sin(y),
cos(x + y) = cos(x) cos(y)− sin(x) sin(y).

Also, the values of sin x in the first quadrant can be remembered by the rule of
quarters, with 0◦ = 0, 30◦ = π/6, 45◦ = π/4, 60◦ = π/3, 90◦ = π/2:

sin 0◦ =

√
0
4

, sin 30◦ =

√
1
4

, sin 45◦ =

√
2
4

,

sin 60◦ =

√
3
4

, sin 90◦ =

√
4
4

.

The following symmetry properties are also useful:

sin(π/2− x) = cos x, cos(π/2− x) = sin x;

and
sin(−x) = − sin(x), cos(−x) = cos(x).

0.2 The exponential function and the natural logarithm

The transcendental number e, approximately 2.71828, is defined as

e = lim
n→∞

(
1 +

1
n

)n
.

The exponential function exp (x) = ex and natural logarithm ln x are inverse func-
tions satisfying

eln x = x, ln ex = x.

The usual rules of exponents apply:

exey = ex+y, ex/ey = ex−y, (ex)p = epx.

The corresponding rules for the logarithmic function are

ln (xy) = ln x + ln y, ln (x/y) = ln x− ln y, ln xp = p ln x.

1



0.3. DEFINITION OF THE DERIVATIVE

0.3 Definition of the derivative

The derivative of the function y = f (x), denoted as f ′(x) or dy/dx, is defined as
the slope of the tangent line to the curve y = f (x) at the point (x, y). This slope is
obtained by a limit, and is defined as

f ′(x) = lim
h→0

f (x + h)− f (x)
h

. (1)

0.4 Differentiating a combination of functions

0.4.1 The sum or difference rule

The derivative of the sum of f (x) and g(x) is

( f + g)′ = f ′ + g′.

Similarly, the derivative of the difference is

( f − g)′ = f ′ − g′.

0.4.2 The product rule

The derivative of the product of f (x) and g(x) is

( f g)′ = f ′g + f g′,

and should be memorized as “the derivative of the first times the second plus the
first times the derivative of the second.”

0.4.3 The quotient rule

The derivative of the quotient of f (x) and g(x) is(
f
g

)′
=

f ′g− f g′

g2 ,

and should be memorized as “the derivative of the top times the bottom minus the
top times the derivative of the bottom over the bottom squared.”

0.4.4 The chain rule

The derivative of the composition of f (x) and g(x) is(
f
(

g(x)
))′

= f ′
(

g(x)
)
· g′(x),

and should be memorized as “the derivative of the outside times the derivative of
the inside.”

2 CHAPTER 0. A SHORT MATHEMATICAL REVIEW



0.5. DIFFERENTIATING ELEMENTARY FUNCTIONS

0.5 Differentiating elementary functions

0.5.1 The power rule
The derivative of a power of x is given by

d
dx

xp = pxp−1.

0.5.2 Trigonometric functions
The derivatives of sin x and cos x are

(sin x)′ = cos x, (cos x)′ = − sin x.

We thus say that “the derivative of sine is cosine,” and “the derivative of cosine is
minus sine.” Notice that the second derivatives satisfy

(sin x)′′ = − sin x, (cos x)′′ = − cos x.

0.5.3 Exponential and natural logarithm functions
The derivative of ex and ln x are

(ex)′ = ex, (ln x)′ =
1
x

.

0.6 Definition of the integral

The definite integral of a function f (x) > 0 from x = a to b (b > a) is defined
as the area bounded by the vertical lines x = a, x = b, the x-axis and the curve
y = f (x). This “area under the curve” is obtained by a limit. First, the area is
approximated by a sum of rectangle areas. Second, the integral is defined to be the
limit of the rectangle areas as the width of each individual rectangle goes to zero
and the number of rectangles goes to infinity. This resulting infinite sum is called a
Riemann Sum, and we define

∫ b

a
f (x)dx = lim

h→0

N

∑
n=1

f
(
a + (n− 1)h

)
· h, (2)

where N = (b− a)/h is the number of terms in the sum. The symbols on the left-
hand-side of (2) are read as “the integral from a to b of f of x dee x.” The Riemann
Sum definition is extended to all values of a and b and for all values of f (x) (positive
and negative). Accordingly,∫ a

b
f (x)dx = −

∫ b

a
f (x)dx and

∫ b

a
(− f (x))dx = −

∫ b

a
f (x)dx.

Also, ∫ c

a
f (x)dx =

∫ b

a
f (x)dx +

∫ c

b
f (x)dx,

which states when f (x) > 0 and a < b < c that the total area is equal to the sum of
its parts.

CHAPTER 0. A SHORT MATHEMATICAL REVIEW 3



0.7. THE FUNDAMENTAL THEOREM OF CALCULUS

0.7 The fundamental theorem of calculus

View tutorial on YouTube

Using the definition of the derivative, we differentiate the following integral:

d
dx

∫ x

a
f (s)ds = lim

h→0

∫ x+h
a f (s)ds−

∫ x
a f (s)ds

h

= lim
h→0

∫ x+h
x f (s)ds

h

= lim
h→0

h f (x)
h

= f (x).

This result is called the fundamental theorem of calculus, and provides a connection
between differentiation and integration.

The fundamental theorem teaches us how to integrate functions. Let F(x) be a
function such that F′(x) = f (x). We say that F(x) is an antiderivative of f (x). Then
from the fundamental theorem and the fact that the derivative of a constant equals
zero,

F(x) =
∫ x

a
f (s)ds + c.

Now, F(a) = c and F(b) =
∫ b

a f (s)ds + F(a). Therefore, the fundamental theorem
shows us how to integrate a function f (x) provided we can find its antiderivative:

∫ b

a
f (s)ds = F(b)− F(a). (3)

Unfortunately, finding antiderivatives is much harder than finding derivatives, and
indeed, most complicated functions cannot be integrated analytically.

We can also derive the very important result (3) directly from the definition of
the derivative (1) and the definite integral (2). We will see it is convenient to choose
the same h in both limits. With F′(x) = f (x), we have

∫ b

a
f (s)ds =

∫ b

a
F′(s)ds

= lim
h→0

N

∑
n=1

F′
(
a + (n− 1)h

)
· h

= lim
h→0

N

∑
n=1

F(a + nh)− F
(
a + (n− 1)h

)
h

· h

= lim
h→0

N

∑
n=1

F(a + nh)− F
(
a + (n− 1)h

)
.

The last expression has an interesting structure. All the values of F(x) evaluated
at the points lying between the endpoints a and b cancel each other in consecutive
terms. Only the value −F(a) survives when n = 1, and the value +F(b) when
n = N, yielding again (3).

4 CHAPTER 0. A SHORT MATHEMATICAL REVIEW

http://www.youtube.com/watch?v=bEB6HTZ1sRA


0.8. DEFINITE AND INDEFINITE INTEGRALS

0.8 Definite and indefinite integrals

The Riemann sum definition of an integral is called a definite integral. It is convenient
to also define an indefinite integral by∫

f (x)dx = F(x),

where F(x) is the antiderivative of f (x).

0.9 Indefinite integrals of elementary functions

From our known derivatives of elementary functions, we can determine some sim-
ple indefinite integrals. The power rule gives us∫

xndx =
xn+1

n + 1
+ c, n 6= −1.

When n = −1, and x is positive, we have∫ 1
x

dx = ln x + c.

If x is negative, using the chain rule we have

d
dx

ln (−x) =
1
x

.

Therefore, since

|x| =
{
−x if x < 0;
x if x > 0,

we can generalize our indefinite integral to strictly positive or strictly negative x:∫ 1
x

dx = ln |x|+ c.

Trigonometric functions can also be integrated:∫
cos xdx = sin x + c,

∫
sin xdx = − cos x + c.

Easily proved identities are an addition rule:∫ (
f (x) + g(x)

)
dx =

∫
f (x)dx +

∫
g(x)dx;

and multiplication by a constant:∫
A f (x)dx = A

∫
f (x)dx.

This permits integration of functions such as∫
(x2 + 7x + 2)dx =

x3

3
+

7x2

2
+ 2x + c,

and ∫
(5 cos x + sin x)dx = 5 sin x− cos x + c.

CHAPTER 0. A SHORT MATHEMATICAL REVIEW 5



0.10. SUBSTITUTION

0.10 Substitution

More complicated functions can be integrated using the chain rule. Since

d
dx

f
(

g(x)
)
= f ′

(
g(x)

)
· g′(x),

we have ∫
f ′
(

g(x)
)
· g′(x)dx = f

(
g(x)

)
+ c.

This integration formula is usually implemented by letting y = g(x). Then one
writes dy = g′(x)dx to obtain∫

f ′
(

g(x)
)

g′(x)dx =
∫

f ′(y)dy

= f (y) + c

= f
(

g(x)
)
+ c.

0.11 Integration by parts

Another integration technique makes use of the product rule for differentiation.
Since

( f g)′ = f ′g + f g′,

we have
f ′g = ( f g)′ − f g′.

Therefore, ∫
f ′(x)g(x)dx = f (x)g(x)−

∫
f (x)g′(x)dx.

Commonly, the above integral is done by writing

u = g(x) dv = f ′(x)dx
du = g′(x)dx v = f (x).

Then, the formula to be memorized is∫
udv = uv−

∫
vdu.

0.12 Taylor series

A Taylor series of a function f (x) about a point x = a is a power series repre-
sentation of f (x) developed so that all the derivatives of f (x) at a match all the
derivatives of the power series. Without worrying about convergence here, we have

f (x) = f (a) + f ′(a)(x− a) +
f ′′(a)

2!
(x− a)2 +

f ′′′(a)
3!

(x− a)3 + . . . .

Notice that the first term in the power series (the zeroth derivative of f (x) at a)
matches f (a), all other terms vanishing, the second term matches f ′(a), all other
terms vanishing, etc. Commonly, the Taylor series is developed with a = 0. We will

6 CHAPTER 0. A SHORT MATHEMATICAL REVIEW



0.13. FUNCTIONS OF SEVERAL VARIABLES

also make use of the Taylor series in a slightly different form, with x = x∗ + ε and
a = x∗:

f (x∗ + ε) = f (x∗) + f ′(x∗)ε +
f ′′(x∗)

2!
ε2 +

f ′′′(x∗)
3!

ε3 + . . . .

Another way to view this series is that of g(ε) = f (x∗ + ε), expanded about ε = 0.
Taylor series that are commonly used include

ex = 1 + x +
x2

2!
+

x3

3!
+ . . . ,

sin x = x− x3

3!
+

x5

5!
− . . . ,

cos x = 1− x2

2!
+

x4

4!
− . . . ,

1
1 + x

= 1− x + x2 − . . . , for |x| < 1,

ln (1 + x) = x− x2

2
+

x3

3
− . . . , for |x| < 1.

0.13 Functions of several variables

For simplicity, we consider a function f = f (x, y) of two variables, though the
results are easily generalized. The partial derivative of f with respect to x is defined
as

∂ f
∂x

= lim
h→0

f (x + h, y)− f (x, y)
h

,

and similarly for the partial derivative of f with respect to y. To take the partial
derivative of f with respect to x, say, take the derivative of f with respect to x
holding y fixed. As an example, consider

f (x, y) = 2x3y2 + y3.

We have
∂ f
∂x

= 6x2y2,
∂ f
∂y

= 4x3y + 3y2.

Second derivatives are defined as the derivatives of the first derivatives, so we have

∂2 f
∂x2 = 12xy2,

∂2 f
∂y2 = 4x3 + 6y;

and the mixed second partial derivatives are

∂2 f
∂x∂y

= 12x2y,
∂2 f

∂y∂x
= 12x2y.

In general, mixed partial derivatives are independent of the order in which the
derivatives are taken.

Partial derivatives are necessary for applying the chain rule. Consider

d f = f (x + dx, y + dy)− f (x, y).
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We can write d f as

d f = [ f (x + dx, y + dy)− f (x, y + dy)] + [ f (x, y + dy)− f (x, y)]

=
∂ f
∂x

dx +
∂ f
∂y

dy.

If one has f = f (x(t), y(t)), say, then

d f
dt

=
∂ f
∂x

dx
dt

+
∂ f
∂y

dy
dt

.

And if one has f = f (x(r, θ), y(r, θ)), say, then

∂ f
∂r

=
∂ f
∂x

∂x
∂r

+
∂ f
∂y

∂y
∂r

,
∂ f
∂θ

=
∂ f
∂x

∂x
∂θ

+
∂ f
∂y

∂y
∂θ

.

A Taylor series of a function of several variables can also be developed. Here, all
partial derivatives of f (x, y) at (a, b) match all the partial derivatives of the power
series. With the notation

fx =
∂ f
∂x

, fy =
∂ f
∂y

, fxx =
∂2 f
∂x2 , fxy =

∂2 f
∂x∂y

, fyy =
∂2 f
∂y2 , etc.,

we have

f (x, y) = f (a, b) + fx(a, b)(x− a) + fy(a, b)(y− b)

+
1
2!

(
fxx(a, b)(x− a)2 + 2 fxy(a, b)(x− a)(y− b) + fyy(a, b)(y− b)2

)
+ . . .

0.14 Complex numbers

View tutorial on YouTube: Complex Numbers
View tutorial on YouTube: Complex Exponential Function

We define the imaginary number i to be one of the two numbers that satisfies the
rule (i)2 = −1, the other number being −i. Formally, we write i =

√
−1. A complex

number z is written as
z = x + iy,

where x and y are real numbers. We call x the real part of z and y the imaginary
part and write

x = Re z, y = Im z.

Two complex numbers are equal if and only if their real and imaginary parts are
equal.

The complex conjugate of z = x + iy, denoted as z̄, is defined as

z̄ = x− iy.

Using z and z̄, we have

Re z =
1
2
(z + z̄) , Im z =

1
2i

(z− z̄) . (4)
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Furthermore,

zz̄ = (x + iy)(x− iy)

= x2 − i2y2

= x2 + y2;

and we define the absolute value of z, also called the modulus of z, by

|z| = (zz̄)1/2

=
√

x2 + y2.

We can add, subtract, multiply and divide complex numbers to get new complex
numbers. With z = x + iy and w = s + it, and x, y, s, t real numbers, we have

z + w = (x + s) + i(y + t); z− w = (x− s) + i(y− t);

zw = (x + iy)(s + it)
= (xs− yt) + i(xt + ys);

z
w

=
zw̄
ww̄

=
(x + iy)(s− it)

s2 + t2

=
(xs + yt)

s2 + t2 + i
(ys− xt)

s2 + t2 .

Furthermore,

|zw| =
√
(xs− yt)2 + (xt + ys)2

=
√
(x2 + y2)(s2 + t2)

= |z||w|;
and

zw = (xs− yt)− i(xt + ys)
= (x− iy)(s− it)
= z̄w̄.

Similarly ∣∣∣ z
w

∣∣∣ = |z||w| , (
z
w
) =

z̄
w̄

.

Also, z + w = z + w. However, |z + w| ≤ |z|+ |w|, a theorem known as the triangle
inequality.

It is especially interesting and useful to consider the exponential function of an
imaginary argument. Using the Taylor series expansion of an exponential function,
we have

eiθ = 1 + (iθ) +
(iθ)2

2!
+

(iθ)3

3!
+

(iθ)4

4!
+

(iθ)5

5!
. . .

=

(
1− θ2

2!
+

θ4

4!
− . . .

)
+ i
(

θ − θ3

3!
+

θ5

5!
+ . . .

)
= cos θ + i sin θ.

CHAPTER 0. A SHORT MATHEMATICAL REVIEW 9



0.14. COMPLEX NUMBERS

Since we have determined that

cos θ = Re eiθ , sin θ = Im eiθ , (5)

we also have using (4) and (5), the frequently used expressions

cos θ =
eiθ + e−iθ

2
, sin θ =

eiθ − e−iθ

2i
.

The much celebrated Euler’s identity derives from eiθ = cos θ + i sin θ by setting
θ = π, and using cos π = −1 and sin π = 0:

eiπ + 1 = 0,

and this identity links the five fundamental numbers—0, 1, i, e and π—using three
basic mathematical operations—addition, multiplication and exponentiation—only
once.

z=x+iy

θ

r

x

Re(z)

y

Im
(z

)

Figure 1: The complex plane

The complex number z can be represented in the complex plane with Re(z) as
the x-axis and Im(z) as the y-axis (see Fig. 1). Using the definition of cosine and
sine, we have x = r cos θ and y = r sin θ, so that z = r(cos θ + i sin θ). This leads to
the polar representation

z = reiθ ,

where r = |z| and tan θ = y/x. We define arg z = θ. Note that θ is not unique,
though it is conventional to choose the value such that −π < θ ≤ π, and θ = 0
when r = 0.

The polar form of a complex number can be useful when multiplying numbers.
For example, if z1 = r1eiθ1 and z2 = r2eiθ2 , then z1z2 = r1r2ei(θ1+θ2). In particular, if
r2 = 1, then multiplication of z1 by z2 spins the representation of z1 in the complex
plane an angle θ2 counterclockwise.

Useful trigonometric relations can be derived using eiθ and properties of the
exponential function. The addition law can be derived from

ei(x+y) = eixeiy.
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We have

cos(x + y) + i sin(x + y) = (cos x + i sin x)(cos y + i sin y)
= (cos x cos y− sin x sin y) + i(sin x cos y + cos x sin y);

yielding

cos(x + y) = cos x cos y− sin x sin y, sin(x + y) = sin x cos y + cos x sin y.

De Moivre’s Theorem derives from einθ = (eiθ)n, yielding the identity

cos(nθ) + i sin(nθ) = (cos θ + i sin θ)n.

For example, if n = 2, we derive

cos 2θ + i sin 2θ = (cos θ + i sin θ)2

= (cos2 θ − sin2 θ) + 2i cos θ sin θ.

Therefore,
cos 2θ = cos2 θ − sin2 θ, sin 2θ = 2 cos θ sin θ.

Example: Write
√

i as a standard complex number

To solve this example, we first need to define what is meant by the square root
of a complex number. The meaning of

√
z is the complex number whose square

is z. There will always be two such numbers, because (
√

z)2 = (−
√

z)2 = z. One
can not define the positive square root because complex numbers are not defined
as positive or negative.

We will show two methods to solve this problem. The first most straightforward
method writes √

i = x + iy.

Squaring both sides, we obtain

i = x2 − y2 + 2xyi;

and equating the real and imaginary parts of this equation yields the two real equa-
tions

x2 − y2 = 0, 2xy = 1.

The first equation yields y = ±x. With y = x, the second equation yields 2x2 = 1
with two solutions x = ±

√
2/2. With y = −x, the second equation yields −2x2 = 1,

which has no solution for real x. We have therefore found that

√
i = ±

(√
2

2
+ i
√

2
2

)
.

The second solution method makes use of the polar form of complex numbers.
The algebra required for this method is somewhat simpler, especially for finding
cube roots, fourth roots, etc. We know that i = eiπ/2, but more generally because of
the periodic nature of the polar angle, we can write

i = ei( π
2 +2πk),
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where k is an integer. We then have
√

i = i1/2 = ei( π
4 +πk) = eiπkeiπ/4 = ±eiπ/4,

where we have made use of the usual properties of the exponential function, and
eiπk = ±1 for k even or odd. Converting back to standard form, we have

√
i = ± (cos π/4 + i sin π/4) = ±

(√
2

2
+ i
√

2
2

)
.

The fundamental theorem of algebra states that every polynomial equation of
degree n has exactly n complex roots, counted with multiplicity. Two familiar ex-
amples would be x2 − 1 = (x + 1)(x− 1) = 0, with two roots x1 = −1 and x2 = 1;
and x2 − 2x + 1 = (x− 1)2 = 0, with one root x1 = 1 with multiplicity two.

The problem of finding the nth roots of unity is to solve the polynomial equation

zn = 1

for the n complex values of z. We have z1 = 1 for n = 1; and z1 = 1, z2 = −1 for
n = 2. Beyond n = 2, some of the roots are complex and here we find the cube
roots of unity, that is, the three values of z that satisfy z3 = 1. Writing 1 = ei2πk,
where k is an integer, we have

z = (1)1/3 =
(

ei2πk
)1/3

= ei2πk/3 =


1;
ei2π/3;
ei4π/3.

Using cos (2π/3) = −1/2, sin (2π/3) =
√

3/2, cos (4π/3) = −1/2, sin (4π/3) =
−
√

3/2, the three cube roots of unity are given by

z1 = 1, z2 = −1
2
+ i
√

3
2

, z3 = −1
2
− i
√

3
2

.

These three roots are evenly spaced around the unit circle in the complex plane, as
shown in the figure below.
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Linear algebra
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The first part of this course is on linear algebra. We begin by introducing ma-
trices and matrix algebra. Next, the important algorithms of Gaussian elimination
and the LU-decomposition are presented and used to solve a system of linear equa-
tions and invert a matrix. We then discuss the abstract concept of vector and inner
product spaces, and show how these concepts are related to matrices. Finally, a
thorough presentation of determinants is given and the determinant is then used to
solve the very important eigenvalue problem.
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Chapter 1

Matrices
1.1 Definition of a matrix

View Definition of a Matrix on YouTube

An m-by-n matrix is a rectangular array of numbers (or other mathematical ob-
jects) with m rows and n columns. For example, a two-by-two matrix A, with two
rows and two columns, looks like

A =

(
a b
c d

)
.

(Sometimes brackets are used instead of parentheses.) The first row has elements a
and b, the second row has elements c and d. The first column has elements a and
c; the second column has elements b and d. As further examples, 2-by-3 and 3-by-2
matrices look like

B =

(
a b c
d e f

)
, C =

a b
c d
e f

 .

Of special importance are the so-called row matrices and column matrices. These
matrices are also called row vectors and column vectors. The row vector is in
general 1-by-n and the column vector is n-by-1. For example, when n = 3, we
would write

v =
(
a b c

)
as a row vector, and

v =

a
b
c


as a column vector.

1.2 Addition and multiplication of matrices

View Addition & Multiplication of Matrices on YouTube

Matrices can be added and multiplied. Matrices can be added only if they have
the same dimension, and addition proceeds element by element. For example,(

a b
c d

)
+

(
e f
g h

)
=

(
a + e b + f
c + g d + h

)
.

Multiplication of a matrix by a scalar is also easy. The rule is to just multiply every
element of the matrix by the scalar. The 2-by-2 case is illustrated as

k
(

a b
c d

)
=

(
ka kb
kc kd

)
.
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1.2. ADDITION AND MULTIPLICATION OF MATRICES

Matrix multiplication, however, is more complicated. Matrices can be multiplied
only if the number of columns of the left matrix equals the number of rows of the
right matrix. In other words, an m-by-n matrix on the left can be multiplied by an
n-by-k matrix on the right. The result will be an m-by-k matrix. Evidently, matrix
multiplication cannot commute for rectangular matrices. And in general, matrix
multiplication doesn’t commute for square matrices either.

We can illustrate matrix multiplication using two 2-by-2 matrices, writing(
a b
c d

)(
e f
g h

)
=

(
ae + bg a f + bh
ce + dg c f + dh

)
.

The standard way to multiply matrices is as follows. The first row of the left matrix
is multiplied against and summed with the first column of the right matrix to obtain
the element in the first row and first column of the product matrix. Next, the first
row is multiplied against and summed with the second column; then the second
row is multiplied against and summed with the first column; and finally the second
row is multiplied against and summed with the second column.

In general, a particular element in the resulting product matrix, say in row k and
column l, is obtained by multiplying and summing the elements in row k of the left
matrix with the elements in column l of the right matrix.
Example: Consider the Fibonacci Q-matrix given by

Q =

(
1 1
1 0

)
Determine Qn in terms of the Fibonacci numbers.
The famous Fibonacci sequence is 1, 1, 2, 3, 5, 8, 13, . . . , where each number in the
sequence is the sum of the preceeding two numbers, and the first two numbers are
set equal to one. With Fn the nth Fibonacci number, the mathematical definition is

Fn+1 = Fn + Fn−1, F1 = F2 = 1,

and we may define F0 = 0 so that F0 + F1 = F2.
Notice what happens when a matrix is multiplied by Q on the left:(

1 1
1 0

)(
a b
c d

)
=

(
a + c b + d

a b

)
.

The first row is replaced by the sum of the first and second rows, and the second
row is replaced by the first row. Using the Fibonacci numbers, we can cleverly write
the Fibonacci Q-matrix as

Q =

(
1 1
1 0

)
=

(
F2 F1
F1 F0

)
;

and then using the Fibonacci recursion relation we have

Q2 =

(
F3 F2
F2 F1

)
, Q3 =

(
F4 F3
F3 F2

)
.

More generally, for n ≥ 1,

Qn =

(
Fn+1 Fn

Fn Fn−1

)
.
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1.3. THE IDENTITY MATRIX AND THE ZERO MATRIX

1.3 The identity matrix and the zero matrix

View Special Matrices on YouTube

Two special matrices are the identity matrix, denoted by I, and the zero matrix,
denoted simply by 0. The zero matrix can be m-by-n and is a matrix consisting of
all zero elements. The identity matrix is a square matrix. If A and I are of the same
size, then the identity matrix satisfies

AI = IA = A,

and plays the role of the number one in matrix multiplication. The identity matrix
consists of ones along the diagonal (from top left to bottom right, sometimes called
the main diagonal) and zeros elsewhere. For example, the 3-by-3 zero and identity
matrices are given by

0 =

0 0 0
0 0 0
0 0 0

 , I =

1 0 0
0 1 0
0 0 1

 ,

and it is easy to check thata b c
d e f
g h i

1 0 0
0 1 0
0 0 1

 =

1 0 0
0 1 0
0 0 1

a b c
d e f
g h i

 =

a b c
d e f
g h i

 .

Although strictly speaking, the symbols 0 and I represent different matrices de-
pending on their size, we will just use these symbols and leave their exact size to
be inferred.

1.4 General notation, transposes, and inverses

View Transpose Matrix on YouTube
View Inner and Outer Products on YouTube
View Inverse Matrix on YouTube

A useful notation for writing a general m-by-n matrix A is

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn

 . (1.1)

Here, the matrix element of A in the ith row and the jth column is denoted as aij.
Matrix multiplication can be written in terms of the matrix elements. Let A be

an m-by-n matrix and let B be an n-by-p matrix. Then C = AB is an m-by-p matrix,
and its ij element can be written as

cij =
n

∑
k=1

aikbkj. (1.2)

Notice that the second index of a and the first index of b are summed over.
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1.4. GENERAL NOTATION, TRANSPOSES, AND INVERSES

We can define the transpose of the matrix A, denoted by AT and spoken as A-
transpose, as the matrix for which the rows become the columns and the columns
become the rows. Here, using (1.1),

AT =


a11 a21 · · · am1
a12 a22 · · · am2
...

...
. . .

...
a1n a2n · · · amn

 ,

where we would write
aT

ij = aji.

Evidently, if A is m-by-n then AT is n-by-m. As a simple example, view the following
pair:

A =

a d
b e
c f

 , AT =

(
a b c
d e f

)
. (1.3)

A square matrix that satisfies AT = A is called symmetric. For example the 3-by-3
matrix

A =

a b c
b d e
c e f


is symmetric. A matrix that satisfies AT = −A is called skew symmetric. For example,

A =

 0 b c
−b 0 e
−c −e 0


is skew symmetric. Notice that the diagonal elements must be zero. A sometimes
useful fact is that every square matrix can be written as the sum of a symmetric and
a skew-symmetric matrix using

A =
1
2

(
A + AT

)
+

1
2

(
A−AT

)
.

This is just like the fact that every function can be written as the sum of an even
and an odd function.

How do we write the transpose of the product of two matrices? Let [X]ij denote
the element in row i and column j of the matrix X. Again, let A be an m-by-n matrix
and B be an n-by-p matrix. Then

[
(AB)T

]
ij
= [AB]ji =

n

∑
k=1

ajkbki =
n

∑
k=1

bT
ikaT

kj =
[
BTAT

]
ij

.

Therefore,
(AB)T = BTAT.

In words, the transpose of the product of matrices is equal to the product of the
transposes with the order of multiplication reversed.

The transpose of a column vector is a row vector. The inner product (or dot
product) between two vectors is obtained by the product of a row vector and a
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column vector, and is treated as a scalar (not a one-by-one matrix). With column
vectors

u =

u1
u2
u3

 , v =

v1
v2
v3

 ,

the inner product between these two vectors becomes

uTv =
(
u1 u2 u3

)v1
v2
v3

 = u1v1 + u2v2 + u3v3.

The norm-squared of a vector, or its magnitude squared, is defined as

uTu =
(
u1 u2 u3

)u1
u2
u3

 = u2
1 + u2

2 + u2
3,

whereas the norm of a vector, or its magnitude, is the positive square root of this
quantity.

We say that two column vectors are orthogonal if their inner product is zero. We
say that a column vector is normalized if it has a norm of one. A set of column
vectors that are normalized and mutually orthogonal are said to be orthonormal.

When the vectors are complex, the inner product needs to be defined differently.
Instead of a transpose of a matrix, one defines the conjugate transpose as the trans-
pose together with taking the complex conjugate of every element of the matrix.
The symbol used is that of a dagger, so that continuing the example from above,

u† =
(
u1 u2 u3

)
.

Then

u†u =
(
u1 u2 u3

)u1
u2
u3

 = |u1|2 + |u2|2 + |u3|2.

As noted above, when a real matrix is equal to its transpose we say that it is
symmetric. When a complex matrix is equal to its conjugate transpose, we say that
it is Hermitian. Hermitian matrices play a fundamental role in quantum physics.

An outer product is also defined, and is used in some applications. The outer
product between u and v is given by

uvT =

u1
u2
u3

(v1 v2 v3
)
=

u1v1 u1v2 u1v3
u2v1 u2v2 u2v3
u3v1 u3v2 u3v3

 .

Notice that every column is a multiple of the single vector u, and every row is a
multiple of the single vector vT.

The transpose operation can also be used to make square matrices. If A is an
m-by-n matrix, then AT is n-by-m and ATA is an n-by-n matrix. For example, using
(1.3), we have

ATA =

(
a2 + b2 + c2 ad + be + c f
ad + be + c f d2 + e2 + f 2

)
Notice that ATA is symmetric because

(ATA)T = ATA.
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The trace of a square matrix A, denoted as Tr A, is the sum of the diagonal elements
of A. So if A is an n-by-n matrix, then

Tr A =
n

∑
i=1

aii.

Example: Let A be an m-by-n matrix. Prove that Tr(ATA) is the sum of the squares
of all the elements of A.
Note that ATA is an n-by-n matrix. We have

Tr(ATA) =
n

∑
i=1

(ATA)ii

=
n

∑
i=1

m

∑
j=1

aT
ijaji

=
n

∑
i=1

m

∑
j=1

ajiaji

=
m

∑
i=1

n

∑
j=1

a2
ij.

Square matrices may also have inverses. Later, we will see that for a matrix to
have an inverse its determinant, which we will define in general, must be nonzero.
Here, if an n-by-n matrix A has an inverse, denoted as A−1, then

AA−1 = A−1A = I.

If both the n-by-n matrices A and B have inverses then we can ask what is the
inverse of the product of these two matrices? From the definition of an inverse,

(AB)−1(AB) = I, (AB)(AB)−1 = I.

Either multiply the first equation on the right by B−1, and then by A−1, or multiply
the second equation on the left by A−1, and then by B−1, to obtain

(AB)−1 = B−1A−1.

Again in words, the inverse of the product of matrices is equal to the product of the
inverses with the order of multiplication reversed. Be careful here: this rule applies
only if both matrices in the product are invertible.
Example: Assume that A is an invertible matrix. Prove that (A−1)T = (AT)−1. In
words: the transpose of the inverse matrix is the inverse of the transpose matrix.
We know that

AA−1 = I and A−1A = I.

Taking the transpose of these equations, and using (AB)T = BTAT and IT = I, we
obtain

(A−1)TAT = I and AT(A−1)T = I.

We can therefore conclude that (A−1)T = (AT)−1.
It is illuminating to derive the inverse of a two-by-two matrix. To find the inverse

of A given by

A =

(
a b
c d

)
,
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the most direct approach would be to write(
a b
c d

)(
x1 x2
y1 y2

)
=

(
1 0
0 1

)
and solve for x1, x2, y1, and y2. There are two inhomogeneous and two homoge-
neous equations given by

ax1 + by1 = 1, cx1 + dy1 = 0,
cx2 + dy2 = 1, ax2 + by2 = 0.

To solve, we can eliminate y1 and y2 using the two homogeneous equations, and
then solve for x1 and x2 using the two inhomogeneous equations. Finally, we use
the two homogeneous equations to solve for y1 and y2. The solution for A−1 is
found to be

A−1 =
1

ad− bc

(
d −b
−c a

)
. (1.4)

The factor in front of the matrix is the definition of the determinant for our two-by-
two matrix A:

det A =

∣∣∣∣a b
c d

∣∣∣∣ = ad− bc.

The determinant of a two-by-two matrix is the product of the diagonals minus the
product of the off-diagonals. Evidently, A is invertible only if det A 6= 0. Notice that
the inverse of a two-by-two matrix, in words, is found by switching the diagonal
elements of the matrix, negating the off-diagonal elements, and dividing by the
determinant. It can be useful in a linear algebra course to remember this formula.

1.5 Rotation matrices and orthogonal matrices

View Rotation Matrix on YouTube
View Orthogonal Matrices on YouTube

Rotating a vector in the x-y plane.

Consider the two-by-two rotation matrix that rotates a vector counterclockwise
through an angle θ in the x-y plane, shown above. Trigonometry and the addi-
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1.5. ROTATION MATRICES AND ORTHOGONAL MATRICES

tion formula for cosine and sine results in

x′ = r cos (θ + ψ) y′ = r sin (θ + ψ)

= r(cos θ cos ψ− sin θ sin ψ) = r(sin θ cos ψ + cos θ sin ψ)

= x cos θ − y sin θ = x sin θ + y cos θ.

Writing the equations for x′ and y′ in matrix form, we have(
x′

y′

)
=

(
cos θ − sin θ
sin θ cos θ

)(
x
y

)
.

The above two-by-two matrix is called a rotation matrix and is given by

Rθ =

(
cos θ − sin θ
sin θ cos θ

)
.

Example: Find the inverse of the rotation matrix Rθ .

The inverse of Rθ rotates a vector clockwise by θ. To find R−1
θ , we need only change

θ → −θ:

R−1
θ = R−θ =

(
cos θ sin θ
− sin θ cos θ

)
.

This result agrees with (1.4) since det Rθ = 1.
Notice that R−1

θ = RT
θ . In general, a square n-by-n matrix Q with real entries

that satisfies

Q−1 = QT

is called an orthogonal matrix. Since QQT = I and QTQ = I, and since QQT multiplies
the rows of Q against themselves (and summing the products), and QTQ multiplies
the columns of Q against themselves, both the rows of Q and the columns of Q
must form an orthonormal set of vectors (normalized and mutually orthogonal).
For example, the column vectors of R, given by(

cos θ
sin θ

)
,
(
− sin θ

cos θ

)
,

are orthonormal.
It is clear that rotating a vector around the origin doesn’t change its length.

More generally, orthogonal matrices preserve inner products. To prove, let Q be an
orthogonal matrix and x a column vector. Then

(Qx)T(Qx) = xTQTQx = xTx.

The complex matrix analogue of an orthogonal matrix is a unitary matrix U.
Here, the relationship is

U−1 = U†.

Like Hermitian matrices, unitary matrices also play a fundamental role in quantum
physics.
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1.6. MATRIX REPRESENTATION OF COMPLEX NUMBERS

1.6 Matrix representation of complex numbers

In our studies of complex numbers, we noted that multiplication of a complex
number by eiθ rotates that complex number an angle θ in the complex plane (coun-
terclockwise if θ > 0 and clockwise if θ < 0). This leads to the idea that we might
be able to represent complex numbers as matrices with eiθ as the rotation matrix.

Accordingly, we begin by representing eiθ as the rotation matrix, that is,

eiθ =

(
cos θ − sin θ
sin θ cos θ

)
= cos θ

(
1 0
0 1

)
+ sin θ

(
0 −1
1 0

)
.

Since eiθ = cos θ + i sin θ, we are led to the matrix representations of the unit num-
bers as

1 =

(
1 0
0 1

)
, i =

(
0 −1
1 0

)
.

A general complex number z = x + iy is then represented as

z =

(
x −y
y x

)
.

The complex conjugate operation, where i → −i, is seen to be just the matrix
transpose.
Example: Show that i2 = −1 in the matrix representation.
We have

i2 =

(
0 −1
1 0

)(
0 −1
1 0

)
=

(
−1 0

0 −1

)
= −

(
1 0
0 1

)
= −1.

Example: Show that zz̄ = x2 + y2 in the matrix representation.
We have

zz̄ =

(
x −y
y x

)(
x y
−y x

)
=

(
x2 + y2 0

0 x2 + y2

)
= (x2 + y2)

(
1 0
0 1

)
= (x2 + y2).

We can now see that there is a one-to-one correspondence between the set of com-
plex numbers and the set of all two-by-two matrices with equal diagonal elements
and opposite signed off-diagonal elements. If you do not like the idea of

√
−1, then

just imagine the arithmetic of these two-by-two matrices!

1.7 Permutation matrices

View Permutation Matrices on YouTube

A permutation matrix is another type of orthogonal matrix. When multiplied on the
left, an n-by-n permutation matrix reorders the rows of an n-by-n matrix, and when
multiplied on the right, reorders the columns. For example, let the string 12 repre-
sent the order of the rows (columns) of a two-by-two matrix. Then the two possible
permutations of the rows (columns) are given by 12 and 21. The first permutation
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is no permutation at all, and the corresponding permutation matrix is simply the
identity matrix. The second permutation of the rows (columns) is achieved by(

0 1
1 0

)(
a b
c d

)
=

(
c d
a b

)
,
(

a b
c d

)(
0 1
1 0

)
=

(
b a
d c

)
.

The rows (columns) of a 3-by-3 matrix has 3! = 6 possible permutations, namely
123, 132, 213, 231, 312, 321. For example, the row permutation 312 is obtained by0 0 1

1 0 0
0 1 0

a b c
d e f
g h i

 =

g h i
a b c
d e f

 .

Evidently, the permutation matrix is obtained by permuting the corresponding rows
of the identity matrix, as seen by the identity P = PI. Because the columns and rows
of the identity matrix are orthonormal, the permutation matrix is an orthogonal
matrix.

1.8 Projection matrices

The two-by-two projection matrix projects a vector onto a specified vector in the x-y
plane. Let u be a unit vector in R2. The projection of an arbitrary vector x = 〈x1, x2〉
onto the vector u = 〈u1, u2〉 is determined from

Proju(x) = (x · u)u = (x1u1 + x2u2)〈u1, u2〉.

In matrix form, this becomes(
p1
p2

)
=

(
u2

1 u1u2
u1u2 u2

2

)(
x1
x2

)
.

The projection matrix Pu, then, can be defined as

Pu =

(
u2

1 u1u2
u1u2 u2

2

)
=

(
u1
u2

) (
u1 u2

)
= uuT,

which is an outer product. Notice that Pu is symmetric.
Example: Show that P2

u = Pu.
It should be obvious that two projections is the same as one. To prove, we have

P2
u = (uuT)(uuT)

= u(uTu)uT (associative law)

= uuT (u is a unit vector)
= Pu.
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Chapter 2

Systems of linear equations
Consider the system of n linear equations and n unknowns, given by

a11x1 + a12x2 + · · ·+ a1nxn = b1,
a21x1 + a22x2 + · · ·+ a2nxn = b2,

...
...

an1x1 + an2x2 + · · ·+ annxn = bn.

We can write this system as the matrix equation

Ax = b, (2.1)

with

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
an1 an2 · · · ann

 , x =


x1
x2
...

xn

 , b =


b1
b2
...

bn

 .

This chapter details the standard algorithm to solve (2.1) for the unknown vector x.

2.1 Gaussian Elimination

View Gaussian Elimination on YouTube

The standard algorithm to solve a system of linear equations is called Gaussian
elimination. It is easiest to illustrate this algorithm by example.

Consider the linear system of equations given by

−3x1 + 2x2 − x3 = −1,
6x1 − 6x2 + 7x3 = −7,
3x1 − 4x2 + 4x3 = −6,

(2.2)

which can be rewritten in matrix form as−3 2 −1
6 −6 7
3 −4 4

x1
x2
x3

 =

−1
−7
−6

 .

To perform Gaussian elimination, we form what is called an augmented matrix by
combining the matrix A with the column vector b:−3 2 −1 −1

6 −6 7 −7
3 −4 4 −6

 .

Row reduction is then performed on this matrix. Allowed operations are (1) multi-
ply any row by a nonzero constant, (2) add a multiple of one row to another row, (3)
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2.2. WHEN THERE IS NO UNIQUE SOLUTION

interchange the order of any rows. It is easy to confirm that these operations do not
change the solution of the original equations. The goal here is to convert the matrix
A into a matrix with all zeros below the diagonal. This is called an upper-triangular
matrix, from which one can quickly solve for the unknowns x.

We start with the first row of the matrix and work our way down as follows.
The key element is called the pivot, which is the diagonal element that we use to
zero all the elements below it. The pivot in the first row is the diagonal entry −3.
To zero the 6 in the second row below the pivot, we multiply the first row by 2 and
add it to the second row. To zero the 3 in the third row below the pivot, we add the
first row to the third row:−3 2 −1 −1

6 −6 7 −7
3 −4 4 −6

→
−3 2 −1 −1

0 −2 5 −9
0 −2 3 −7

 .

We then go to the second row. The new pivot is the number −2 in the diagonal of
the second row. To zero the −2 below the pivot, we multiply the second row by −1
and add it to the third row:−3 2 −1 −1

0 −2 5 −9
0 −2 3 −7

→
−3 2 −1 −1

0 −2 5 −9
0 0 −2 2

 .

The original matrix A is now upper triangular, and the transformed equations can
be determined from the augmented matrix as

−3x1 + 2x2 − x3 = −1,
−2x2 + 5x3 = −9,

−2x3 = 2.

These equations can be solved by back substitution, starting from the last equation
and working backwards. We have

x3 = −1
2
(2) = −1

x2 = −1
2
(−9− 5x3) = 2,

x1 = −1
3
(−1− 2x2 + x3) = 2.

Therefore, x1
x2
x3

 =

 2
2
−1

 .

2.2 When there is no unique solution

Given n equations and n unknowns, one usually expects a unique solution. But
two other possibilities exist: there could be no solution, or an infinite number of
solutions. We will illustrate what happens during Gaussian elimination in these
two cases. Consider

−3x1 + 2x2 − x3 = −1,
6x1 − 6x2 + 7x3 = −7,
3x1 − 4x2 + 6x3 = b.
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2.3. REDUCED ROW ECHELON FORM

Note that the first two equations are the same as in (2.2), but the left-hand-side
of the third equation has been replaced by the sum of the left-hand-sides of the
first two equations, and the right-hand-side has been replaced by the parameter b.
If b = −8, then the third equation is just the sum of the first two equations and
adds no new information to the system. In this case, the equations should admit
an infinite number of solutions. However, if b 6= −8, then the third equation is
inconsistent with the first two equations and there should be no solution.

We solve by Gaussian elimination to see how it plays out. Writing the aug-
mented matrix and doing row elimination, we have−3 2 −1 −1

6 −6 7 −7
3 −4 6 b

→
−3 2 −1 −1

0 −2 5 −9
0 −2 5 b− 1

→
−3 2 −1 −1

0 −2 5 −9
0 0 0 b + 8

 .

Evidently, Gaussian elimination has reduced the last row of the matrix A to zeros,
and the last equation becomes

0 = b + 8.

If b 6= −8, there will be no solution, and if b = −8, the under-determined systems
of equations becomes

−3x1 + 2x2 − x3 = −1
−2x2 + 5x3 = −9.

The unknowns x1 and x2 can be solved in terms of x3 as

x1 =
10
3

+
4
3

x3, x2 =
9
2
+

5
2

x3,

indicating an infinite family of solutions dependent on the free choice of x3.
To be clear, for a linear system represented by Ax = b, if there is a unique

solution then A is invertible and the solution is given formally by

x = A−1b.

If there is not a unique solution, then A is not invertible. We then say that the matrix
A is singular. Whether or not an n-by-n matrix A is singular can be determined by
row reduction on A. After row reduction, if the last row of A is all zeros, then A is
a singular matrix; if not, then A is an invertible matrix. We have already shown in
the two-by-two case, that A is invertible if and only if det A 6= 0, and we will later
show that this is also true for n-by-n matrices.

2.3 Reduced row echelon form

View Reduced Row Echelon Form on YouTube

If we continue the row elimination procedure so that all the pivots are one, and
all the entries in the columns above and below the pivots are zero, then the result-
ing matrix is in the so-called reduced row echelon form. We write the reduced row
echelon form of a matrix A as rref(A). If A is an invertible square matrix, then
rref(A) = I.

Instead of Gaussian elimination and back substitution, a system of equations can
be solved by bringing a matrix to reduced row echelon form. We can illustrate this

CHAPTER 2. SYSTEMS OF LINEAR EQUATIONS 29

https://youtu.be/1rBU0yIyQQ8


2.4. COMPUTING INVERSES

by solving again our first example. Beginning with the same augmented matrix, we
have−3 2 −1 −1

6 −6 7 −7
3 −4 4 −6

→
−3 2 −1 −1

0 −2 5 −9
0 −2 3 −7

→
−3 0 4 −10

0 −2 5 −9
0 0 −2 2


→

−3 0 4 −10
0 −2 5 −9
0 0 1 −1

→
−3 0 0 −6

0 −2 0 −4
0 0 1 −1

→
1 0 0 2

0 1 0 2
0 0 1 −1

 .

Once A has been transformed into the identity matrix, the resulting system of equa-
tions is just the solution, that is, x1 = 2, x2 = 2 and x3 = −1.

2.4 Computing inverses

View Computing Inverses on YouTube

Calculating the reduced row echelon form of an n-by-n invertible matrix A can
be used to compute the inverse matrix A−1.

For example, recall how we found the general inverse of a two-by-two matrix by
writing AA−1 = I, that is, (

a b
c d

)(
x1 x2
y1 y2

)
=

(
1 0
0 1

)
.

This single matrix equation is equivalent to two sets of two equations and two
unknowns, namely(

a b
c d

)(
x1
y1

)
=

(
1
0

)
,

(
a b
c d

)(
x2
y2

)
=

(
0
1

)
.

We can solve these two equations by bringing A to reduced row echelon form. There
is no point in doing this twice, so instead we form a doubly augmented matrix and
go to work on that:(

a b 1 0
c d 0 1

)
→
(

1 b/a 1/a 0
c d 0 1

)
→
(

1 b/a 1/a 0
0 ad−bc

a −c/a 1

)
→(

1 b/a 1/a 0
0 1 − c

ad−bc
a

ad−bc

)
→
(

1 0 d
ad−bc − b

ad−bc
0 1 − c

ad−bc
a

ad−bc

)
.

The third column of the reduced matrix corresponds to the first column of the
inverse matrix, and the fourth column of the reduced matrix correponds to the
second column of the inverse matrix. Therefore, we have rederived

A−1 =
1

ad− bc

(
d −b
−c a

)
.

In other words, by moving A to reduced row echelon form while simultaneously
performing the same operations on the identity matrix I, we achieve the following
transformation: (

A I
)
→
(
I A−1) .
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2.5. LU DECOMPOSITION

To illustrate this algorithm further, we find the inverse of the three-by-three
matrix used in our first example. We have−3 2 −1 1 0 0

6 −6 7 0 1 0
3 −4 4 0 0 1

→
−3 2 −1 1 0 0

0 −2 5 2 1 0
0 −2 3 1 0 1

→
−3 0 4 3 1 0

0 −2 5 2 1 0
0 0 −2 −1 −1 1

→
−3 0 0 1 −1 2

0 −2 0 −1/2 −3/2 5/2
0 0 −2 −1 −1 1

→
 1 0 0 −1/3 1/3 −2/3

0 1 0 1/4 3/4 −5/4
0 0 1 1/2 1/2 −1/2

 ;

and one can check that−3 2 −1
6 −6 7
3 −4 4

−1/3 1/3 −2/3
1/4 3/4 −5/4
1/2 1/2 −1/2

 =

1 0 0
0 1 0
0 0 1

 .

It is also interesting to check that the solution to the equation Ax = b is x = A−1b.
Using the b from our first example, we have

x =

−1/3 1/3 −2/3
1/4 3/4 −5/4
1/2 1/2 −1/2

−1
−7
−6

 =

 2
2
−1

 ,

as obtained previously.

2.5 LU decomposition

View LU Decomposition on YouTube
View Solving LUx = b on YouTube

The process of Gaussian elimination also results in the factoring of the matrix A
to

A = LU,

where L is a lower triangular matrix and U is an upper triangular matrix. Using the
same matrix A as in the last section, we show how this factorization is realized. We
have −3 2 −1

6 −6 7
3 −4 4

→
−3 2 −1

0 −2 5
3 −4 4

 = M1A,

where

M1A =

1 0 0
2 1 0
0 0 1

−3 2 −1
6 −6 7
3 −4 4

 =

−3 2 −1
0 −2 5
3 −4 4

 .

Note that the matrix M1 performs row elimination on the second row using the first
row. Two times the first row is added to the second row.

The next step is−3 2 −1
0 −2 5
3 −4 4

→
−3 2 −1

0 −2 5
0 −2 3

 = M2M1A,
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2.5. LU DECOMPOSITION

where

M2M1A =

1 0 0
0 1 0
1 0 1

−3 2 −1
0 −2 5
3 −4 4

 =

−3 2 −1
0 −2 5
0 −2 3

 .

Note that the matrix M2 performs row elimination on the third row using the first
row. One times the first row is added to the third row.

The last step is−3 2 −1
0 −2 5
0 −2 3

→
−3 2 −1

0 −2 5
0 0 −2

 = M3M2M1A,

where

M3M2M1A =

 1 0 0
0 1 0
0 −1 1

−3 2 −1
0 −2 5
0 −2 3

 =

−3 2 −1
0 −2 5
0 0 −2

 .

Here, M3 performs row elimination on the third row using the second row. Minus
one times the second row is added to the third row. We now have

M3M2M1A = U

or
A = M−1

1 M−1
2 M−1

3 U.

The inverse matrices are easy to find. The matrix M1 multiples the first row by 2
and adds it to the second row. To invert this operation, we simply need to multiply
the first row by −2 and add it to the second row, so that

M1 =

1 0 0
2 1 0
0 0 1

 , M−1
1 =

 1 0 0
−2 1 0

0 0 1

 .

To check that
M1M−1

1 = I,

we multiply 1 0 0
2 1 0
0 0 1

 1 0 0
−2 1 0

0 0 1

 =

1 0 0
0 1 0
0 0 1

 .

Similarly,

M2 =

1 0 0
0 1 0
1 0 1

 , M−1
2 =

 1 0 0
0 1 0
−1 0 1

 ,

and

M3 =

1 0 0
0 1 0
0 −1 1

 , M−1
3 =

1 0 0
0 1 0
0 1 1

 .

Therefore,
L = M−1

1 M−1
2 M−1

3
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is given by

L =

 1 0 0
−2 1 0

0 0 1

 1 0 0
0 1 0
−1 0 1

1 0 0
0 1 0
0 1 1

 =

 1 0 0
−2 1 0
−1 1 1

 ,

which is lower triangular. Notice that the off-diagonal elements of M−1
1 , M−1

2 , and
M−1

3 are simply combined to form L. Without actually multiplying matrices, one
could obtain this result by considering how an elementary matrix performs row
reduction on another elementary matrix. Our LU decomposition is therefore−3 2 −1

6 −6 7
3 −4 4

 =

 1 0 0
−2 1 0
−1 1 1

−3 2 −1
0 −2 5
0 0 −2

 .

Another nice feature of the LU decomposition, if done by computer, is that A can
be overwritten, therefore saving memory if the matrix A is very large.

The LU decomposition is useful when one needs to solve Ax = b for x when
A is fixed and there are many different b’s. First one determines L and U using
Gaussian elimination. Then one writes

(LU)x = L(Ux) = b.

We let
y = Ux,

and first solve
Ly = b

for y by forward substitution, starting from the first equation and working forward
to complete the solution. We then solve

Ux = y

for x by back substitution. If we count operations, we can show that solving
(LU)x = b is a factor of n faster once L and U are in hand than solving Ax = b
directly by Gaussian elimination.

We now illustrate the solution of LUx = b using our previous example, where

L =

 1 0 0
−2 1 0
−1 1 1

 , U =

−3 2 −1
0 −2 5
0 0 −2

 , b =

−1
−7
−6

 .

With y = Ux, we first solve Ly = b, that is 1 0 0
−2 1 0
−1 1 1

y1
y2
y3

 =

−1
−7
−6

 .

Using forward substitution

y1 = −1,
y2 = −7 + 2y1 = −9,
y3 = −6 + y1 − y2 = 2.
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We now solve Ux = y, that is−3 2 −1
0 −2 5
0 0 −2

x1
x2
x3

 =

−1
−9

2

 .

Using back substitution,

x3 = −1
2
(2) = −1,

x2 = −1
2
(−9− 5x3) = 2,

x1 = −1
3
(−1− 2x2 + x3) = 2,

and we have once again determinedx1
x2
x3

 =

 2
2
−1

 .

When performing Gaussian elimination, recall that the diagonal element that
one uses during the elimination procedure is called the pivot. To obtain the correct
multiple, one uses the pivot as the divisor to the elements below the pivot. Gaussian
elimination in this form will fail if the pivot is zero. In this case, a row interchange
must be performed.

Even if the pivot is not identically zero, a small value can result in an unstable
numerical computation. For large matrices solved by a computer, one can easily
lose all accuracy in the solution. To avoid these round-off errors arising from small
pivots, row interchanges are made, and the numerical technique is called partial
pivoting. This method of LU decomposition with partial pivoting is the one usually
taught in a standard numerical analysis course.
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Chapter 3

Vector spaces
Linear algebra abstracts the vector concept, introducing new vocabulary and defi-
nitions that are widely used by scientists and engineers. Vector spaces, subspaces,
inner product spaces, linear combinations, linear independence, linear dependence,
span, basis, dimension, norm, unit vectors, orthogonal, orthonormal: this is the
vocabulary that you need to know.

3.1 Vector spaces

View Vector Spaces on YouTube

In multivariable, or vector calculus, a vector is defined to be a mathematical con-
struct that has both direction and magnitude. In linear algebra, vectors are defined
more abstractly. Vectors are mathematical constructs that can be added and multi-
plied by scalars under the usual rules of arithmetic. Vector addition is commutative
and associative, and scalar multiplication is distributive and associative. Let u, v,
and w be vectors, and let a, b, and c be scalars. Then the rules of arithmetic say that

u + v = v + u, u + (v + w) = (u + v) + w;

and
a(u + v) = au + av, a(bu) = (ab)u.

A vector space consists of a set of vectors and a set of scalars that is closed under
vector addition and scalar multiplication. That is, when you multiply any two
vectors in a vector space by scalars and add them, the resulting vector is still in the
vector space.

We can give some examples of vector spaces. Let the scalars be the set of real
numbers and let the vectors be column matrices of a specified type. One example
of a vector space is the set of all three-by-one column matrices. If we let

u =

u1
u2
u3

 , v =

v1
v2
v3

 ,

then

w = au + bv =

au1 + bv1
au2 + bv2
au3 + bv3


is evidently a three-by-one matrix, so that the set of all three-by-one matrices (to-
gether with the set of real numbers) forms a vector space. This vector space is
usually called R3, which maps one-to-one with the three-dimensional vectors of
Vector Calculus.

A vector subspace is a vector space that is a subset of another vector space. For
example, a vector subspace of R3 could be the set of all three-by-one matrices with

35

https://youtu.be/R5s9TWVCrbI


3.1. VECTOR SPACES

zero in the third row. If we let

u =

u1
u2
0

 , v =

v1
v2
0

 ,

then

w = au + bv =

au1 + bv1
au2 + bv2

0


is evidently also a three-by-one matrix with zero in the third row. This subspace
of R3 is closed under scalar multiplication and vector addition and is therefore a
vector space. This vector space is usually called R2.

Another example of a vector subspace of R3 would be the set of all three-by-one
matrices where the first row is equal to the third row. Two vectors in this subspace
could be

u =

u1
u2
u1

 , v =

v1
v2
v1

 .

Then

w = au + bv =

 au1 + bv1
au2 + bv2
au1 + bv1,


is also a three-by-one matrix with its first row equal to its third row, so that this
subspace is also closed under scalar multiplication and vector addition.

Of course, not all subsets of R3 form a vector space. A simple example would
be the set of all three-by-one matrices where the row elements sum to one. If, say,
u =

(
1 0 0

)T, then au is a vector whose rows sum to a, which can be different
than one.

The zero vector must be a member of every vector space. If u is in the vector
space, then so is 0u which is just the zero vector. Another argument would be that
if u is in the vector space, then so is (−1)u = −u, and u− u is again equal to the
zero vector.

The concept of vector spaces is more general than a set of column matrices. Here
are some examples where the vectors are functions.
Example: Consider vectors consisting of all real polynomials in x of degree less
than or equal to n. Show that this set of vectors (together with the set of real
numbers) form a vector space.
Consider the polynomials of degree less than or equal to n given by

p(x) = a0 + a1x + a2x2 + · · ·+ anxn, q(x) = b0 + b1x + b2x2 + · · ·+ bnxn,

where a0, a1, . . . , an and b0, b1, . . . , bn are real numbers. Clearly, multiplying these
polynmials by real numbers still results in a polynomial of degree less than or equal
to n. Adding these polynomials results in

p(x) + q(x) = (a0 + b0) + (a1 + b1)x + (a2 + b2)x2 + · · ·+ (an + bn)xn,

which is another polynomial of degree less than or equal to n. Since this set of
polynomials is closed under scalar multiplication and vector addition, it forms a
vector space. This vector space is designated as Pn.
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Example: Consider a function y = y(x) and the differential equation d3y/dx3 = 0.
Find the vector space associated with the general solution of this differential
equation.

From Calculus, we know that the function whose third derivative is zero is a poly-
nomial of degree less than or equal to two. That is, the general solution to the
differential equation is

y(x) = a0 + a1x + a2x2,

which is just all possible vectors in the vector space P2.

Example: Consider a function y = y(x) and the differential equation d2y/dx2 +
y = 0. Find the vector space associated with the general solution of this differen-
tial equation.

Again from Calculus, we know that the trigonometric functions cos x and sin x have
second derivatives that are the negative of themselves. The general solution to the
differential equation consists of all vectors of the form

y(x) = a cos x + b sin x,

which is just all possible vectors in the vector space consisting of a linear combina-
tion of cos x and sin x.

3.2 Linear independence

View Linear Independence on YouTube

A set of vectors, {u1, u2, . . . , un}, is said to be linearly independent if for any
scalars c1, c2, . . . , cn, the equation

c1u1 + c2u2 + · · ·+ cnun = 0

has only the solution c1 = c2 = · · · = cn = 0. That is, a set of vectors is linearly
independent if one is unable to write any of the vectors u1, u2, . . . , un as a linear
combination of any of the other vectors. For instance, if there was a solution to the
above equation with c1 6= 0, then we could solve that equation for u1 in terms of
the other vectors with nonzero coefficients.

As an example consider whether the following three three-by-one column vec-
tors are linearly independent:

u =

1
0
0

 , v =

0
1
0

 , w =

2
3
0

 .

Indeed, they are not linearly independent, that is, they are linearly dependent, be-
cause w can be written in terms of u and v. In fact, w = 2u + 3v. Now consider the
three three-by-one column vectors given by

u =

1
0
0

 , v =

0
1
0

 , w =

0
0
1

 .
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These three vectors are linearly independent because you cannot write any one of
these vectors as a linear combination of the other two. If we go back to our definition
of linear independence, we can see that the equation

au + bv + cw =

a
b
c

 =

0
0
0


has as its only solution a = b = c = 0.

3.3 Span, basis and dimension

View Span, Basis and Dimension on YouTube

Given a set of vectors, one can generate a vector space by forming all linear com-
binations of that set of vectors. The span of the set of vectors {v1, v2, . . . , vn} is the
vector space consisting of all linear combinations of v1, v2, . . . , vn. We say that a set
of vectors spans a vector space.

For example, the set of three-by-one column matrices given by
1

0
0

 ,

0
1
0

 ,

2
3
0


spans the vector space of all three-by-one matrices with zero in the third row. This
vector space is a vector subspace of all three-by-one matrices.

One doesn’t need all three of these vectors to span this vector subspace because
any one of these vectors is linearly dependent on the other two. The smallest set
of vectors needed to span a vector space forms a basis for that vector space. Here,
given the set of vectors above, we can construct a basis for the vector subspace of
all three-by-one matrices with zero in the third row by simply choosing two out of
three vectors from the above spanning set. Three possible bases are given by the
sets 

1
0
0

 ,

0
1
0

 ,


1

0
0

 ,

2
3
0

 ,


0

1
0

 ,

2
3
0

 .

Although all three combinations form a basis for the vector subspace, the first com-
bination is usually preferred because this is an orthonormal basis. The vectors in
this basis are mutually orthogonal and of unit norm.

The number of vectors in a basis gives the dimension of the vector space. Here,
the dimension of the vector space of all three-by-one matrices with zero in the third
row is two.
Example: Find an orthonormal basis for the set of all three-by-one matrices where
the first row is equal to the third row.
There are many different solutions to this example, but a rather simple orthonormal
basis is given by the set 

0
1
0

 ,

√
2
2

1
0
1

 .

Any other three-by-one matrix with first row equal to third row can be written as
a linear combination of these two basis vectors, and the dimension of this vector
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space is also two.

Example: Determine a basis for P2, the vector space consisting of all polynomials
of degree less than or equal to two. Again, there are many possible choices for a
basis, but perhaps the simplest one is given by the set{

1, x, x2
}

.

Clearly, any polynomial of degree less than or equal to two can be written as a
linear combination of these basis vectors. The dimension of P2 is three.

Example: Determine a basis for the vector space given by the general solution
of the differential equation d2y/dx2 + y = 0. The general solution is given by

y(x) = a cos x + b sin x,

and a basis for this vector space are just the set of functions

{cos x, sin x} .

The dimension of the vector space given by the general solution of the differential
equation is two. This dimension is equal to the order of the highest derivative in
the differential equation.

3.4 Inner product spaces

We have discussed the inner product (or dot product) between two column matrices.
Recall that the inner product between, say, two three-by-one column matrices

u =

u1
u2
u3

 , v =

v1
v2
v3


is given by

uTv = u1v1 + u2v2 + u3v3.

We now generalize the inner product so that it is applicable to any vector space,
including those containing functions.

We will denote the inner product between any two vectors u and v as (u, v), and
require the inner product to satisfy the same arithmetic rules that are satisfied by
the dot product. With u, v, w vectors and c a scalar, these rules can be written as

(u, v) = (v, u), (u + v, w) = (u, w) + (v, w), (cu, v) = c(u, v) = (u, cv);

and (u, u) ≥ 0, where the equality holds if and only if u = 0.
Generalizing our definitions for column matrices, the norm of a vector u is de-

fined as
||u|| = (u, u)1/2.

A unit vector is a vector whose norm is one. Unit vectors are said to be normalized to
unity, though sometimes we just say that they are normalized. We say two vectors are
orthogonal if their inner product is zero. We also say that a basis is orthonormal (as in
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an orthonormal basis) if all the vectors are mutually orthogonal and are normalized
to unity. For an orthonormal basis consisting of the vectors v1, v2, . . . , vn, we write

(vi, vj) = δij,

where δij is called the Kronecker delta, defined as

δij =

{
1, if i = j;
0, if i 6= j.

Oftentimes, basis vectors are used that are orthogonal but are normalized to other
values besides unity.
Example: Define an inner product for Pn.
Let p(x) and q(x) be two polynomials in Pn. One possible definition of an inner
product is given by

(p, q) =
∫ 1

−1
p(x)q(x)dx.

You can check that all the conditions of an inner product are satisfied.
Example: Show that the first four Legendre polynomials form an orthogonal basis
for P3 using the inner product defined above.
The first four Legendre polynomials are given by

P0(x) = 1, P1(x) = x, P2(x) =
1
2
(3x2 − 1), P3(x) =

1
2
(5x3 − 3x),

and these four polynomials form a basis for P3. With an inner product defined on
Pn as

(p, q) =
∫ 1

−1
p(x)q(x)dx,

it can be shown by explicit integration that

(Pm, Pn) =
2

2n + 1
δm,n,

so that the first four Legendre polynomials are mutually orthogonal. They are
normalized so that Pn(1) = 1.
Example: Define an inner product on Pn such that the Hermite polynomials are
orthogonal.
For instance, the first four Hermite polynomials are given by

H0(x) = 1, H1(x) = 2x, H2(x) = 4x2 − 2, H3(x) = 8x3 − 12x,

which also form a basis for P3. Here, define an inner product on Pn as

(p, q) =
∫ ∞

−∞
p(x)q(x)e−x2

dx.

It can be shown that
(Hm, Hn) = 2nπ1/2n!δm,n,

so that the Hermite polynomials are orthogonal with this definition of the inner
product. These Hermite polynomials are normalized so that the leading coefficient
of Hn is given by 2n.
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3.5 Vector spaces of a matrix

3.5.1 Null space
View Null Space on YouTube

The null space of a matrix A is the vector space spanned by all vectors x that satisfy
the matrix equation

Ax = 0.

If the matrix A is m-by-n, then the column vector x is n-by-one and the null space of
A is a subspace of Rn. If A is a square invertible matrix, then the null space consists
of just the zero vector.

To find a basis for the null space of a noninvertible matrix, we bring A to row
reduced echelon form. We demonstrate by example. Consider the three-by-five
matrix given by

A =

−3 6 −1 1 −7
1 −2 2 3 −1
2 −4 5 8 −4

 .

By judiciously permuting rows to simplify the arithmetic, one pathway to construct
rref(A) is−3 6 −1 1 −7

1 −2 2 3 −1
2 −4 5 8 −4

→
 1 −2 2 3 −1
−3 6 −1 1 −7

2 −4 5 8 −4

→
1 −2 2 3 −1

0 0 5 10 −10
0 0 1 2 −2

→
1 −2 2 3 −1

0 0 1 2 −2
0 0 5 10 −10

→
1 −2 0 −1 3

0 0 1 2 −2
0 0 0 0 0

 .

We can now write the matrix equation Ax = 0 for the null space using rref(A).
Writing the variable associated with the pivot columns on the left-hand-side of the
equations, we have from the first and second rows

x1 = 2x2 + x4 − 3x5,
x3 = −2x4 + 2x5.

Eliminating x1 and x3, we now write the general solution for vectors in the null
space as 

2x2 + x4 − 3x5
x2

−2x4 + 2x5
x4
x5

 = x2


2
1
0
0
0

+ x4


1
0
−2

1
0

+ x5


−3

0
2
0
1

 ,

where x2, x4, and x5 are called free variables, and can take any values.
The vector multiplying the free variable x2 has a one in the second row and all

the other vectors have a zero in this row. Similarly, the vector multiplying x4 has
a one in the fourth row and all the other vectors have a zero in this row. And the
vector multiplying x5 has a one in the fifth row and all the other vectors have a zero
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in this row. Therefore, these three vectors must be linearly independent and they
form a basis for the null space. The basis is given by the set


2
1
0
0
0

 ,


1
0
−2

1
0

 ,


−3

0
2
0
1


 .

The null space is seen to be a three-dimensional subspace of R5, and its dimension
is equal to the number of free variables of rref(A). The number of free variables is,
of course, equal to the number of columns minus the number of pivot columns.

3.5.2 Application of the null space
View Application of the Null Space on YouTube

An underdetermined system of linear equations Ax = b with more unknowns
than equations may not have a unique solution. If u is the general form of a vector
in the null space of A, and v is any vector that satisfies Av = b, then x = u + v
satisfies Ax = A(u + v) = Au + Av = 0 + b = b. The general solution of Ax = b
can therefore be written as the sum of a general vector in Null(A) and a particular
vector that satisfies the underdetermined system.

As an example, suppose we want to find the general solution to the linear system
of two equations and three unknowns given by

2x1 + 2x2 + x3 = 0,
2x1 − 2x2 − x3 = 1,

which in matrix form is given by

(
2 2 1
2 −2 −1

)x1
x2
x3

 =

(
0
1

)
.

We first bring the augmented matrix to reduced row echelon form:(
2 2 1 0
2 −2 −1 1

)
→
(

1 0 0 1/4
0 1 1/2 −1/4

)
.

The null space is determined from x1 = 0 and x2 = −x3/2, and taking x3 = 2, we
can write

Null(A) = span


 0
−1

2

 .

A particular solution for the inhomogeneous system is found by solving x1 = 1/4
and x2 + x3/2 = −1/4. Here, we simply take the free variable x3 to be zero, and we
find x1 = 1/4 and x2 = −1/4. The general solution to the original underdetermined
linear system is the sum of the null space and the particular solution and is given
by x1

x2
x3

 = a

 0
−1

2

+
1
4

 1
−1

0

 .
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3.5.3 Column space
View Column Space on YouTube

The column space of a matrix is the vector space spanned by the columns of the
matrix. When a matrix is multiplied by a column vector, the resulting vector is in
the column space of the matrix, as can be seen from the example(

a b
c d

)(
x
y

)
=

(
ax + by
cx + dy

)
= x

(
a
c

)
+ y

(
b
d

)
,

where the right-hand side is seen to be a linear combination of the columns of
A. In general, Ax is a linear combination of the columns of A, and the equation
Ax = 0 expresses the linear dependence of the columns of A. If the columns of A
are linearly independent, then the null space of A is the zero vector. If the columns
of a square matrix A are linearly independent, then A is an invertible matrix.

Given an m-by-n matrix A, what is the dimension of the column space of A, and
how do we find a basis? Note that since A has m rows, the column space of A is a
subspace of Rm.

Fortunately, a basis for the column space of A can be found from rref(A). Con-
sider the example of §3.5.1, where

A =

−3 6 −1 1 −7
1 −2 2 3 −1
2 −4 5 8 −4

 ,

and

rref(A) =

1 −2 0 −1 3
0 0 1 2 −2
0 0 0 0 0

 .

The matrix equation Ax = 0 is equivalent to rref(A)x = 0, and the latter equation
can be expressed as

x1

1
0
0

+ x2

−2
0
0

+ x3

0
1
0

+ x4

−1
2
0

+ x5

 3
−2

0

 =

0
0
0

 .

Only the pivot columns of rref(A), here the first and third columns, are linearly
independent. For example, the second column is −2 times the first column; and
whatever linear dependence relations hold true for the columns of rref(A) also hold
true for the original matrix A. (You can try and check this fact.) The dimension of
the column space of A is therefore equal to the number of pivot columns of A, and
here it is two. A basis for the column space is given by the first and third columns
of A (not rref(A)), and is 

−3
1
2

 ,

−1
2
5

 .

Recall that the dimension of the null space is the number of non-pivot columns,
so that the sum of the dimensions of the null space and the column space is equal
to the total number of columns. A statement of this theorem is as follows. Let A be
an m-by-n matrix. Then

dim(Col(A)) + dim(Null(A)) = n.
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3.5.4 Row space, left null space and rank
View Row Space, Left Null Space and Rank on YouTube

In addition to the column space and the null space, a matrix A has two more vector
spaces associated with it, namely the column space and null space of AT, which are
called the row space and the left null space of A.

If A is an m-by-n matrix, then the row space and the null space are subspaces of
Rn, and the column space and the left null space are subspaces of Rm.

The null space consists of all vectors x such that Ax = 0, that is, the null space
is the set of all vectors that are orthogonal to the row space of A. We say that these
two vector spaces are orthogonal.

A basis for the row space of a matrix can be found from computing rref(A),
and is found to be rows of rref(A) (written as column vectors) with pivot columns.
The dimension of the row space of A is therefore equal to the number of pivot
columns, while the dimension of the null space of A is equal to the number of
nonpivot columns. The union of these two subspaces make up the vector space of
all n-by-one matrices and we say that these subspaces are orthogonal complements of
each other.

Furthermore, the dimension of the column space of A is also equal to the number
of pivot columns, so that the dimensions of the column space and the row space of
a matrix are equal. We have

dim(Col(A)) = dim(Row(A)).

We call this dimension the rank of the matrix A. This is an amazing result since
the column space and row space are subspaces of two different vector spaces. In
general, we must have rank(A) ≤ min(m, n). When the equality holds, we say that
the matrix is of full rank. And when A is a square matrix and of full rank, then the
dimension of the null space is zero and A is invertible.

We summarize our results in the table below. The null space of AT is also called
the left null space of A and the column space of AT is also called the row space of
A. The null space of A and the row space of A are orthogonal complements as is
the left null space of A and the column space of A. The dimension of the column
space of A is equal to the dimension of the row space of A and this dimension is
called the rank of A.

Table 3.1: The four fundamental subspaces of an m-by-n matrix

vector space subspace of dimension

Null(A) Rn n− # of pivot columns
Col(A) Rm # of pivot columns
Null(AT) Rm m− # of pivot columns
Col(AT) Rn # of pivot columns

3.6 Gram-Schmidt process

View Gram-Schmidt Process on YouTube
View Gram-Schmidt Process Example on YouTube
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3.6. GRAM-SCHMIDT PROCESS

Given any basis for a vector space, we can use an algorithm called the Gram-
Schmidt process to construct an orthonormal basis for that space. Let the vectors
v1, v2, . . . , vn be a basis for some n-dimensional vector space. We will assume here
that these vectors are column matrices, but this process also applies more generally.

We will construct an orthogonal basis u1, u2, . . . , un, and then normalize each
vector to obtain an orthonormal basis. First, define u1 = v1. To find the next or-
thogonal basis vector, define

u2 = v2 −
(uT

1 v2)u1

uT
1 u1

.

Observe that u2 is equal to v2 minus the component of v2 that is parallel to u1. By
multiplying both sides of this equation with uT

1 , it is easy to see that uT
1 u2 = 0 so

that these two vectors are orthogonal.
The next orthogonal vector in the new basis can be found from

u3 = v3 −
(uT

1 v3)u1

uT
1 u1

−
(uT

2 v3)u2

uT
2 u2

.

Here, u3 is equal to v3 minus the components of v3 that are parallel to u1 and u2. We
can continue in this fashion to construct n orthogonal basis vectors. These vectors
can then be normalized via

û1 =
u1

(uT
1 u1)1/2

, etc.

Since uk is a linear combination of v1, v2, . . . , vk, the vector subspace spanned
by the first k basis vectors of the original vector space is the same as the subspace
spanned by the first k orthonormal vectors generated through the Gram-Schmidt
process. We can write this result as

span{u1, u2, . . . , uk} = span{v1, v2, . . . , vk}.

To give an example of the Gram-Schmidt process, consider a subspace of R4

with the following basis:

W =




1
1
1
1

 ,


0
1
1
1

 ,


0
0
1
1


 = {v1, v2, v3} .

We use the Gram-Schmidt process to construct an orthonormal basis for this sub-
space. Let u1 = v1. Then u2 is found from

u2 = v2 −
(uT

1 v2)u1

uT
1 u1

=


0
1
1
1

− 3
4


1
1
1
1

 =
1
4


−3

1
1
1

 .
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Finally, we compute u3:

u3 = v3 −
(uT

1 v3)u1

uT
1 u1

−
(uT

2 v3)u2

uT
2 u2

=


0
0
1
1

− 1
2


1
1
1
1

− 1
6


−3

1
1
1

 =
1
3


0
−2

1
1

 .

Normalizing the three vectors, we obtain the orthonormal basis

W ′ =


1
2


1
1
1
1

 ,
1

2
√

3


−3

1
1
1

 ,
1√
6


0
−2

1
1


 .

3.7 Orthogonal projections

View Orthogonal Projections on YouTube

Suppose that V is an n-dimensional vector space and W is a p-dimensional sub-
space of V. Let {s1, s2, . . . , sp} be an orthonormal basis for W. Extending the basis
for W, let {s1, s2, . . . , sp, t1, t2, . . . , tn−p} be an orthonormal basis for V.

Any vector v in V can be written in terms of the basis for V as

v = a1s1 + a2s2 + · · ·+ apsp + b1t1 + b2t2 + bn−ptn−p.

The orthogonal projection of v onto W is then defined as

vprojW = a1s1 + a2s2 + · · ·+ apsp,

that is, the part of v that lies in W.
If you only know the vector v and the orthonormal basis for W, then the orthog-

onal projection of v onto W can be computed from

vprojW = (vTs1)s1 + (vTs2)s2 + · · ·+ (vTsp)sp,

that is, a1 = vTs1, a2 = vTs2, etc.
We can prove that the vector vprojW is the vector in W that is closest to v. Let w

be any vector in W different than vprojW , and expand w in terms of the basis vectors
for W:

w = c1s1 + c2s2 + · · ·+ cpsp.

The distance between v and w is given by the norm ||v−w||, and we have

||v−w||2 = (a1 − c1)
2 + (a2 − c2)

2 + · · ·+ (ap − cp)
2 + b2

1 + b2
2 + · · ·+ b2

n−p

≥ b2
1 + b2

2 + · · ·+ b2
n−p = ||v− vprojW ||

2,

or ||v− vprojW || ≤ ||v−w||, a result that will be used later in the problem of least
squares.
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3.8. QR FACTORIZATION

3.8 QR factorization

The Gram-Schmidt process naturally leads to a matrix factorization. Let A be an m-
by-n matrix with n linearly-independent columns given by {x1, x2, . . . , xn}. Follow-
ing the Gram-Schmidt process, it is always possible to construct an orthornormal
basis for the column space of A, denoted by {q1, q2, . . . , qn}. An important feature
of this orthonormal basis is that the first k basis vectors from the orthonormal set
span the same vector subspace as the first k columns of the matrix A. For some
coefficients rij, we can therefore write

x1 = r11q1,
x2 = r12q1 + r22q2,
x3 = r13q1 + r23q2 + r33q3,

...
...

xn = r1nq1 + r2nq2 + · · ·+ rnnqn;

and these equations can be written in matrix form asx1 x2 x3 . . . xn

 =

q1 q2 q3 . . . qn




r11 r12 . . . r1n
0 r22 . . . r2n
...

...
...

...
0 0 . . . rnn

 .

This form represents the matrix factorization called the QR factorization, and is
usually written as

A = QR,

where Q is an orthogonal matrix and R is an upper triangular matrix. The diagonal
elements of R can also be made non-negative by suitably adjusting the signs of the
orthonormal basis vectors.

As a concrete example, we will find the the QR factorization of the matrix

A =

(
1 2
2 1

)
=

a1 a2

 .

Applying the Gram-Schmidt process to the column vectors of A, we have for the
unnormalized orthogonal vectors

q1 = a1 =

(
1
2

)
,

q2 = a2 −
(qT

1 a2)q1

qT
1 q1

=

(
2
1

)
− 4

5

(
1
2

)
=

(
6/5
−3/5

)
=

3
5

(
2
−1

)
,

and normalizing, we obtain

q1 =
1√
5

(
1
2

)
, q2 =

1√
5

(
2
−1

)
.
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The projection of the columns of A onto the set of orthonormal vectors is given by

a1 = (aT
1 q1)q1, a2 = (aT

2 q1)q1 + (aT
2 q2)q2,

and with rij = aT
j qi, we compute

r11 = aT
1 q1 =

(
1 2

) (1
2

)
1√
5
=
√

5,

r12 = aT
2 q1 =

(
2 1

) (1
2

)
1√
5
=

4
√

5
5

,

r22 = aT
2 q2 =

(
2 1

) ( 2
−1

)
1√
5
=

3
√

5
5

.

The QR factorization of A is therefore given by(
1 2
2 1

)
=

(
1/
√

5 2/
√

5
2/
√

5 −1/
√

5

)(√
5 4
√

5/5
0 3

√
5/5

)
.

3.9 The least-squares problem

View The Least-Squares Problem Using Matrices on YouTube

Suppose there is some experimental data that is suspected to satisfy a functional

x

y

Figure 3.1: Linear regression.

relationship. The simplest such relationship is linear, and suppose one wants to fit
a straight line to the data. An example of such a linear regression problem is shown
in Fig. 3.1.

In general, let the data consist of a set of n points given by (x1, y1), (x2, y2), . . . ,
(xn, yn). Here, the x values are exact, and the y values are noisy. We assume that a
line of the form

y = β0 + β1x
is the best fit to the data. Although we know that the line will not go through all of
the data points, we can still write down the resulting equations. We have

y1 = β0 + β1x1,
y2 = β0 + β1x2,

...
yn = β0 + β1xn.
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These equations are a system of n equations in the two unknowns β0 and β1. The
corresponding matrix equation is given by

1 x1
1 x2
...

...
1 xn


(

β0
β1

)
=


y1
y2
...

yn

 .

This is an overdetermined system of equations that obviously has no solution. The
problem of least-squares is to find the best solution of these equations for β0 and
β1.

We can generalize this problem as follows. Suppose we are given the matrix
equation

Ax = b

that has no solution because b is not in the column space of A. Instead of exactly
solving this matrix equation, we want to solve another approximate equation that
minimizes the error between Ax and b. The error can be defined as the norm of
Ax− b, and the square of the error is just the sum of the squares of the components.
Our search is for the least-squares solution.

3.10 Solution of the least-squares problem

View Solution of the Least-Squares Problem by the Normal Equations on YouTube

The problem of least-squares can be cast as the problem of solving an overdeter-
mined matrix equation Ax = b when b is not in the column space of A. By replacing
b by its orthogonal projection onto the column space of A, the solution minimizes
the norm ||Ax− b||.

Now b = bprojCol(A)
+ (b− bprojCol(A)

), where bprojCol(A)
is the projection of b onto

the column space of A. Since (b− bprojCol(A)
) is orthogonal to the column space of

A, it is in the nullspace of AT. Therefore, AT(b− bprojCol(A)
) = 0, and it pays to

multiply Ax = b by AT to obtain

ATAx = ATb.

These equations, called the normal equations for Ax = b, determine the least-
squares solution for x, which can be found by Gaussian elimination. When A is
an m-by-n matrix, then ATA is an n-by-n matrix, and it can be shown that ATA is
invertible when the columns of A are linearly independent. When this is the case,
one can rewrite the normal equations by multiplying both sides by A(ATA)−1 to
obtain

Ax = A(ATA)−1ATb,

where the matrix

P = A(ATA)−1AT

projects a vector onto the column space of A. It is easy to prove that P2 = P, which
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states that two projections is the same as one. We have

P2 = (A(ATA)−1AT)(A(ATA)−1AT)

= A
[
(ATA)−1(ATA)

]
(ATA)−1AT

= A(ATA)−1AT = P.

As an example, consider the toy least-squares problem of fitting a line through
the three data points (1, 1), (2, 3) and (3, 2). With the line given by y = β0 + β1x,
the overdetermined system of equations is given by1 1

1 2
1 3

(β0
β1

)
=

1
3
2

 .

The least-squares solution is determined by solving

(
1 1 1
1 2 3

)1 1
1 2
1 3

(β0
β1

)
=

(
1 1 1
1 2 3

)1
3
2

 ,

or (
3 6
6 14

)(
β0
β1

)
=

(
6
13

)
.

We can solve either by directly inverting the two-by-two matrix or by using Gaus-
sian elimination. Inverting the two-by-two matrix, we have(

β0
β1

)
=

1
6

(
14 −6
−6 3

)(
6

13

)
=

(
1

1/2

)
,

so that the least-squares line is given by

y = 1 +
1
2

x.

The graph of the data and the line is shown below.
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1 2 3

x

1

2

3

y

Figure 3.2: Solution of the toy least-squares problem.
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Chapter 4

Determinants
4.1 Two-by-two and three-by-three determinants

View Two-by-Two and Three-by-Three Determinants on YouTube

Our first introduction to determinants was the definition for the general two-by-
two matrix

A =

(
a b
c d

)
: det A = ad− bc.

Other widely used notations for the determinant include

det A = det
(

a b
c d

)
= |A| =

∣∣∣∣a b
c d

∣∣∣∣ .

By explicit construction, we have seen that a two-by-two matrix A is invertible if
and only if det A 6= 0. If a square matrix A is invertible, then the equation Ax = b
has the unique solution x = A−1b. But if A is not invertible, then Ax = b may have
no solution or an infinite number of solutions. When det A = 0, we say that A is a
singular matrix.

Here, we would like to extend the definition of the determinant to an n-by-n
matrix. Before we do so, let us display the determinant for a three-by-three matrix.
We consider the system of equations Ax = 0 and find the condition for which x = 0
is the only solution. This condition must be equivalent to det A 6= 0. Witha b c

d e f
g h i

x1
x2
x3

 = 0,

one can do the messy algebra of elimination to solve for x1, x2, and x3. One finds
that x1 = x2 = x3 = 0 is the only solution when det A 6= 0, where the definition is
given by

det A = aei + b f g + cdh− ceg− bdi− a f h. (4.1)

A way to remember this result for the three-by-three matrix is by the following
picture:

a b c a b

d e f d e

g h i g h



 -

a b c a b

d e f d e

g h i g h




.

The matrix A is periodically extended two columns to the right, drawn explicitly
here but usually only imagined. Then the six terms comprising the determinant are
made evident, with the lines slanting down towards the right getting the plus signs
and the lines slanting down towards the left getting the minus signs. Unfortunately,
this mnemonic is only valid for three-by-three matrices.
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4.2 Laplace expansion and Leibniz formula

View Laplace Expansion for Computing Determinants on YouTube
View Leibniz Formula for Computing Determinants on YouTube

There are two ways to view the three-by-three determinant that do in fact gen-
eralize to n-by-n matrices. The first way writes

det A = aei + b f g + cdh− ceg− bdi− a f h
= a(ei− f h)− b(di− f g) + c(dh− eg)

= a
∣∣∣∣e f
h i

∣∣∣∣− b
∣∣∣∣d f
g i

∣∣∣∣+ c
∣∣∣∣d e
g h

∣∣∣∣ .

The three-by-three determinant is found from lower-order two-by-two determi-
nants, and a recursive definition of the determinant is possible. This method of
computing a determinant is called a Laplace expansion, or cofactor expansion, or
expansion by minors. The minors refer to the lower-order determinants, and the
cofactor refers to the combination of the minor with the appropriate plus or minus
sign. The rule here is that one goes across the first row of the matrix, multiplying
each element in the first row by the determinant of the matrix obtained by crossing
out the element’s row and column. The sign of the terms alternate as we go across
the row.

Instead of going across the first row, we could have gone down the first column
using the same method to obtain

det A = a
∣∣∣∣e f
h i

∣∣∣∣− d
∣∣∣∣b c
h i

∣∣∣∣+ g
∣∣∣∣b c
e f

∣∣∣∣ ,

also equivalent to (4.1). In fact, this expansion by minors can be done across any
row or down any column. The sign of each term in the expansion is given by
(−1)i+j when the number multiplying each minor is drawn from the ith-row and
j-th column. An easy way to remember the signs is to form a checkerboard pattern,
exhibited here for the three-by-three matrix:+ − +

− + −
+ − +

 .

The second way to generalize the determinant is called the Leibniz formula, or
more descriptively, the big formula. One notices that each term in (4.1) has only
a single element from each row and from each column. As we can choose one of
three elements from the first row, then one of two elements from the second row,
and only one element from the third row, there are 3! = 6 terms in the expansion.
For a general n-by-n matrix there are n! terms.

The sign of each term depends on whether it derives from an even or odd per-
mutation of the columns numbered {1, 2, 3, . . . , n}, with even permutations getting
a plus sign and odd permutations getting a minus sign. An even permutation is one
that can be obtained by switching pairs of numbers in the sequence {1, 2, 3, . . . , n}
an even number of times, and an odd permutation corresponds to an odd number
of times. As examples from the three-by-three case, the terms aei, b f g, and cdh
correspond to the column numberings {1, 2, 3}, {2, 3, 1}, and {3, 1, 2}, which can

54 CHAPTER 4. DETERMINANTS

https://youtu.be/cAARX18-74g
https://youtu.be/SIJAPMWe3rE


4.3. PROPERTIES OF THE DETERMINANT

be seen to be even permutations of {1, 2, 3}, and the terms ceg, bdi, and a f h cor-
respond to the column numberings {3, 2, 1}, {2, 1, 3}, and {1, 3, 2}, which are odd
permutations.

Either the Laplace expansion or the Leibniz formula can be used to define the
determinant of an n-by-n matrix. It will, however, be more illuminating to define
the determinant from three of its fundamental properties. These properties will
lead us to the determinant’s most important practical application: det A 6= 0 for an
invertible matrix. But we will also elucidate many other useful properties.

4.3 Properties of the determinant

View Properties of the Determinant on YouTube

The determinant, as we know, is a function that maps an n-by-n matrix to a scalar.
We now define this determinant function by the following three properties.

Property 1: The determinant of the identity matrix is one, i.e.,

det I = 1.

This property essentially normalizes the determinant. The two-by-two illustration
is ∣∣∣∣1 0

0 1

∣∣∣∣ = 1× 1− 0× 0 = 1.

Property 2: The determinant changes sign under row exchange. The two-by-two
illustration is ∣∣∣∣a b

c d

∣∣∣∣ = ad− bc = −(cb− da) = −
∣∣∣∣c d
a b

∣∣∣∣ .

Property 3: The determinant is a linear function of the first row, holding all other
rows fixed. The two-by-two illustration is∣∣∣∣ka kb

c d

∣∣∣∣ = kad− kbc = k(ad− bc) = k
∣∣∣∣a b
c d

∣∣∣∣
and∣∣∣∣a + a′ b + b′

c d

∣∣∣∣ = (a + a′)d− (b + b′)c = (ad− bc) + (a′d− b′c) =
∣∣∣∣a b
c d

∣∣∣∣+ ∣∣∣∣a′ b′

c d

∣∣∣∣ .

Remarkably, Properties 1-3 are all we need to uniquely define the determinant func-
tion. It is easy to show explicitly that these three properties hold for the determi-
nants of two-by-two and three-by-three matrices. And not too hard to show that
they hold for our definitions of the Laplace expansion and the Leibniz formula for
the determinant of an n-by-n matrix.

We now discuss further properties that follow from Properties 1-3. We will
continue to illustrate these properties using a two-by-two matrix.
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Property 4: The determinant is a linear function of all the rows, e.g.,∣∣∣∣ a b
kc kd

∣∣∣∣ = − ∣∣∣∣kc kd
a b

∣∣∣∣ (Property 2)

= −k
∣∣∣∣c d
a b

∣∣∣∣ (Property 3)

= k
∣∣∣∣a b
c d

∣∣∣∣ , (Property 2)

and similarly for the second linearity condition.

Property 5: If a matrix has two equal rows, then the determinant is zero, e.g.,∣∣∣∣a b
a b

∣∣∣∣ = − ∣∣∣∣a b
a b

∣∣∣∣ (Property 2)

= 0,

since zero is the only number equal to its negative.

Property 6: If we add k times row-i to row-j the determinant doesn’t change, e.g.,∣∣∣∣ a b
c + ka d + kb

∣∣∣∣ = ∣∣∣∣a b
c d

∣∣∣∣+ k
∣∣∣∣a b
a b

∣∣∣∣ (Property 4)

=

∣∣∣∣a b
c d

∣∣∣∣ . (Property 5)

This property together with Property 2 and 3 allows us to perform row reduction
on a matrix to simplify the calculation of a determinant.

Property 7: The determinant of a matrix with a row of zeros is zero, e.g.,∣∣∣∣a b
0 0

∣∣∣∣ = 0
∣∣∣∣a b
0 0

∣∣∣∣ (Property 4)

= 0.

Property 8: The determinant of a diagonal matrix is just the product of the diagonal
elements, e.g., ∣∣∣∣a 0

0 d

∣∣∣∣ = ad
∣∣∣∣1 0
0 1

∣∣∣∣ (Property 4)

= ad. (Property 1)

Property 9: The determinant of an upper or lower triangular matrix is just the prod-
uct of the diagonal elements, e.g., ∣∣∣∣a b

0 d

∣∣∣∣ = ∣∣∣∣a 0
0 d

∣∣∣∣ (Property 6)

= ad. (Property 8)

In the above calculation, Property 6 is applied by multiplying the second row by
−b/d and adding it to the first row.
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Property 10: A matrix with a nonzero determinant is invertible. A matrix with a zero
determinant is not invertible. Row reduction (Property 6), row exchange (Property
2), and multiplication of a row by a nonzero scalar (Property 4) can bring a square
matrix to its reduced row echelon form. If rref(A) = I, then the determinant is
nonzero and the matrix is invertible. If rref(A) 6= I, then the last row is all zeros,
the determinant is zero, and the matrix is not invertible.

Property 11: The determinant of the product is equal to the product of the determi-
nants, i.e.,

det AB = det A det B.

This identity turns out to be very useful, but its proof for a general n-by-n matrix is
difficult. The proof for a two-by-two matrix can be done directly. Let

A =

(
a b
c d

)
, B =

(
e f
g h

)
.

Then

AB =

(
ae + bg a f + bh
ce + dg c f + dh

)
,

and

det AB =

∣∣∣∣ae + bg a f + bh
ce + dg c f + dh

∣∣∣∣
=

∣∣∣∣ ae a f
ce + dg c f + dh

∣∣∣∣+ ∣∣∣∣ bg bh
ce + dg c f + dh

∣∣∣∣
=

∣∣∣∣ae a f
ce c f

∣∣∣∣+ ∣∣∣∣ae a f
dg dh

∣∣∣∣+ ∣∣∣∣bg bh
ce c f

∣∣∣∣+ ∣∣∣∣bg bh
dg dh

∣∣∣∣
= ac

∣∣∣∣e f
e f

∣∣∣∣+ ad
∣∣∣∣e f
g h

∣∣∣∣+ bc
∣∣∣∣g h
e f

∣∣∣∣+ bd
∣∣∣∣g h
g h

∣∣∣∣
= (ad− bc)

∣∣∣∣e f
g h

∣∣∣∣
= det A det B.

Property 12: Commuting two matrices doesn’t change the value of the determinant,
i.e., det AB = det BA. The proof is simply

det AB = det A det B (Property 11)
= det B det A
= det BA. (Property 11)

Property 13: The determinant of the inverse is the inverse of the determinant, i.e., if
A is invertible, then det (A−1) = 1/ det A. The proof is

1 = det I (Property 1)

= det (AA−1)

= det A det A−1. (Property 11)
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Therefore,

det A−1 =
1

det A
.

Property 14: The determinant of a matrix raised to an integer power is equal to
the determinant of that matrix, raised to the integer power. Note that A2 = AA,
A3 = AAA, etc. This property in equation form is given by

det (Ap) = (det A)p,

where p is an integer. This result follows from the successive application of Property
11.

Property 15: If A is an n-by-n matrix, then

det kA = kn det A.

Note that kA multiplies every element of A by the scalar k. This property follows
simply from Property 4 applied n times.

Property 16: The determinant of the transposed matrix is equal to the determinant
of the matrix, i.e.

det AT = det A.

When A = LU without any row exchanges, we have AT = UTLT and

det AT = det UTLT

= det UT det LT (Property 11)
= det U det L (Property 9)
= det LU (Property 11)
= det A.

The same result can be shown to hold even if row interchanges are needed. The
implication of Property 16 is that any statement about the determinant and the rows
of A also apply to the columns of A. To compute the determinant, one can do either
row reduction or column reduction!

It is time for some examples. We start with a simple three-by-three matrix and
illustrate some approaches to a hand calculation of the determinant.
Example: Compute the determinant of

A =

 1 5 0
2 4 −1
0 −2 0

 .

We show computations using the Leibniz formula and the Laplace expansion.
Method 1 (Leibniz formula): We compute the six terms directly by periodically extend-
ing the matrix and remembering that diagonals slanting down towards the right get
plus signs and diagonals slanting down towards the left get minus signs. We have

det A = 1 · 4 · 0 + 5 · (−1) · 0 + 0 · 2 · (−2)− 0 · 4 · 0− 5 · 2 · 0− 1 · (−1) · (−2) = −2.

Method 2 (Laplace expansion): We expand using minors. We should choose an expan-
sion across the row or down the column that has the most zeros. Here, the obvious
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choices are either the third row or the third column, and we can show both. Across
the third row, we have

det A = −(−2) ·
∣∣∣∣1 0
2 −1

∣∣∣∣ = −2,

and down the third column, we have

det A = −(−1) ·
∣∣∣∣1 5
0 −2

∣∣∣∣ = −2.

Example: Compute the determinant of

A =


6 3 2 4 0
9 0 −4 1 0
8 −5 6 7 1
3 0 0 0 0
4 2 3 2 0

 .

We first expand in minors across the fourth row:∣∣∣∣∣∣∣∣∣∣
6 3 2 4 0
9 0 −4 1 0
8 −5 6 7 1
3 0 0 0 0
4 2 3 2 0

∣∣∣∣∣∣∣∣∣∣
= −3

∣∣∣∣∣∣∣∣
3 2 4 0
0 −4 1 0
−5 6 7 1

2 3 2 0

∣∣∣∣∣∣∣∣ .

We then expand in minors down the fourth column:

−3

∣∣∣∣∣∣∣∣
3 2 4 0
0 −4 1 0
−5 6 7 1

2 3 2 0

∣∣∣∣∣∣∣∣ = 3

∣∣∣∣∣∣
3 2 4
0 −4 1
2 3 2

∣∣∣∣∣∣ .

We can then multiply the third column by 4 and add it to the second column:

= 3

∣∣∣∣∣∣
3 2 4
0 −4 1
2 3 2

∣∣∣∣∣∣ = 3

∣∣∣∣∣∣
3 18 4
0 0 1
2 11 2

∣∣∣∣∣∣ ,

and finally expand in minors across the second row:

3

∣∣∣∣∣∣
3 18 4
0 0 1
2 11 2

∣∣∣∣∣∣ = −3
∣∣∣∣3 18
2 11

∣∣∣∣ = −3(33− 36) = 9.

The technique here is to try and zero out all the elements in a row or a column
except one before proceeding to expand by minors across that row or column.
Example: Recall the Fibonacci Q-matrix, which satisfies

Q =

(
1 1
1 0

)
, Qn =

(
Fn+1 Fn

Fn Fn−1

)
,

where Fn is the nth Fibonacci number. Prove Cassini’s identity

Fn+1Fn−1 − F2
n = (−1)n.
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Repeated us of Property 10 yields det (Qn) = (det Q)n. Applying this identity to the
Fibonacci Q-matrix results in Cassini’s identity. For example, with F5 = 5, F6 = 8,
F7 = 13, we have 13 · 5− 82 = 1.
Example: Consider the tridiagonal matrix with ones on the main diagonal, ones
on the first diagonal below the main, and negative ones on the first diagonal
above the main. The matrix denoted by Tn is the n-by-n version of this matrix.
For example, the first four matrices are given by

T1 =
(
1
)

, T2 =

(
1 −1
1 1

)
, T3 =

1 −1 0
1 1 −1
0 1 1

 T4 =


1 −1 0 0
1 1 −1 0
0 1 1 −1
0 0 1 1

 .

Show that |Tn| = Fn+1.
Let’s compute the first three determinants. We have |T1| = 1 = F2 and |T2| = 2 = F3.
We compute |T3| going across the first row using minors:

|T3| = 1
∣∣∣∣1 −1
1 1

∣∣∣∣+ 1
∣∣∣∣1 −1
0 1

∣∣∣∣ = 2 + 1 = 3 = F4.

To prove that |Tn| = Fn+1, we need only prove that |Tn+1| = |Tn| + |Tn−1|. We
expand |Tn+1| in minors across the first row. Using |T4| as an example, it is easy to
see that

|Tn+1| = |Tn|+

∣∣∣∣∣∣∣∣∣∣∣

1 −1 0 0 0 . . .
0 1 −1 0 0 . . .
0 1 1 −1 0 . . .
0 0 1 1 −1 . . .
...

...
...

...
... . . .

∣∣∣∣∣∣∣∣∣∣∣
.

The remaining determinant can be expanded down the first column to obtain |Tn−1|
so that |Tn+1| = |Tn|+ |Tn−1|.This Fibonacci recursion relation together with |T1| =
1 and |T2| = 2 results in |Tn| = Fn+1.

4.4 Cramer’s rule

Cramer’s rule, first published in the year 1750, is a formula that uses determinants
to find the solution of a linear system of equations. It is useful only for small
systems. We will illustrate the derivation of Cramer’s rule for three equation and
three unknowns.

Consider the linear system

a11x1 + a12x2 + a13x3 = b1,
a21x1 + a22x2 + a23x3 = b2,
a31x1 + a32x2 + a33x3 = b3.

As usual, we write this as the matrix equation Ax = b, where x is the unknown
column vector and b is the right-hand side. The coefficient matrix A is given by

A =

a11 a12 a13
a21 a22 a23
a31 a32 a33

 .
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Using the properties of a determinant (Properties 4, 6, and 16), we can write the
following equalities:

x1

∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣ =
∣∣∣∣∣∣
a11x1 a12 a13
a21x1 a22 a23
a31x1 a32 a33

∣∣∣∣∣∣
=

∣∣∣∣∣∣
a11x1 + a12x2 a12 a13
a21x1 + a22x2 a22 a23
a31x1 + a32x2 a32 a33

∣∣∣∣∣∣
=

∣∣∣∣∣∣
a11x1 + a12x2 + a13x3 a12 a13
a21x1 + a22x2 + a23x3 a22 a23
a31x1 + a32x2 + a33x3 a32 a33

∣∣∣∣∣∣ .

Then replacing the first column of the right-hand side determinant by the right-
hand side of the system of equations, we get

x1

∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣ =
∣∣∣∣∣∣
b1 a12 a13
b2 a22 a23
b3 a32 a33

∣∣∣∣∣∣ .

Solving for the first unknown x1, we find

x1 =

∣∣∣∣∣∣
b1 a12 a13
b2 a22 a23
b3 a32 a33

∣∣∣∣∣∣
/∣∣∣∣∣∣

a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣ .

Two similar calculations yield

x2 =

∣∣∣∣∣∣
a11 b1 a13
a21 b2 a23
a31 b3 a33

∣∣∣∣∣∣
/∣∣∣∣∣∣

a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣ ,

x3 =

∣∣∣∣∣∣
a11 a12 b1
a21 a22 b2
a31 a32 b3

∣∣∣∣∣∣
/∣∣∣∣∣∣

a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣ .

Example: Using Cramer’s rule, solve the system of linear equations given by

−3x2 + 2x2 − x3 = −1,
6x1 − 6x2 + 7x3 = −7,
3x1 − 4x2 + 4x3 = −6.

We can find the required determinants using row reduction and the Laplace expan-
sion. We have for the determinant of the A matrix,∣∣∣∣∣∣

−3 2 −1
6 −6 7
3 −4 4

∣∣∣∣∣∣ =
∣∣∣∣∣∣
−3 2 −1

0 −2 5
0 −2 3

∣∣∣∣∣∣ = −3
∣∣∣∣−2 5
−2 3

∣∣∣∣ = −3(−6 + 10) = −12.

Then replacing the first column of the A matrix by the right-hand side of the equa-
tion, we have∣∣∣∣∣∣
−1 2 −1
−7 −6 7
−6 −4 4

∣∣∣∣∣∣ =
∣∣∣∣∣∣
−1 2 −1

0 −20 14
0 −16 10

∣∣∣∣∣∣ = −4
∣∣∣∣−10 7
−8 5

∣∣∣∣ = −4(−50 + 56) = −24,
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and
x1 = −24/(−12) = 2.

Replacing the second column, we have∣∣∣∣∣∣
−3 −1 −1

6 −7 7
3 −6 4

∣∣∣∣∣∣ =
∣∣∣∣∣∣
−3 −1 −1

0 −9 5
0 −7 3

∣∣∣∣∣∣ = −3
∣∣∣∣−9 5
−7 3

∣∣∣∣ = −3(−27 + 35) = −24,

and
x2 = −24/(−12) = 2.

Finally, replacing the third column, we have∣∣∣∣∣∣
−3 2 −1

6 −6 −7
3 −4 −6

∣∣∣∣∣∣ =
∣∣∣∣∣∣
−3 2 −1

0 −2 −9
0 −2 −7

∣∣∣∣∣∣ = −3
∣∣∣∣−2 −9
−2 −7

∣∣∣∣ = −3(14− 18) = 12,

and
x3 = 12/(−12) = −1,

and we have solved our three equations for three unknowns.

4.5 Calculating the inverse matrix using determinants

If A is an invertible n-by-n matrix, then Cramer’s rule can be applied to solve the
equation

AA−1 = I. (4.2)

Each column of A−1 can be found using the corresponding column of I on the right-
hand side. We will derive the method using a general three-by-three matrix, while
introducing some commonly used terminology.

Let A be a three-by-three matrix given by

A =

a11 a12 a13
a21 a22 a23
a31 a32 a33

 ,

with det A 6= 0. The matrix equation we want to solve isa11 a12 a13
a21 a22 a23
a31 a32 a33

x1 x2 x3
y1 y2 y3
z1 z2 z3

 =

1 0 0
0 1 0
0 0 1

 , (4.3)

where the unknown inverse matrix is given by

A−1 =

x1 x2 x3
y1 y2 y3
z1 z2 z3

 .

The first column of the inverse matrix can be found by solving the system of equa-
tions given by a11 a12 a13

a21 a22 a23
a31 a32 a33

x1
y1
z1

 =

1
0
0

 .
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Applying Cramer’s rule and a Laplace expansion, we solve for x1 times the deter-
minant of A:

x1

∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣ =
∣∣∣∣∣∣
1 a12 a13
0 a22 a23
0 a32 a33

∣∣∣∣∣∣ =
∣∣∣∣a22 a23
a32 a33

∣∣∣∣ .

Similarly, we solve for y1 times the determinant of A:

y1

∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣ =
∣∣∣∣∣∣
a11 1 a13
a21 0 a23
a31 0 a33

∣∣∣∣∣∣ = −
∣∣∣∣a21 a23
a31 a33

∣∣∣∣ .

Note the minus sign in front of the two-by-two determinant because the one from
the identity matrix is located in row one and column two of the three-by-three
matrix. Finally, we solve for z1 times the determinant of A:

z1

∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣ =
∣∣∣∣∣∣
a11 a12 1
a21 a22 0
a31 a32 0

∣∣∣∣∣∣ =
∣∣∣∣a21 a22
a31 a32

∣∣∣∣ .

We can continue in this manner to determine the second column of the inverse
matrix, and then finally the third column.

At this point, textbook writers usually introduce some additional terminology.
The minor of the element aij of matrix A is defined to be the determinant of the
submatrix formed by deleting the ith row and jth column of the matrix A. We
denote the value of this determinant by Mij. For example, the minor M23 of element
a23 from a three-by-three matrix is computed by

M23 =

a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
=

∣∣∣∣a11 a12
a31 a32

∣∣∣∣ = a11a32 − a12a31.

The cofactor of the element aij is the minor Mij multiplied by (−1)i+j, that is, the
cofactor equals the minor if the row plus column number is even, and equals the
negative of the minor if the row plus column number is odd. We denote the cofactor
by Cij, so that

Cij = (−1)i+j Mij.

We now see that the first column of the inverse matrix can be written as

x1 det A = C11, y1 det A = C12, z1 det A = C13.

Continuing to compute the second and third columns of the inverse matrix, we
obtain

A−1 det A =

C11 C21 C31
C12 C22 C32
C13 C23 C33

 .

Observe that the indexing of the cofactors here is column-row and not the usual
row-column. If we define a cofactor matrix in the more standard way, with

C =

C11 C12 C13
C21 C22 C21
C31 C32 C33

 ,
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then we have determined that

A−1 = CT/det A,

where CT is the transpose of C. The transpose of the cofactor matrix of A used to
be called the adjoint matrix of A but is now called the adjugate matrix of A, and
is denoted by adj(A). So the formula for the inverse matrix is often very neatly
written as

A−1 = adj(A)/det A.

Example: Using the adjugate matrix of A, compute the inverse of A =

−3 2 −1
6 −6 7
3 −4 4

.

We will need to compute one three-by-three determinant and nine two-by-two de-
terminants. The three-by-three determinant was already found using∣∣∣∣∣∣

−3 2 −1
6 −6 7
3 −4 4

∣∣∣∣∣∣ =
∣∣∣∣∣∣
−3 2 −1

0 −2 5
0 −2 3

∣∣∣∣∣∣ = −3(−6 + 10) = −12.

The minor matrix is obtained by systematically deleting the rows and columns to
compute all nine two-by-two determinants. I let the reader do this to find

M =

4 3 −6
4 −9 6
8 −15 6

 .

The cofactor matrix is determined from the minor matrix after multiplying each
element by either plus or minus one, so that

C =

 4 −3 −6
−4 −9 −6

8 15 6

 .

And the adjugate matrix is found from the transpose of the cofactor matrix:

adj(A) =

 4 −4 8
−3 −9 15
−6 −6 6

 .

Then, dividing the adjugate matrix by det(A) = −12, we find

A−1 = adj(A)/det A =

−1/3 1/3 −2/3
1/4 3/4 −5/4
1/2 1/2 −1/2

 .

4.6 Use of determinants in Vector Calculus

Consider two three-dimensional vectors u = u1i + u2j + u3k and v = v1i + v2j +
v3k, written as you would find them in Calculus rather than as column matrices in
Linear Algebra. The dot product of the two vectors is defined in Calculus as

u · v = u1v1 + u2v2 + u3v3,
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and the cross product is defined as

u× v =

∣∣∣∣∣∣
i j k

u1 u2 u3
v1 v2 v3

∣∣∣∣∣∣ = i(u2v3 − u3v2)− j(u1v3 − u3v1) + k(u1v2 − u2v1),

where the determinant from Linear Algebra is used as a mnemonic to remember
the definition. If the angle between the two vectors is given by θ, then trigonometry
can be used to show that

u · v = |u||v| cos θ, |u× v| = |u||v| sin θ.

Now, if u and v lie in the x-y plane, then the area of the parallelogram formed from
these two vectors, determined from base times height, is given by

area = |u× v|
= |u1v2 − u2v1|

=

∣∣∣∣det
(

u1 u2
v1 v2

)∣∣∣∣ .

This result also generalizes to three dimensions. The volume of a parallelopiped
formed by the three vectors u, v, and w is given by

volume = |u · (v×w)|

=

∣∣∣∣∣∣det

u1 u2 u3
v1 v2 v3
w1 w2 w3

∣∣∣∣∣∣ .

An important application of this result is the change-of-variable formula for multi-
dimensional integration. Consider the double integral

I =
∫ ∫

A
. . . dxdy

over some unspecified function of x and y and over some designated area A in the
x-y plane. Suppose we make a linear transformation from the x-y coordinate system
to some u-v coordinate system. That is, let

u = ax + by, v = cx + dy,

or in matrix notation, (
u
v

)
=

(
a b
c d

)(
x
y

)
.

Observe that the orthonormal basis vectors i and j transform into the vectors ai +
cj and bi + dj so that a rectangle in the x-y coordinate system transforms into a
parallelogram in the u-v coordinate system. The area A of the parallelogram in the
u-v coordinate system is given by

A =

∣∣∣∣det
(

a c
b d

)∣∣∣∣ = ∣∣∣∣det
(

a b
c d

)∣∣∣∣ .

Notice that because this was a linear transformation, we could have also written the
area as

A =

∣∣∣∣∣∣∣∣det


∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y


∣∣∣∣∣∣∣∣ ,
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which is called the Jacobian determinant, or just the Jacobian. This result also
applies to infinitesimal areas where a linear approximation can be made, and with

u = u(x, y), v = v(x, y),

the change of variables formula becomes

dudv =

∣∣∣∣det
∂(u, v)
∂(x, y)

∣∣∣∣ dxdy,

where in general, the Jacobian matrix is defined as

∂(u, v)
∂(x, y)

=


∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

 .

Note that sometimes we define the change of coordinates as

x = x(u, v), y = y(u, v),

and the change of variables formula will be

dxdy =

∣∣∣∣det
∂(x, y)
∂(u, v)

∣∣∣∣ dudv.

We can give two very important examples. The first in two dimensions is the
change of variables from rectangular to polar coordinates. We have

x = r cos θ, y = r sin θ,

and the Jacobian of the transformation is∣∣∣∣det
∂(x, y)
∂(r, θ)

∣∣∣∣ = ∣∣∣∣cos θ −r sin θ
sin θ r cos θ

∣∣∣∣ = r.

So to find the area of a circle of radius R, with formula x2 + y2 = R2, we have

∫ R

−R

∫ √R2−y2

−
√

R2−y2
dx dy =

∫ 2π

0

∫ R

0
r dr dθ = πR2.

The second example in three dimensions is from cartesian to spherical coordi-
nates. Here,

x = r sin θ cos φ, y = r sin θ sin φ, z = r cos θ.

The Jacobian is∣∣∣∣det
∂(x, y, z)
∂(r, θ, φ)

∣∣∣∣ =
∣∣∣∣∣∣
sin θ cos φ r cos θ cos φ −r sin θ sin φ
sin θ sin φ r cos θ sin φ r sin θ cos φ

cos θ −r sin θ 0

∣∣∣∣∣∣ = r2 sin θ.

So to find the area of a sphere of radius R, with formula x2 + y2 + z2 = R2, we have

∫ R

−R

∫ √R2−z2

−
√

R2−z2

∫ √R2−y2−z2

−
√

R2−y2−z2
dx dy dz =

∫ 2π

0

∫ π

0

∫ R

0
r2 sin θ dr dθ dφ =

4
3

πR3.
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Chapter 5

Eigenvalues and eigenvectors
5.1 The eigenvalue problem

View The Eigenvalue Problem on YouTube
View Finding Eigenvalues and Eigenvectors (Part 1) on YouTube
View Finding Eigenvalues and Eigenvectors (Part 2) on YouTube

Let A be an n-by-n matrix, x an n-by-1 column vector, and λ a scalar. The eigenvalue
problem for a given matrix A solves

Ax = λx (5.1)

for n eigenvalues λi with corresponding eigenvectors xi. Since Ix = x, where I is
the n-by-n identity matrix, we can rewrite the eigenvalue equation (5.1) in homoge-
neous form as

(A− λI)x = 0. (5.2)

The trivial solution to this equation is x = 0, and for nontrivial solutions to exist,
the n-by-n matrix A− λI, which is the matrix A with λ subtracted from its main
diagonal, must be singular. Hence, to determine the nontrivial solutions, we require
that

det (A− λI) = 0. (5.3)

Using the Leibniz formula for the determinant, we see that (5.3) is an n-th order
polynomial equation in λ, called the characteristic equation of A. The characteristic
equation can be solved for the eigenvalues, and for each eigenvalue, a correspond-
ing eigenvector can be determined directly from (5.2).

We can demonstrate how to find the eigenvalues of a general 2-by-2 matrix given
by

A =

(
a b
c d

)
.

We have

0 = det (A− λI)

=

∣∣∣∣ a− λ b
c d− λ

∣∣∣∣
= (a− λ)(d− λ)− bc

= λ2 − (a + d)λ + (ad− bc),

which can be more generally written as

λ2 − Tr A λ + det A = 0, (5.4)

where Tr A is the trace, or sum of the diagonal elements, of the matrix A.

Example: The Cayley-Hamilton theorem states that every square matrix satis-
fies its own characteristic equation. By explicit calculation, prove the Cayley-
Hamilton theorem for a two-by-two matrix.
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The Cayley-Hamilton theorem for a two-by-two matrix A states that

A2 − (Tr A)A + (det A)I = 0.

Notice that we need to replace the one in the third term of the characteristic poly-
nomial by the identity matrix so that each term in the polynomial becomes a two-
by-two matrix. Let

A =

(
a b
c d

)
.

We compute:

A2 − (Tr A)A + (det A)I =
(

a b
c d

)(
a b
c d

)
− (a + d)

(
a b
c d

)
+ (ad− bc)

(
1 0
0 1

)
=

(
a2 + bc ab + bd
ac + cd bc + d2

)
−
(

a2 + ad ab + bd
ac + cd ad + d2

)
+

(
ad− bc 0

0 ad− bc

)
=

(
0 0
0 0

)
,

thereby proving the Cayley-Hamilton theorem for two-by-two matrices.

Example: Use the Cayley-Hamilton theorem to find the inverse of a two-by-two
matrix.
Again, the Cayley-Hamilton theorem for a two-by-two matrix is

A2 − (Tr A)A + (det A)I = 0.

We multiply this equation by A−1 to obtain

A− (Tr A)I + (det A)A−1 = 0.

Assuming det A 6= 0, we can solve for A−1 to obtain

A−1 =
1

det A
(
(Tr A)I−A

)
.

With

A =

(
a b
c d

)
,

we have (
(Tr A)I−A

)
=

(
a + d 0

0 a + d

)
−
(

a b
c d

)
=

(
d −b
−c a

)
,

so that

A−1 =
1

det A

(
d −b
−c a

)
.

Since the characteristic equation of a two-by-two matrix is a quadratic equation,
it can have either (i) two distinct real roots; (ii) two distinct complex conjugate roots;
or (iii) one degenerate real root. That is, eigenvalues and eigenvectors can be real
or complex, and that for certain defective matrices, there may be less than n distinct
eigenvalues and eigenvectors.

If λ1 is an eigenvalue of our 2-by-2 matrix A, then the corresponding eigenvector
x1 may be found by solving(

a− λ1 b
c d− λ1

)(
x11
x21

)
= 0, (5.5)
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where the equation of the second row will always be a multiple of the equation of
the first row because the determinant of the matrix on the left-hand-side is zero. The
eigenvector x1 can be multiplied by any nonzero constant and still be an eigenvector.
We could normalize x1, for instance, by taking x11 = 1 or |x1| = 1, or whatever,
depending on our needs.

The equation from the first row of (5.5) is

(a− λ1)x11 + bx21 = 0,

and we could take x11 = 1 to find x21 = (λ1 − a)/b. These results are usually
derived as needed when given specific matrices.
Example: Find the eigenvalues and eigenvectors of the following matrices:(

0 1
1 0

)
and

(
3 1
1 3

)
.

For

A =

(
0 1
1 0

)
,

the characteristic equation is
λ2 − 1 = 0,

with solutions λ1 = 1 and λ2 = −1. The first eigenvector is found by solving
(A− λ1I)x1 = 0, or (

−1 1
1 −1

)(
x11
x21

)
= 0,

so that x21 = x11. The second eigenvector is found by solving (A− λ2I)x2 = 0, or(
1 1
1 1

)(
x12
x22

)
= 0,

so that x22 = −x12. The eigenvalues and eigenvectors are therefore given by

λ1 = 1, x1 =

(
1
1

)
; λ2 = −1, x2 =

(
1
−1

)
.

To find the eigenvalues and eigenvectors of the second matrix we can follow this
same procedure. Or better yet, we can take a shortcut. Let

A =

(
0 1
1 0

)
and B =

(
3 1
1 3

)
.

We know the eigenvalues and eigenvectors of A and that B = A + 3I. Therefore,
with λB representing the eigenvalues of B, and λA representing the eigenvalues of
A, we have

0 = det (B− λBI) = det (A + 3I− λBI) = det (A− (λB − 3)I) = det (A− λAI).

Therefore, λB = λA + 3 and the eigenvalues of B are 4 and 2. The eigenvectors
remain the same.

It is useful to notice that, for a two-by-two matrix, λ1 + λ2 = Tr A and that
λ1λ2 = det A. The analogous result for n-by-n matrices is also true and worthwhile
to remember. In particular, summing the eigenvalues and comparing to the trace of
the matrix provides a rapid check on your algebra.
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Example: Find the eigenvalues and eigenvectors of the following matrices(
0 −1
1 0

)
and

(
0 1
0 0

)
.

For

A =

(
0 −1
1 0

)
,

the characteristic equation is
λ2 + 1 = 0,

with solutions i and −i. Notice that if the matrix A is real, then the complex
conjugate of the eigenvalue equation Ax = λx is Ax̄ = λ̄x̄. So if λ and x are an
eigenvalue and eigenvector of a real matrix A, then so are the complex conjugates λ̄
and x̄. Eigenvalues and eigenvectors of a real matrix appear as complex conjugate
pairs.

The eigenvector associated with λ = i is determined from (A− iI)x = 0, or(
−i −1

1 −i

)(
x1
x2

)
= 0,

or x1 = ix2. The eigenvectors and eigenvectors of A are therefore given by

λ = i, x =

(
i
1

)
; λ̄ = −i, x̄ =

(
−i

1

)
.

For

B =

(
0 1
0 0

)
,

the characteristic equation is
λ2 = 0,

so that there is a degenerate eigenvalue of zero. The eigenvector associated with the
zero eigenvalue is found from Bx = 0 and has zero second component. Therefore,
this matrix is defective and has only one eigenvalue and eigenvector given by

λ = 0, x =

(
1
0

)
.

Example: Find the eigenvalues and eigenvectors of the rotation matrix

R =

(
cos θ − sin θ
sin θ cos θ

)
.

The characteristic equation is given by

λ2 − 2 cos θλ + 1 = 0,

with solution

λ± = cos θ ±
√

cos2 θ − 1 = cos θ ± i sin θ = e±iθ .

The eigenvector corresponding to λ = eiθ is found from

−i sin θx1 − sin θx2 = 0,

or x2 = −ix1. Therefore, the eigenvalues and eigenvectors are

λ = eiθ , x =

(
1
−i

)
and their complex conjugates.
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5.2 Matrix diagonalization

View Matrix Diagonalization on YouTube
View Powers of a Matrix on YouTube
View Powers of a Matrix Example on YouTube

For concreteness, consider a 2-by-2 matrix A with eigenvalues and eigenvectors
given by

λ1, x1 =

(
x11
x21

)
; λ2, x2 =

(
x12
x22

)
.

Now, consider the matrix product and factorization

A
(

x11 x12
x21 x22

)
=

(
λ1x11 λ2x12
λ1x21 λ2x22

)
=

(
x11 x12
x21 x22

)(
λ1 0
0 λ2

)
.

We define S to be the matrix whose columns are the eigenvectors of A, and Λ to
be the diagonal eigenvalue matrix. Then generalizing to any square matrix with a
complete set of eigenvectors, we have

AS = SΛ.

Multiplying both sides on the right or the left by S−1, we have found

A = SΛS−1 and Λ = S−1AS.

To memorize the order of the S matrices in these formulas, just remember that A
should be multiplied on the right by S.

Diagonalizing a matrix facilitates finding powers of that matrix. For instance,

A2 = (SΛS−1)(SΛS−1) = SΛ2S−1,

where in the 2-by-2 example, Λ2 is simply(
λ1 0
0 λ2

)(
λ1 0
0 λ2

)
=

(
λ2

1 0
0 λ2

2

)
.

In general, Λ2 has the eigenvalues squared down the diagonal. More generally, for
p a positive integer,

Ap = SΛpS−1.

Example: Recall the Fibonacci Q-matrix, which satisfies

Q =

(
1 1
1 0

)
, Qn =

(
Fn+1 Fn

Fn Fn−1

)
.

Using Q and Qn, derive Binet’s formula for Fn.
The characteristic equation of Q is given by

λ2 − λ− 1 = 0,

with solutions

λ1 =
1 +
√

5
2

= Φ, λ2 =
1−
√

5
2

= −φ.
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The irrational number Φ is called the golden ratio, and the irrational number φ is
called the golden ratio conjugate. The numerical values are approximately Φ =
1.618 . . . and φ = 0.618 . . . . Useful identities are

Φ = 1 + φ, Φ = 1/φ, and Φ + φ =
√

5.

The eigenvector corresponding to Φ can be found from

x1 −Φx2 = 0,

and the eigenvector corresponding to −φ can be found from

x1 + φx2 = 0.

Therefore, the eigenvalues and eigenvectors can be written as

λ1 = Φ, x1 =

(
Φ
1

)
; λ2 = −φ, x2 =

(
−φ

1

)
.

The eigenvector matrix S becomes

S =

(
Φ −φ
1 1

)
;

and the inverse of this 2-by-2 matrix is given by

S−1 =
1√
5

(
1 φ
−1 Φ

)
.

Our diagonalization is therefore

Q =
1√
5

(
Φ −φ
1 1

)(
Φ 0
0 −φ

)(
1 φ
−1 Φ

)
.

Raising to the nth power, we have

Qn =
1√
5

(
Φ −φ
1 1

)(
Φn 0
0 (−φ)n

)(
1 φ
−1 Φ

)
=

1√
5

(
Φ −φ
1 1

)(
Φn Φn−1

−(−φ)n −(−φ)n−1

)
=

1√
5

(
Φn+1 − (−φ)n+1 Φn − (−φ)n

Φn − (−φ)n Φn−1 − (−φ)n−1

)
.

Using Qn written in terms of the Fibonacci numbers, we have derived Binet’s for-
mula

Fn =
Φn − (−φ)n
√

5
.

5.3 Symmetric and Hermitian matrices

When a real matrix A is equal to its transpose, AT = A , we say that the matrix is
symmetric. When a complex matrix A is equal to its conjugate transpose, A† = A,
we say that the matrix is Hermitian.
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One of the reasons symmetric and Hermitian matrices are important is because
their eigenvalues are real and their eigenvectors are orthogonal. Let λi and λj be
eigenvalues and xi and xj eigenvectors of the possibly complex matrix A. We have

Axi = λixi, Axj = λjxj.

Multiplying the first equation on the left by x†
j , and taking the conjugate transpose

of the second equation and multiplying on the right by xi, we obtain

x†
j Axi = λix†

j xi, x†
j A†xi = λ̄jx†

j xi.

If A is Hermitian, then A† = A, and subtracting the second equation from the first
yields

(λi − λ̄j)x†
j xi = 0.

If i = j, then since x†
i xi > 0, we have λ̄i = λi: all eigenvalues are real. If i 6= j

and λi 6= λj, then x†
j xi = 0: eigenvectors with distinct eigenvalues are orthogonal.

Usually, the eigenvectors are made orthonormal, and diagonalization makes use of
real orthogonal or complex unitary matrices.
Example: Diagonalize the symmetric matrix

A =

(
a b
b a

)
.

The characteristic equation of A is given by

(a− λ)2 = b2,

with real eigenvalues λ1 = a+ b and λ2 = a− b. The eigenvector with eigenvalue λ1
satisfies −x1 + x2 = 0, and the eigenvector with eigenvalue λ2 satisfies x1 + x2 = 0.
Normalizing the eigenvectors, we have

λ1 = a + b, X1 =
1√
2

(
1
1

)
; λ2 = a− b, X2 =

1√
2

(
1
−1

)
.

Evidently, the eigenvectors are orthonormal. The diagonalization using A = QΛQ−1

is given by (
a b
b a

)
=

1√
2

(
1 1
1 −1

)(
a + b 0

0 a− b

)
1√
2

(
1 1
1 −1

)
,

which can be verified directly by matrix multiplication. The matrix Q is a symmetric
orthogonal matrix so that Q−1 = Q.
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Part II

Differential equations
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The second part of this course is on differential equations. We begin with first-
order odes and explain how to solve separable and linear equations. A range of ap-
plications are given. We then discuss the important case of second-order odes with
constant coefficients. Homogeneous and inhomogeneous equations are solved, and
the phenomena of resonance is discussed. When the coefficients are not constant, a
series solution is often required and we discuss this important technique. We next
study a system of linear differential equations and show how some of our knowl-
edge of linear algebra can aid in their solution. We finish by considering nonlinear
equations and the ideas of fixed points and linear stability analysis.
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Chapter 6

Introduction to odes
A differential equation is an equation for a function that relates the values of the

function to the values of its derivatives. An ordinary differential equation (ode) is a
differential equation for a function of a single variable, e.g., x(t), while a partial dif-
ferential equation (pde) is a differential equation for a function of several variables,
e.g., v(x, y, z, t). An ode contains ordinary derivatives and a pde contains partial
derivatives. Typically, pde’s are much harder to solve than ode’s.

6.1 The simplest type of differential equation

View tutorial on YouTube

The simplest ordinary differential equations can be integrated directly by finding
antiderivatives. These simplest odes have the form

dnx
dtn = G(t),

where the derivative of x = x(t) can be of any order, and the right-hand-side may
depend only on the independent variable t. As an example, consider a mass falling
under the influence of constant gravity, such as approximately found on the Earth’s
surface. Newton’s law, F = ma, results in the equation

m
d2x
dt2 = −mg,

where x is the height of the object above the ground, m is the mass of the object, and
g = 9.8 meter/sec2 is the constant gravitational acceleration. As Galileo suggested,
the mass cancels from the equation, and

d2x
dt2 = −g.

Here, the right-hand-side of the ode is a constant. The first integration, obtained by
antidifferentiation, yields

dx
dt

= A− gt,

with A the first constant of integration; and the second integration yields

x = B + At− 1
2

gt2,

with B the second constant of integration. The two constants of integration A and
B can then be determined from the initial conditions. If we know that the initial
height of the mass is x0, and the initial velocity is v0, then the initial conditions are

x(0) = x0,
dx
dt

(0) = v0.
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Substitution of these initial conditions into the equations for dx/dt and x allows us
to solve for A and B. The unique solution that satisfies both the ode and the initial
conditions is given by

x(t) = x0 + v0t− 1
2

gt2. (6.1)

For example, suppose we drop a ball off the top of a 50 meter building. How long
will it take the ball to hit the ground? This question requires solution of (6.1) for
the time T it takes for x(T) = 0, given x0 = 50 meter and v0 = 0. Solving for T,

T =

√
2x0

g

=

√
2 · 50
9.8

sec

≈ 3.2sec.
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Chapter 7

First-order differential
equations

Reference: Boyce and DiPrima, Chapter 2

The general first-order differential equation for the function y = y(x) is written as

dy
dx

= f (x, y), (7.1)

where f (x, y) can be any function of the independent variable x and the dependent
variable y. We first show how to determine a numerical solution of this equa-
tion, and then learn techniques for solving analytically some special forms of (7.1),
namely, separable and linear first-order equations.

7.1 The Euler method

View tutorial on YouTube

Although it is not always possible to find an analytical solution of (7.1) for y =
y(x), it is always possible to determine a unique numerical solution given an initial
value y(x0) = y0, and provided f (x, y) is a well-behaved function. The differential
equation (7.1) gives us the slope f (x0, y0) of the tangent line to the solution curve
y = y(x) at the point (x0, y0). With a small step size ∆x = x1 − x0, the initial
condition (x0, y0) can be marched forward to (x1, y1) along the tangent line using
Euler’s method (see Fig. 7.1)

y1 = y0 + ∆x f (x0, y0).

This solution (x1, y1) then becomes the new initial condition and is marched for-
ward to (x2, y2) along a newly determined tangent line with slope given by f (x1, y1).
For small enough ∆x, the numerical solution converges to the exact solution.
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Figure 7.1: The differential equation dy/dx = f (x, y), y(x0) = y0, is integrated to x = x1
using the Euler method y1 = y0 + ∆x f (x0, y0), with ∆x = x1 − x0.

7.2 Separable equations

View tutorial on YouTube

A first-order ode is separable if it can be written in the form

g(y)
dy
dx

= f (x), y(x0) = y0, (7.2)

where the function g(y) is independent of x and f (x) is independent of y. Integra-
tion from x0 to x results in∫ x

x0

g(y(x))y′(x)dx =
∫ x

x0

f (x)dx.

Noticing that dy = y′(x)dx, using y(x0) = y0 and denoting y(x) = y, we have upon
changing variables ∫ y

y0

g(y)dy =
∫ x

x0

f (x)dx. (7.3)

A simpler procedure that also yields (7.3) is to treat dy/dx in (7.2) like a fraction.
Multiplying (7.2) by dx results in

g(y)dy = f (x)dx,

which is a separated equation with all the dependent variables on the left-side, and
all the independent variables on the right-side. Equation (7.3) then results directly
upon integration.

Example: Solve dy
dx + 1

2 y = 3
2 , with y(0) = 2.

We first manipulate the differential equation to the form

dy
dx

=
1
2
(3− y), (7.4)
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Figure 7.2: Solution of the following ode: dy
dx + 1

2 y = 3
2 .

and then treat dy/dx as if it was a fraction to separate variables:

dy
3− y

=
1
2

dx.

We integrate the right-side from the initial condition x = 0 to x and the left-side
from the initial condition y(0) = 2 to y. Accordingly,∫ y

2

dy
3− y

=
1
2

∫ x

0
dx. (7.5)

The integrals in (7.5) need to be done. Note that y(x) < 3 for finite x or the integral
on the left-side diverges. Therefore, 3− y > 0 and integration yields

− ln (3− y)
]y

2 =
1
2

x
]x

0 ,

ln (3− y) = −1
2

x,

3− y = e−x/2,

y = 3− e−x/2.

Since this is our first nontrivial analytical solution, it is prudent to check our result.
We do this by differentiating our solution:

dy
dx

=
1
2

e−x/2

=
1
2
(3− y);

and checking the initial condition, y(0) = 3 − e0 = 2. Therefore, our solution
satisfies both the original ode and the initial condition.
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Example: Solve
dy
dx

+
1
2

y =
3
2

, with y(0) = 4.

This is the identical differential equation as before, but with different initial condi-
tions. We will jump directly to the integration step:∫ y

4

dy
3− y

=
1
2

∫ x

0
dx.

Now y(x) > 3, so that y− 3 > 0 and integration yields

− ln (y− 3)
]y

4 =
1
2

x
]x

0 ,

ln (y− 3) = −1
2

x,

y− 3 = e−x/2,

y = 3 + e−x/2.

The solution curves for a range of initial conditions are presented in Fig. 7.2. All
solutions have a horizontal asymptote at y = 3 at which dy/dx = 0. For y(0) = y0,
the general solution can be shown to be y(x) = 3 + (y0 − 3) exp(−x/2).

Example: Solve
dy
dx

=
2 cos 2x
3 + 2y

, with y(0) = −1. (i) For what values of x > 0 does

the solution exist? (ii) For what value of x > 0 is y(x) maximum?

Notice that the derivative of y diverges when y = −3/2, and that this may cause
some problems with a solution.

We solve the ode by separating variables and integrating from initial conditions:

(3 + 2y)dy = 2 cos 2x dx∫ y

−1
(3 + 2y)dy = 2

∫ x

0
cos 2x dx

3y + y2]y
−1 = sin 2x

]x
0

y2 + 3y + 2− sin 2x = 0

y± =
1
2
[−3±

√
1 + 4 sin 2x].

Solving the quadratic equation for y has introduced a spurious solution that does
not satisfy the initial conditions. We test:

y±(0) =
1
2
[−3± 1] =

{
-1;
-2.

Only the + root satisfies the initial condition, so that the unique solution to the ode
and initial condition is

y =
1
2
[−3 +

√
1 + 4 sin 2x]. (7.6)

To determine (i) the values of x > 0 for which the solution exists, we require

1 + 4 sin 2x ≥ 0,

or
sin 2x ≥ −1

4
. (7.7)
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(3+2y) dy/dx = 2 cos 2x, y(0) = −1

Figure 7.3: Solution of the following ode: (3 + 2y)y′ = 2 cos 2x, y(0) = −1.

Notice that at x = 0, we have sin 2x = 0; at x = π/4, we have sin 2x = 1; at
x = π/2, we have sin 2x = 0; and at x = 3π/4, we have sin 2x = −1 We therefore
need to determine the value of x such that sin 2x = −1/4, with x in the range
π/2 < x < 3π/4. The solution to the ode will then exist for all x between zero and
this value.

To solve sin 2x = −1/4 for x in the interval π/2 < x < 3π/4, one needs to
recall the definition of arcsin, or sin−1, as found on a typical scientific calculator.
The inverse of the function

f (x) = sin x, −π/2 ≤ x ≤ π/2

is denoted by arcsin. The first solution with x > 0 of the equation sin 2x = −1/4
places 2x in the interval (π, 3π/2), so to invert this equation using the arcsine
we need to apply the identity sin (π − x) = sin x, and rewrite sin 2x = −1/4 as
sin (π − 2x) = −1/4. The solution of this equation may then be found by taking
the arcsine, and is

π − 2x = arcsin (−1/4),

or

x =
1
2

(
π + arcsin

1
4

)
.

Therefore the solution exists for 0 ≤ x ≤ (π + arcsin (1/4)) /2 = 1.6971 . . . , where
we have used a calculator value (computing in radians) to find arcsin(0.25) =
0.2527 . . . . At the value (x, y) = (1.6971 . . . ,−3/2), the solution curve ends and
dy/dx becomes infinite.

To determine (ii) the value of x at which y = y(x) is maximum, we examine
(7.6) directly. The value of y will be maximum when sin 2x takes its maximum
value over the interval where the solution exists. This will be when 2x = π/2, or
x = π/4 = 0.7854 . . . .

The graph of y = y(x) is shown in Fig. 7.3.
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7.3 Linear equations

View tutorial on YouTube

The linear first-order differential equation (linear in y and its derivative) can be
written in the form

dy
dx

+ p(x)y = g(x), (7.8)

with the initial condition y(x0) = y0. Linear first-order equations can be integrated
using an integrating factor µ(x). We multiply (7.8) by µ(x),

µ(x)
[

dy
dx

+ p(x)y
]
= µ(x)g(x), (7.9)

and try to determine µ(x) so that

µ(x)
[

dy
dx

+ p(x)y
]
=

d
dx

[µ(x)y]. (7.10)

Equation (7.9) then becomes

d
dx

[µ(x)y] = µ(x)g(x). (7.11)

Equation (7.11) is easily integrated using µ(x0) = µ0 and y(x0) = y0:

µ(x)y− µ0y0 =
∫ x

x0

µ(x)g(x)dx,

or

y =
1

µ(x)

(
µ0y0 +

∫ x

x0

µ(x)g(x)dx
)

. (7.12)

It remains to determine µ(x) from (7.10). Differentiating and expanding (7.10)
yields

µ
dy
dx

+ pµy =
dµ

dx
y + µ

dy
dx

;

and upon simplifying,
dµ

dx
= pµ. (7.13)

Equation (7.13) is separable and can be integrated:∫ µ

µ0

dµ

µ
=
∫ x

x0

p(x)dx,

ln
µ

µ0
=
∫ x

x0

p(x)dx,

µ(x) = µ0 exp
(∫ x

x0

p(x)dx
)

.

Notice that since µ0 cancels out of (7.12), it is customary to assign µ0 = 1. The
solution to (7.8) satisfying the initial condition y(x0) = y0 is then commonly written
as

y =
1

µ(x)

(
y0 +

∫ x

x0

µ(x)g(x)dx
)

,
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with

µ(x) = exp
(∫ x

x0

p(x)dx
)

the integrating factor. This important result finds frequent use in applied mathe-
matics.

Example: Solve dy
dx + 2y = e−x, with y(0) = 3/4.

Note that this equation is not separable. With p(x) = 2 and g(x) = e−x, we have

µ(x) = exp
(∫ x

0
2dx

)
= e2x,

and

y = e−2x
(

3
4
+
∫ x

0
e2xe−xdx

)
= e−2x

(
3
4
+
∫ x

0
exdx

)
= e−2x

(
3
4
+ (ex − 1)

)
= e−2x

(
ex − 1

4

)
= e−x

(
1− 1

4
e−x
)

.

Example: Solve dy
dx − 2xy = x, with y(0) = 0.

This equation is separable, and we solve it in two ways. First, using an integrating
factor with p(x) = −2x and g(x) = x:

µ(x) = exp
(
−2

∫ x

0
xdx

)
= e−x2

,

and
y = ex2

∫ x

0
xe−x2

dx.

The integral can be done by substitution with u = x2, du = 2xdx:∫ x

0
xe−x2

dx =
1
2

∫ x2

0
e−udu

= −1
2

e−u]x2

0

=
1
2

(
1− e−x2

)
.

Therefore,

y =
1
2

ex2
(

1− e−x2
)

=
1
2

(
ex2 − 1

)
.
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Second, we integrate by separating variables:

dy
dx
− 2xy = x,

dy
dx

= x(1 + 2y),∫ y

0

dy
1 + 2y

=
∫ x

0
xdx,

1
2

ln (1 + 2y) =
1
2

x2,

1 + 2y = ex2
,

y =
1
2

(
ex2 − 1

)
.

The results from the two different solution methods are the same, and the choice of
method is a personal preference.

7.4 Applications

7.4.1 Compound interest

View tutorial on YouTube

The equation for the growth of an investment with continuous compounding of
interest is a first-order differential equation. Let S(t) be the value of the investment
at time t, and let r be the annual interest rate compounded after every time interval
∆t. We can also include deposits (or withdrawals). Let k be the annual deposit
amount, and suppose that an installment is deposited after every time interval ∆t.
The value of the investment at the time t + ∆t is then given by

S(t + ∆t) = S(t) + (r∆t)S(t) + k∆t, (7.14)

where at the end of the time interval ∆t, r∆tS(t) is the amount of interest credited
and k∆t is the amount of money deposited (k > 0) or withdrawn (k < 0). As a
numerical example, if the account held $10,000 at time t, and r = 6% per year and
k = $12,000 per year, say, and the compounding and deposit period is ∆t = 1 month
= 1/12 year, then the interest awarded after one month is r∆tS = (0.06/12) ×
$10,000 = $50, and the amount deposited is k∆t = $1000.

Rearranging the terms of (7.14) to exhibit what will soon become a derivative,
we have

S(t + ∆t)− S(t)
∆t

= rS(t) + k.

The equation for continuous compounding of interest and continuous deposits is
obtained by taking the limit ∆t→ 0. The resulting differential equation is

dS
dt

= rS + k, (7.15)

which can solved with the initial condition S(0) = S0, where S0 is the initial capital.
We can solve either by separating variables or by using an integrating factor; I solve
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here by separating variables. Integrating from t = 0 to a final time t,

∫ S

S0

dS
rS + k

=
∫ t

0
dt,

1
r

ln
(

rS + k
rS0 + k

)
= t,

rS + k = (rS0 + k)ert,

S =
rS0ert + kert − k

r
,

S = S0ert +
k
r

ert (1− e−rt) , (7.16)

where the first term on the right-hand side of (7.16) comes from the initial invested
capital, and the second term comes from the deposits (or withdrawals). Evidently,
compounding results in the exponential growth of an investment.

As a practical example, we can analyze a simple retirement plan. It is easiest to
assume that all amounts and returns are in real dollars (adjusted for inflation).
Suppose a 25 year-old plans to set aside a fixed amount every year of his/her
working life, invests at a real return of 6%, and retires at age 65. How much must
he/she invest each year to have HK$8,000,000 at retirement? (Note: 1 US$≈ 8 HK$.)
We need to solve (7.16) for k using t = 40 years, S(t) = $8,000,000, S0 = 0, and
r = 0.06 per year. We have

k =
rS(t)

ert − 1
,

k =
0.06× 8,000,000

e0.06×40 − 1
,

= $47,889 year−1.

To have saved approximately one million US$ at retirement, the worker would need
to save about HK$50,000 per year over his/her working life. Note that the amount
saved over the worker’s life is approximately 40× $50,000 = $2,000,000, while the
amount earned on the investment (at the assumed 6% real return) is approximately
$8,000,000− $2,000,000 = $6,000,000. The amount earned from the investment is
about 3× the amount saved, even with the modest real return of 6%. Sound invest-
ment planning is well worth the effort.

7.4.2 Chemical reactions

Suppose that two chemicals A and B react to form a product C, which we write as

A + B k→ C,

where k is called the rate constant of the reaction. For simplicity, we will use the
same symbol C, say, to refer to both the chemical C and its concentration. The law
of mass action says that dC/dt is proportional to the product of the concentrations
A and B, with proportionality constant k; that is,

dC
dt

= kAB. (7.17)
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Similarly, the law of mass action enables us to write equations for the time-derivatives
of the reactant concentrations A and B:

dA
dt

= −kAB,
dB
dt

= −kAB. (7.18)

The ode given by (7.17) can be solved analytically using conservation laws. We
assume that A0 and B0 are the initial concentrations of the reactants, and that no
product is initially present. From (7.17) and (7.18),

d
dt
(A + C) = 0 =⇒ A + C = A0,

d
dt
(B + C) = 0 =⇒ B + C = B0.

Using these conservation laws, (7.17) becomes

dC
dt

= k(A0 − C)(B0 − C), C(0) = 0,

which is a nonlinear equation that may be integrated by separating variables. Sep-
arating and integrating, we obtain∫ C

0

dC
(A0 − C)(B0 − C)

= k
∫ t

0
dt

= kt. (7.19)

The remaining integral can be done using the method of partial fractions. We write

1
(A0 − C)(B0 − C)

=
a

A0 − C
+

b
B0 − C

. (7.20)

The cover-up method is the simplest method to determine the unknown coefficients
a and b. To determine a, we multiply both sides of (7.20) by A0 − C and set C = A0
to find

a =
1

B0 − A0
.

Similarly, to determine b, we multiply both sides of (7.20) by B0 − C and set C = B0
to find

b =
1

A0 − B0
.

Therefore,
1

(A0 − C)(B0 − C)
=

1
B0 − A0

(
1

A0 − C
− 1

B0 − C

)
,

and the remaining integral of (7.19) becomes (using C < A0, B0)∫ C

0

dC
(A0 − C)(B0 − C)

=
1

B0 − A0

(∫ C

0

dC
A0 − C

−
∫ C

0

dC
B0 − C

)
=

1
B0 − A0

(
− ln

(
A0 − C

A0

)
+ ln

(
B0 − C

B0

))
=

1
B0 − A0

ln
(

A0(B0 − C)
B0(A0 − C)

)
.
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Using this integral in (7.19), multiplying by (B0−A0) and exponentiating, we obtain

A0(B0 − C)
B0(A0 − C)

= e(B0−A0)kt.

Solving for C, we finally obtain

C(t) = A0B0
e(B0−A0)kt − 1

B0e(B0−A0)kt − A0
,

which appears to be a complicated expression, but has the simple limits

lim
t→∞

C(t) =

{
A0, if A0 < B0,
B0, if B0 < A0

= min(A0, B0).

As one would expect, the reaction stops after one of the reactants is depleted; and
the final concentration of product is equal to the initial concentration of the depleted
reactant.

7.4.3 Terminal velocity
View tutorial on YouTube

Using Newton’s law, we model a mass m free falling under gravity but with air
resistance. We assume that the force of air resistance is proportional to the speed
of the mass and opposes the direction of motion. We define the x-axis to point
in the upward direction, opposite the force of gravity. Near the surface of the
Earth, the force of gravity is approximately constant and is given by −mg, with
g = 9.8 m/s2 the usual gravitational acceleration. The force of air resistance is
modeled by −kv, where v is the vertical velocity of the mass and k is a positive
constant. When the mass is falling, v < 0 and the force of air resistance is positive,
pointing upward and opposing the motion. The total force on the mass is therefore
given by F = −mg − kv. With F = ma and a = dv/dt, we obtain the differential
equation

m
dv
dt

= −mg− kv. (7.21)

The terminal velocity v∞ of the mass is defined as the asymptotic velocity after air
resistance balances the gravitational force. When the mass is at terminal velocity,
dv/dt = 0 so that

v∞ = −mg
k

. (7.22)

The approach to the terminal velocity of a mass initially at rest is obtained by
solving (7.21) with initial condition v(0) = 0. The equation is both linear and
separable, and I solve by separating variables:

m
∫ v

0

dv
mg + kv

= −
∫ t

0
dt,

m
k

ln
(

mg + kv
mg

)
= −t,

1 +
kv
mg

= e−kt/m,

v = −mg
k

(
1− e−kt/m

)
.
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Therefore, v = v∞

(
1− e−kt/m

)
, and v approaches v∞ as the exponential term de-

cays to zero.
As an example, a skydiver of mass m = 100 kg with his parachute closed may

have a terminal velocity of 200 km/hr. With

g = (9.8 m/s2)(10−3 km/m)(60 s/min)2(60 min/hr)2 = 127, 008 km/hr2,

one obtains from (7.22), k = 63, 504 kg/hr. One-half of the terminal velocity for free-
fall (100 km/hr) is therefore attained when (1− e−kt/m) = 1/2, or t = m ln 2/k ≈
4 sec. Approximately 95% of the terminal velocity (190 km/hr ) is attained after
17 sec.

7.4.4 Escape velocity
View tutorial on YouTube

An interesting physical problem is to find the smallest initial velocity for a mass
on the Earth’s surface to escape from the Earth’s gravitational field, the so-called
escape velocity. Newton’s law of universal gravitation asserts that the gravitational
force between two massive bodies is proportional to the product of the two masses
and inversely proportional to the square of the distance between them. For a mass
m a position x above the surface of the Earth, the force on the mass is given by

F = −G
Mm

(R + x)2 ,

where M and R are the mass and radius of the Earth and G is the gravitational
constant. The minus sign means the force on the mass m points in the direction
of decreasing x. The approximately constant acceleration g on the Earth’s surface
corresponds to the absolute value of F/m when x = 0:

g =
GM
R2 ,

and g ≈ 9.8 m/s2. Newton’s law F = ma for the mass m is thus given by

d2x
dt2 = − GM

(R + x)2

= − g
(1 + x/R)2 , (7.23)

where the radius of the Earth is known to be R ≈ 6350 km.
A useful trick allows us to solve this second-order differential equation as a

first-order equation. First, note that d2x/dt2 = dv/dt. If we write v(t) = v(x(t))—
considering the velocity of the mass m to be a function of its distance above the
Earth—we have using the chain rule

dv
dt

=
dv
dx

dx
dt

= v
dv
dx

,

where we have used v = dx/dt. Therefore, (7.23) becomes the first-order ode

v
dv
dx

= − g
(1 + x/R)2 ,
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which may be solved assuming an initial velocity v(x = 0) = v0 when the mass is
shot vertically from the Earth’s surface. Separating variables and integrating, we
obtain ∫ v

v0

vdv = −g
∫ x

0

dx
(1 + x/R)2 .

The left integral is 1
2 (v

2 − v2
0), and the right integral can be performed using the

substitution u = 1 + x/R, du = dx/R:∫ x

0

dx
(1 + x/R)2 = R

∫ 1+x/R

1

du
u2

= − R
u

]1+x/R

1

= R− R2

x + R

=
Rx

x + R
.

Therefore,
1
2
(v2 − v2

0) = −
gRx

x + R
,

which when multiplied by m is an expression of the conservation of energy (the
change of the kinetic energy of the mass is equal to the change in the potential
energy). Solving for v2,

v2 = v2
0 −

2gRx
x + R

.

The escape velocity is defined as the minimum initial velocity v0 such that the
mass can escape to infinity. Therefore, v0 = vescape when v → 0 as x → ∞. Taking
this limit, we have

v2
escape = lim

x→∞

2gRx
x + R

= 2gR.

With R ≈ 6350 km and g = 127 008 km/hr2, we determine vescape =
√

2gR ≈ 40 000
km/hr. In comparison, the muzzle velocity of a modern high-performance rifle is
4300 km/hr, almost an order of magnitude too slow for a bullet, shot into the sky,
to escape the Earth’s gravity.

7.4.5 RC circuit

View tutorial on YouTube

Consider a resister R and a capacitor C connected in series as shown in Fig. 7.4.
A battery providing an electromotive force, or emf E , connects to this circuit by a
switch. Initially, there is no charge on the capacitor. When the switch is thrown to
a, the battery connects and the capacitor charges. When the switch is thrown to b,
the battery disconnects and the capacitor discharges, with energy dissipated in the
resister. Here, we determine the voltage drop across the capacitor during charging
and discharging.
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Figure 7.4: RC circuit diagram.

The equations for the voltage drops across a capacitor and a resister are given
by

VC = q/C, VR = iR, (7.24)

where C is the capacitance and R is the resistance. The charge q and the current i
are related by

i =
dq
dt

. (7.25)

Kirchhoff’s voltage law states that the emf E in any closed loop is equal to the
sum of the voltage drops in that loop. Applying Kirchhoff’s voltage law when the
switch is thrown to a results in

VR + VC = E . (7.26)

Using (7.24) and (7.25), the voltage drop across the resister can be written in terms
of the voltage drop across the capacitor as

VR = RC
dVC
dt

,

and (7.26) can be rewritten to yield the linear first-order differential equation for VC
given by

dVC
dt

+ VC/RC = E/RC, (7.27)

with initial condition VC(0) = 0.
The integrating factor for this equation is

µ(t) = et/RC,

and (7.27) integrates to

VC(t) = e−t/RC
∫ t

0
(E/RC)et/RCdt,

with solution
VC(t) = E

(
1− e−t/RC

)
.
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The voltage starts at zero and rises exponentially to E , with characteristic time scale
given by RC.

When the switch is thrown to b, application of Kirchhoff’s voltage law results in

VR + VC = 0,

with corresponding differential equation

dVC
dt

+ VC/RC = 0.

Here, we assume that the capacitance is initially fully charged so that VC(0) = E .
The solution, then, during the discharge phase is given by

VC(t) = E e−t/RC.

The voltage starts at E and decays exponentially to zero, again with characteristic
time scale given by RC.

7.4.6 The logistic equation
View tutorial on YouTube

Let N(t) be the number of individuals in a population at time t, and let b and d be
the average per capita birth rate and death rate, respectively. In a short time ∆t, the
number of births in the population is b∆tN, and the number of deaths is d∆tN. An
equation for N at time t + ∆t is then determined to be

N(t + ∆t) = N(t) + b∆tN(t)− d∆tN(t),

which can be rearranged to

N(t + ∆t)− N(t)
∆t

= (b− d)N(t);

and as ∆t→ 0, and with r = b− d, we have

dN
dt

= rN.

This is the Malthusian growth model (Thomas Malthus, 1766-1834), and is the same
equation as our compound interest model.

Under a Malthusian growth model, the population size grows exponentially like

N(t) = N0ert,

where N0 is the initial population size. However, when the population growth is
constrained by limited resources, a heuristic modification to the Malthusian growth
model results in the Verhulst equation,

dN
dt

= rN
(

1− N
K

)
, (7.28)

where K is called the carrying capacity of the environment. Making (7.28) dimen-
sionless using τ = rt and x = N/K leads to the logistic equation,

dx
dτ

= x(1− x),
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where we may assume the initial condition x(0) = x0 > 0. Separating variables and
integrating ∫ x

x0

dx
x(1− x)

=
∫ τ

0
dτ.

The integral on the left-hand-side can be done using the method of partial fractions:

1
x(1− x)

=
a
x
+

b
1− x

,

and the cover-up method yields a = b = 1. Therefore,∫ x

x0

dx
x(1− x)

=
∫ x

x0

dx
x

+
∫ x

x0

dx
(1− x)

= ln
x
x0
− ln

1− x
1− x0

= ln
x(1− x0)

x0(1− x)
= τ.

Solving for x, we first exponentiate both sides and then isolate x:

x(1− x0)

x0(1− x)
= eτ ,

x(1− x0) = x0eτ − xx0eτ ,
x(1− x0 + x0eτ) = x0eτ ,

x =
x0

x0 + (1− x0)e−τ
. (7.29)

We observe that for x0 > 0, we have limτ→∞ x(τ) = 1, corresponding to

lim
t→∞

N(t) = K.

The population, therefore, grows in size until it reaches the carrying capacity of its
environment.
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Chapter 8

Linear second-order differential
equations with constant
coefficients

Reference: Boyce and DiPrima, Chapter 3

The general linear second-order differential equation with independent variable t
and dependent variable x = x(t) is given by

ẍ + p(t)ẋ + q(t)x = g(t), (8.1)

where we have used the standard physics notation ẋ = dx/dt and ẍ = d2x/dt2.
Herein, we assume that p(t) and q(t) are continuous functions on the time interval
for which we solve (8.1). A unique solution of (8.1) requires initial values x(t0) = x0
and ẋ(t0) = u0. The equation with constant coefficients—on which we will devote
considerable effort—assumes that p(t) and q(t) are constants, independent of time.
The linear second-order ode is said to be homogeneous if g(t) = 0.

8.1 The Euler method

View tutorial on YouTube

In general, (8.1) cannot be solved analytically, and we begin by deriving an algo-
rithm for numerical solution. Consider the general second-order ode given by

ẍ = f (t, x, ẋ).

We can write this second-order ode as a pair of first-order odes by defining u = ẋ,
and writing the first-order system as

ẋ = u, (8.2)
u̇ = f (t, x, u). (8.3)

The first ode, (8.2), gives the slope of the tangent line to the curve x = x(t); the
second ode, (8.3), gives the slope of the tangent line to the curve u = u(t). Beginning
at the initial values (x, u) = (x0, u0) at the time t = t0, we move along the tangent
lines to determine x1 = x(t0 + ∆t) and u1 = u(t0 + ∆t):

x1 = x0 + ∆tu0,
u1 = u0 + ∆t f (t0, x0, u0).

The values x1 and u1 at the time t1 = t0 + ∆t are then used as new initial values
to march the solution forward to time t2 = t1 + ∆t. As long as f (t, x, u) is a well-
behaved function, the numerical solution converges to the unique solution of the
ode as ∆t→ 0.
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8.2 The principle of superposition

View tutorial on YouTube

Consider the homogeneous linear second-order ode:

ẍ + p(t)ẋ + q(t)x = 0; (8.4)

and suppose that x = X1(t) and x = X2(t) are solutions to (8.4). We consider a
linear combination of X1 and X2 by letting

X(t) = c1X1(t) + c2X2(t), (8.5)

with c1 and c2 constants. The principle of superposition states that x = X(t) is also a
solution of (8.4). To prove this, we compute

Ẍ + pẊ + qX = c1Ẍ1 + c2Ẍ2 + p
(
c1Ẋ1 + c2Ẋ2

)
+ q (c1X1 + c2X2)

= c1
(
Ẍ1 + pẊ1 + qX1

)
+ c2

(
Ẍ2 + pẊ2 + qX2

)
= c1 × 0 + c2 × 0
= 0,

since X1 and X2 were assumed to be solutions of (8.4). We have therefore shown
that any linear combination of solutions to the homogeneous linear ode is also a
solution.

8.3 The Wronskian

View tutorial on YouTube

Suppose that having determined that two solutions of (8.4) are x = X1(t) and
x = X2(t), we attempt to write the general solution to (8.4) as (8.5). We must then
ask whether this general solution will be able to satisfy two initial conditions given
by

x(t0) = x0, ẋ(t0) = u0, (8.6)

for any initial time t0, and initial values x0 and u0. Applying these initial conditions
to (8.5), we obtain

c1X1(t0) + c2X2(t0) = x0,

c1Ẋ1(t0) + c2Ẋ2(t0) = u0, (8.7)

which is a system of two linear equations for the two unknowns c1 and c2. In matrix
form, (

X1(t0) X2(t0)
Ẋ1(t0) Ẋ2(t0)

)(
c1
c2

)
=

(
x0
u0

)
. (8.8)

We can solve (8.8) for any specified values of t0, x0 and u0 if the 2-by-2 matrix is
invertible, and that will be the case if its determinant is nonzero. The determinant
is called the Wronskian and is defined by

W = X1Ẋ2 − Ẋ1X2. (8.9)
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In the language of linear algebra, when W 6= 0 the functions X1 = X1(t) and
X2 = X2(t) are linearly independent and span the solution space of the second-
order linear differential equation given by (8.4). The solution space of the ode
satisfies the conditions of a vector space and the two solutions X1 and X2 act as
basis vectors for this space. The dimension of this space is two, corresponding to
the order of the differential equation.
Example: Show that the functions X1(t) = cos ωt and X2(t) = sin ωt have a
nonzero Wronskian when ω 6= 0.
We have

X1(t) = cos ωt, X2(t) = sin ωt

Ẋ1(t) = −ω sin ωt, Ẋ2(t) = ω cos ωt.

The Wronskian is given by

W =

∣∣∣∣ cos ωt sin ωt
−ω sin ωt ω cos ωt

∣∣∣∣ = ω(cos2 ωt + sin2 ωt) = ω,

so that W 6= 0 when ω 6= 0.
Example: Show that the functions X1(t) = eat and X2(t) = ebt have a nonzero
Wronskian when a 6= b.
We have

X1(t) = eat, X2(t) = ebt

Ẋ1(t) = aeat, Ẋ2(t) = bebt.

The Wronskian is given by

W =

∣∣∣∣ eat ebt

aeat bebt

∣∣∣∣ = (b− a)e(a+b)t,

so that W 6= 0 when a 6= b.
Example: Show that the functions X1(t) = 1 and X2(t) = t have a nonzero Wron-
skian.
We have

X1(t) = 1, X2(t) = t

Ẋ1(t) = 0, Ẋ2(t) = 1.

The Wronskian is given by

W =

∣∣∣∣1 t
0 1

∣∣∣∣ = 1.

8.4 Homogeneous linear second-order ode with con-
stant coefficients

View tutorial on YouTube

We now study solutions of the homogeneous, constant coefficient ode, written as

aẍ + bẋ + cx = 0, (8.10)
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with a, b, and c constants. Such an equation arises for the charge on a capacitor
in an unpowered RLC electrical circuit, or for the position of a freely-oscillating
frictional mass on a spring, or for a damped pendulum. Our solution method finds
two linearly independent solutions to (8.10), multiplies each of these solutions by
a constant, and adds them. The two free constants can then be used to satisfy two
given initial conditions.

Because of the differential properties of the exponential function, a natural
ansatz, or educated guess, for the form of the solution to (8.10) is x = ert, where
r is a constant to be determined. Successive differentiation results in ẋ = rert and
ẍ = r2ert, and substitution into (8.10) yields

ar2ert + brert + cert = 0. (8.11)

Our choice of exponential function is now rewarded by the explicit cancelation in
(8.11) of ert. The result is a quadratic equation for the unknown constant r:

ar2 + br + c = 0. (8.12)

Our ansatz has thus converted a differential equation into an algebraic equation.
Equation (8.12) is called the characteristic equation of (8.10). (Recall that det (A− λI) =
0 was also called the characteristic equation of the matrix A. We will see later that
this is not a coincidence.)

Using the quadratic formula, the two solutions of the characteristic equation
(8.12) are given by

r± =
1
2a

(
−b±

√
b2 − 4ac

)
.

There are three cases to consider: (1) if b2 − 4ac > 0, then the two roots are distinct
and real; (2) if b2 − 4ac < 0, then the two roots are complex conjugates (3) if b2 −
4ac = 0, then the two roots are degenerate and there is only one real root. We will
consider these three cases in turn.

8.4.1 Distinct real roots

When r+ 6= r− are real roots, then the general solution to (8.10) can be written as a
linear superposition of the two solutions er+t and er−t; that is,

x(t) = c1er+t + c2er−t.

The unknown constants c1 and c2 can then be determined by the given initial con-
ditions x(t0) = x0 and ẋ(t0) = u0. We now present two examples.

Example 1: Solve ẍ + 5ẋ + 6x = 0 with x(0) = 2, ẋ(0) = 3, and find the maximum
value attained by x.

View tutorial on YouTube

We take as our ansatz x = ert and obtain the characteristic equation

r2 + 5r + 6 = 0,

which factors to
(r + 3)(r + 2) = 0.
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The general solution to the ode is thus

x(t) = c1e−2t + c2e−3t.

The solution for ẋ obtained by differentiation is

ẋ(t) = −2c1e−2t − 3c2e−3t.

Use of the initial conditions then results in two equations for the two unknown
constant c1 and c2:

c1 + c2 = 2,
−2c1 − 3c2 = 3.

Adding three times the first equation to the second equation yields c1 = 9; and the
first equation then yields c2 = 2− c1 = −7. Therefore, the unique solution that
satisfies both the ode and the initial conditions is

x(t) = 9e−2t − 7e−3t

= 9e−2t
(

1− 7
9

e−t
)

.

Note that although both exponential terms decay in time, their sum increases ini-
tially since ẋ(0) > 0. The maximum value of x occurs at the time tm when ẋ = 0,
or

tm = ln (7/6) .

The maximum xm = x(tm) is then determined to be

xm = 108/49.

Example 2: Solve ẍ− x = 0 with x(0) = x0, ẋ(0) = u0.

Again our ansatz is x = ert, and we obtain the characteristic equation

r2 − 1 = 0,

with solution r± = ±1. Therefore, the general solution for x is

x(t) = c1et + c2e−t,

and the derivative satisfies
ẋ(t) = c1et − c2e−t.

Initial conditions are satisfied when

c1 + c2 = x0,
c1 − c2 = u0.

Adding and subtracting these equations, we determine

c1 =
1
2
(x0 + u0) , c2 =

1
2
(x0 − u0) ,

so that after rearranging terms

x(t) = x0

(
et + e−t

2

)
+ u0

(
et − e−t

2

)
.
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The terms in parentheses are the usual definitions of the hyperbolic cosine and sine
functions; that is,

cosh t =
et + e−t

2
, sinh t =

et − e−t

2
.

Our solution can therefore be rewritten as

x(t) = x0 cosh t + u0 sinh t.

Note that the relationships between the trigonometric functions and the complex
exponentials were given by

cos t =
eit + e−it

2
, sin t =

eit − e−it

2i
,

so that
cosh t = cos it, sinh t = −i sin it,

and
cosh2 t− sinh2 t = 1.

Also note that the hyperbolic trigonometric functions satisfy the differential equa-
tions

d
dt

sinh t = cosh t,
d
dt

cosh t = sinh t,

which though similar to the differential equations satisfied by the more commonly
used trigonometric functions, is absent a minus sign.

8.4.2 Distinct complex-conjugate roots
View tutorial on YouTube

We now consider a characteristic equation (8.12) with b2 − 4ac < 0, so the roots
occur as complex conjugate pairs. With

λ = − b
2a

, µ =
1
2a

√
4ac− b2,

the two roots of the characteristic equation are λ + iµ and λ − iµ. We have thus
found the following two complex exponential solutions to the differential equation:

Z1(t) = eλteiµt, Z2(t) = eλte−iµt.

Applying the principle of superposition, any linear combination of Z1 and Z2 is
also a solution to the second-order ode.

Recall that if z = x + iy, then Re z = (z + z̄)/2 and Im z = (z− z̄)/2i. We can
therefore form two different linear combinations of Z1(t) and Z2(t) that are real,
namely X1(t) = Re Z1(t) and X2(t) = Im Z1(t). We have

X1(t) = eλt cos µt, X2(t) = eλt sin µt.

Having found these two real solutions, X1(t) and X2(t), we can then apply the
principle of superposition a second time to determine the general solution for x(t):

x(t) = eλt (A cos µt + B sin µt) . (8.13)

It is best to memorize this result. The real part of the roots of the characteristic equa-
tion goes into the exponential function; the imaginary part goes into the argument
of cosine and sine.
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Example 1: Solve ẍ + x = 0 with x(0) = x0 and ẋ(0) = u0.

View tutorial on YouTube

The characteristic equation is
r2 + 1 = 0,

with roots
r± = ±i.

The general solution of the ode is therefore

x(t) = A cos t + B sin t.

The derivative is
ẋ(t) = −A sin t + B cos t.

Applying the initial conditions:

x(0) = A = x0, ẋ(0) = B = u0;

so that the final solution is

x(t) = x0 cos t + u0 sin t.

Recall that we wrote the analogous solution to the ode ẍ − x = 0 as x(t) =
x0 cosh t + u0 sinh t.

Example 2: Solve ẍ + ẋ + x = 0 with x(0) = 1 and ẋ(0) = 0.

The characteristic equation is
r2 + r + 1 = 0,

with roots

r± = −1
2
± i
√

3
2

.

The general solution of the ode is therefore

x(t) = e−
1
2 t

(
A cos

√
3

2
t + B sin

√
3

2
t

)
.

The derivative is

ẋ(t) = −1
2

e−
1
2 t

(
A cos

√
3

2
t + B sin

√
3

2
t

)

+

√
3

2
e−

1
2 t

(
−A sin

√
3

2
t + B cos

√
3

2
t

)
.

Applying the initial conditions x(0) = 1 and ẋ(0) = 0:

A = 1,

−1
2

A +

√
3

2
B = 0;
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or

A = 1, B =

√
3

3
.

Therefore,

x(t) = e−
1
2 t

(
cos

√
3

2
t +
√

3
3

sin

√
3

2
t

)
.

8.4.3 Degenerate roots

View tutorial on YouTube

Finally, we consider the characteristic equation,

ar2 + br + c = 0,

with b2 − 4ac = 0. The degenerate root is then given by

r = − b
2a

,

yielding only a single solution to the ode:

x1(t) = exp
(
− bt

2a

)
. (8.14)

To satisfy two initial conditions, a second independent solution must be found with
nonzero Wronskian, and apparently this second solution is not of the form of our
ansatz x = exp (rt).

One method to determine this missing second solution is to try the ansatz

x(t) = y(t)x1(t), (8.15)

where y(t) is an unknown function that satisfies the differential equation obtained
by substituting (8.15) into (8.10). This standard technique is called the reduction of
order method and enables one to find a second solution of a homogeneous linear
differential equation if one solution is known. Upon substitution of (8.15), one
obtains a differential equation for y that contains only y′ and y′′. By letting w = y′,
one then obtains a linear first-order equation for w that we already know how to
solve.

Here, however, I choose to determine this missing second solution through a
limiting process. We will start with the solution obtained for complex roots of the
characteristic equation, and then arrive at the solution obtained for degenerate roots
by taking the limit µ→ 0.

Now, the general solution for complex roots was given by (8.13), and to properly
limit this solution as µ → 0 requires first satisfying the specific initial conditions
x(0) = x0 and ẋ(0) = u0. Solving for A and B, the general solution given by (8.13)
becomes the specific solution

x(t; µ) = eλt
(

x0 cos µt +
u0 − λx0

µ
sin µt

)
.

Here, we have written x = x(t; µ) to show explicitly that x depends on µ.
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Taking the limit as µ→ 0, and using limµ→0 µ−1 sin µt = t, we have

lim
µ→0

x(t; µ) = eλt(x0 + (u0 − λx0)t
)
.

The second solution is observed to be a constant, u0 − λx0, times t times the first
solution, eλt. Our general solution to the ode (8.10) when b2− 4ac = 0 can therefore
be written in the form

x(t) = (c1 + c2t)ert,

where r is the repeated root of the characteristic equation. The main result to be
remembered is that for the case of repeated roots, the second solution is t times the
first solution.

Example: Solve ẍ + 2ẋ + x = 0 with x(0) = 1 and ẋ(0) = 0.

The characteristic equation is

r2 + 2r + 1 = (r + 1)2

= 0,

which has a repeated root given by r = −1. Therefore, the general solution to the
ode is

x(t) = c1e−t + c2te−t,

with derivative
ẋ(t) = −c1e−t + c2e−t − c2te−t.

Applying the initial conditions, we have

c1 = 1,
−c1 + c2 = 0,

so that c1 = c2 = 1. Therefore, the solution is

x(t) = (1 + t)e−t.

8.5 Homogeneous linear second-order difference equa-
tions with constant coefficients

The solution of linear difference equations is similar to that of linear differential
equations. Here, we solve one interesting example.
Example: Find an explicit formula for the nth Fibonacci number Fn, where

Fn+1 = Fn + Fn−1, F1 = F2 = 1.

This will be our second derivation of Binet’s formula (see §5.2 for the first deriva-
tion). We consider the relevant difference equation

xn+1 − xn − xn−1 = 0, (8.16)

and try to solve it using a method similar to the solution of a second-order differ-
ential equation. An appropriate ansatz here is

xn = λn, (8.17)
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where λ is an unknown constant. Substitution of (8.17) into (8.16) results in

λn+1 − λn − λn−1 = 0,

or upon division by λn−1,
λ2 − λ− 1 = 0.

Use of the quadratic formula yields two roots. We have

λ1 =
1 +
√

5
2

= Φ, λ2 =
1−
√

5
2

= −φ,

where Φ is the golden ratio and φ is the golden ratio conjugate.
We have thus found two independent solutions to (8.16) of the form (8.17), and

we can now use these two solutions to determine a formula for Fn. Multiplying the
solutions by constants and adding them, we obtain

Fn = c1Φn + c2(−φ)n, (8.18)

which must satisfy the initial values F1 = F2 = 1. The algebra for finding the
unknown constants can be made simpler, however, if instead of F2, we use the
value F0 = F2 − F1 = 0.

Application of the values for F0 and F1 results in the system of equations given
by

c1 + c2 = 0,
c1Φ− c2φ = 1.

We use the first equation to write c2 = −c1, and substitute into the second equation
to get

c1(Φ + φ) = 1.

Since Φ + φ =
√

5, we can solve for c1 and c2 to obtain

c1 = 1/
√

5, c2 = −1/
√

5. (8.19)

Using (8.19) in (8.18) then derives Binet’s formula

Fn =
Φn − (−φ)n
√

5
. (8.20)

8.6 Inhomogeneous linear second-order ode

We now consider the general inhomogeneous linear second-order ode (8.1):

ẍ + p(t)ẋ + q(t)x = g(t), (8.21)

with initial conditions x(t0) = x0 and ẋ(t0) = u0. There is a three-step solution
method when the inhomogeneous term g(t) 6= 0. (i) Find the general solution of
the homogeneous equation

ẍ + p(t)ẋ + q(t)x = 0. (8.22)

Let us denote the homogeneous solution by

xh(t) = c1X1(t) + c2X2(t),
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where X1 and X2 are linearly independent solutions of (8.22), and c1 and c2 are
as yet undetermined constants. (ii) Find a particular solution xp of the inhomoge-
neous equation (8.21). A particular solution is readily found when p(t) and q(t) are
constants, and when g(t) is a combination of polynomials, exponentials, sines and
cosines. (iii) Write the general solution of (8.21) as the sum of the homogeneous
and particular solutions,

x(t) = xh(t) + xp(t), (8.23)

and apply the initial conditions to determine the constants c1 and c2. Note that
because of the linearity of (8.21),

ẍ + pẋ + qx =
d2

dt2 (xh + xp) + p
d
dt
(xh + xp) + q(xh + xp)

= (ẍh + pẋh + qxh) + (ẍp + pẋp + qxp)

= 0 + g
= g,

so that (8.23) solves (8.21), and the two free constants in xh can be used to satisfy
the initial conditions.

We will consider here only the constant coefficient case. We now illustrate the
solution method by an example.

Example: Solve ẍ− 3ẋ− 4x = 3e2t with x(0) = 0 and ẋ(0) = 0.

View tutorial on YouTube

First, we solve the homogeneous equation. The characteristic equation is

r2 − 3r− 4 = (r− 4)(r + 1)
= 0,

so that
xh(t) = c1e4t + c2e−t.

Second, we find a particular solution of the inhomogeneous equation. The form of
the particular solution is chosen such that the exponential will cancel out of both
sides of the ode. The ansatz we choose is

x(t) = Ae2t, (8.24)

where A is a yet undetermined coefficient. Upon substituting x into the ode, differ-
entiating using the chain rule, and canceling the exponential, we obtain

4A− 6A− 4A = 3,

from which we determine A = −1/2. Obtaining a solution for A independent of t
justifies the ansatz (8.24). Third, we write the general solution to the ode as the sum
of the homogeneous and particular solutions, and determine c1 and c2 that satisfy
the initial conditions. We have

x(t) = c1e4t + c2e−t − 1
2

e2t;

and taking the derivative,

ẋ(t) = 4c1e4t − c2e−t − e2t.
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Applying the initial conditions,

c1 + c2 −
1
2
= 0,

4c1 − c2 − 1 = 0;

or

c1 + c2 =
1
2

,

4c1 − c2 = 1.

This system of linear equations can be solved for c1 by adding the equations to
obtain c1 = 3/10, after which c2 = 1/5 can be determined from the first equation.
Therefore, the solution for x(t) that satisfies both the ode and the initial conditions
is given by

x(t) =
3

10
e4t − 1

2
e2t +

1
5

e−t

=
3

10
e4t
(

1− 5
3

e−2t +
2
3

e−5t
)

,

where we have grouped the terms in the solution to better display the asymptotic
behavior for large t.

We now find particular solutions for some relatively simple inhomogeneous
terms using this method of undetermined coefficients.

Example: Find a particular solution of ẍ− 3ẋ− 4x = 2 sin t.

View tutorial on YouTube

We show two methods for finding a particular solution. The first more direct
method tries the ansatz

x(t) = A cos t + B sin t,

where the argument of cosine and sine must agree with the argument of sine in the
inhomogeneous term. The cosine term is required because the derivative of sine is
cosine. Upon substitution into the differential equation, we obtain

(−A cos t− B sin t)− 3 (−A sin t + B cos t)− 4 (A cos t + B sin t) = 2 sin t,

or regrouping terms,

− (5A + 3B) cos t + (3A− 5B) sin t = 2 sin t.

This equation is valid for all t, and in particular for t = 0 and π/2, for which the
sine and cosine functions vanish, respectively. For these two values of t, we find

5A + 3B = 0, 3A− 5B = 2;

and solving for A and B, we obtain

A =
3
17

, B = − 5
17

.
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The particular solution is therefore given by

xp =
1
17

(3 cos t− 5 sin t) .

The second solution method makes use of the relation eit = cos t + i sin t to
convert the sine inhomogeneous term to an exponential function. We introduce the
complex function z(t) by letting

z(t) = x(t) + iy(t),

and rewrite the differential equation in complex form. We can rewrite the equa-
tion in one of two ways. On the one hand, if we use sin t = Re{−ieit}, then the
differential equation is written as

z̈− 3ż− 4z = −2ieit; (8.25)

and by equating the real and imaginary parts, this equation becomes the two real
differential equations

ẍ− 3ẋ− 4x = 2 sin t, ÿ− 3ẏ− 4y = −2 cos t.

The solution we are looking for, then, is xp(t) = Re{zp(t)}.
On the other hand, if we write sin t = Im{eit}, then the complex differential

equation becomes
z̈− 3ż− 4z = 2eit, (8.26)

which becomes the two real differential equations

ẍ− 3ẋ− 4x = 2 cos t, ÿ− 3ẏ− 4y = 2 sin t.

Here, the solution we are looking for is xp(t) = Im{zp(t)}.
We will proceed here by solving (8.26). As we now have an exponential function

as the inhomogeneous term, we can make the ansatz

z(t) = Ceit,

where we now expect C to be a complex constant. Upon substitution into the ode
(8.26) and using i2 = −1:

−C− 3iC− 4C = 2;

or solving for C:

C =
−2

5 + 3i

=
−2(5− 3i)

(5 + 3i)(5− 3i)

=
−10 + 6i

34

=
−5 + 3i

17
.

Therefore,

xp = Im{zp}

= Im
{

1
17

(−5 + 3i)(cos t + i sin t)
}

=
1
17

(3 cos t− 5 sin t).
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Example: Find a particular solution of ẍ + ẋ− 2x = t2.

View tutorial on YouTube

The correct ansatz here is the polynomial

x(t) = At2 + Bt + C.

Upon substitution into the ode, we have

2A + 2At + B− 2At2 − 2Bt− 2C = t2,

or
−2At2 + 2(A− B)t + (2A + B− 2C)t0 = t2.

Equating powers of t,

−2A = 1, 2(A− B) = 0, 2A + B− 2C = 0;

and solving,

A = −1
2

, B = −1
2

, C = −3
4

.

The particular solution is therefore

xp(t) = −
1
2

t2 − 1
2

t− 3
4

.

8.7 Resonance

View tutorial on YouTube

Resonance occurs when the frequency of the inhomogeneous term matches the
frequency of the homogeneous solution. To illustrate resonance in its simplest em-
bodiment, we consider the second-order linear inhomogeneous ode

ẍ + ω2
0x = f cos ωt, x(0) = 0, ẋ(0) = 0. (8.27)

Our main goal is to determine what happens to the solution in the limit ω → ω0.
The homogeneous equation has characteristic equation

r2 + ω2
0 = 0,

so that r± = ±iω0. Therefore,

xh(t) = c1 cos ω0t + c2 sin ω0t. (8.28)

To find a particular solution, we note the absence of a first-derivative term, and
simply try

x(t) = A cos ωt.

Upon substitution into the ode, we obtain

−ω2 A + ω2
0 A = f ,
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or

A =
f

ω2
0 −ω2

.

Therefore,

xp(t) =
f

ω2
0 −ω2

cos ωt.

Our general solution is thus

x(t) = c1 cos ω0t + c2 sin ω0t +
f

ω2
0 −ω2

cos ωt,

with derivative

ẋ(t) = ω0(c2 cos ω0t− c1 sin ω0t)− f ω

ω2
0 −ω2

sin ωt.

Initial conditions are satisfied when

0 = c1 +
f

ω2
0 −ω2

, 0 = c2ω0,

so that

c1 =
f

ω2 −ω2
0

, c2 = 0.

Therefore, the solution to the ode that satisfies the initial conditions is

x(t) =
f

ω2 −ω2
0

cos ω0t− f
ω2 −ω2

0
cos ωt

=
f (cos ω0t− cos ωt)

ω2 −ω2
0

.

Resonance occurs in the limit ω → ω0; that is, the frequency of the inhomoge-
neous term (the external force) matches the frequency of the homogeneous solution
(the free oscillation). Using L’Hospital’s rule, we can determine the indeterminate
0/0 limit by differentiating the numerator and denominator with respect to ω:

lim
ω→ω0

f (cos ω0t− cos ωt)
ω2 −ω2

0
= lim

ω→ω0

f t sin ωt
2ω

=
f t sin ω0t

2ω0
.

(8.29)

At resonance, the term proportional to the amplitude f of the inhomogeneous term
increases linearly with t, resulting in larger-and-larger amplitudes of oscillation for
x(t). In general, if the inhomogeneous term in the differential equation is a solution
of the corresponding homogeneous differential equation, then the correct ansatz for
the particular solution is a constant times the inhomogeneous term times t.

To illustrate this same example further, we return to the original ode, now as-
sumed to be exactly at resonance,

ẍ + ω2
0x = f cos ω0t,
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and find a particular solution directly. The particular solution is the real part of the
particular solution of

z̈ + ω2
0z = f eiω0t.

If we try zp = Ceiω0t, we obtain 0 = f , showing that the particular solution is not
of this form. Because the inhomogeneous term is a solution of the homogeneous
equation, we should take as our ansatz

zp = Ateiω0t.

We have
żp = Aeiω0t (1 + iω0t) , z̈p = Aeiω0t

(
2iω0 −ω2

0t
)

;

and upon substitution into the ode

z̈p + ω2
0zp = Aeiω0t

(
2iω0 −ω2

0t
)
+ ω2

0 Ateiω0t

= 2iω0 Aeiω0t

= f eiω0t.

Therefore,

A =
f

2iω0
,

and

xp = Re{ f t
2iω0

eiω0t}

=
f t sin ω0t

2ω0
,

the same result as (8.29).

Example: Find a particular solution of ẍ− 3ẋ− 4x = 5e−t .

View tutorial on YouTube

If we naively try the ansatz
x = Ae−t,

and substitute this into the inhomogeneous differential equation, we obtain

A + 3A− 4A = 5,

or 0 = 5, which is clearly nonsense. Our ansatz therefore fails to find a solution. The
cause of this failure is that the corresponding homogeneous equation has solution

xh = c1e4t + c2e−t,

so that the inhomogeneous term 5e−t is one of the solutions of the homogeneous
equation. To find a particular solution, we should therefore take as our ansatz

x = Ate−t,

with first- and second-derivatives given by

ẋ = Ae−t(1− t), ẍ = Ae−t(−2 + t).
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Substitution into the differential equation yields

Ae−t(−2 + t)− 3Ae−t(1− t)− 4Ate−t = 5e−t.

The terms containing t cancel out of this equation, resulting in −5A = 5, or A = −1.
Therefore, the particular solution is

xp = −te−t.

8.8 Applications

View Nondimensionalization on YouTube

8.8.1 RLC circuit
View RLC circuit on YouTube

 

C 

𝜀(𝑡) 

 

R 

 

L 

~ 

 
 

Figure 8.1: RLC circuit diagram.

Consider a resister R, an inductor L, and a capacitor C connected in series as shown
in Fig. 8.1. An AC generator provides a time-varying electromotive force (emf),
E(t), to the circuit. Here, we determine the differential equation satisfied by the
charge on the capacitor.

The constitutive equations for the voltage drops across a capacitor, a resister,
and an inductor are given by

VC = q/C, VR = iR, VL =
di
dt

L, (8.30)

where C is the capacitance, R is the resistance, and L is the inductance. The charge
q and the current i are related by

i =
dq
dt

. (8.31)
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Kirchhoff’s voltage law states that the emf E applied to any closed loop is equal
to the sum of the voltage drops in that loop. Applying Kirchhoff’s voltage law to
the RLC ciruit results in

VL + VR + VC = E(t); (8.32)

or using (8.30) and (8.31),

L
d2q
dt2 + R

dq
dt

+
1
C

q = E(t).

The equation for the RLC circuit is a second-order linear inhomogeneous differen-
tial equation with constant coefficients.

The AC voltage can be written as E(t) = E0 cos ωt, and the governing equation
for q = q(t) can be written as

d2q
dt2 +

R
L

dq
dt

+
1

LC
q =
E0

L
cos ωt. (8.33)

Nondimensionalization of this equation will be shown to reduce the number of free
parameters.

To construct dimensionless variables, we first define the natural frequency of
oscillation of a system to be the frequency of oscillation in the absence of any driving
or damping forces. The iconic example is the simple harmonic oscillator, with
equation given by

ẍ + ω2
0x = 0,

and general solution given by x(t) = A cos ω0t + B sin ω0t. Here, the natural fre-
quency of oscillation is ω0, and the period of oscillation is T = 2π/ω0. For the
RLC circuit, the natural frequency of oscillation is found from the coefficient of the
q term, and is given by

ω0 =
1√
LC

.

Making use of ω0, with units of one over time, we can define a dimensionless time
τ and a dimensionless charge Q by

τ = ω0t, Q =
ω2

0 L
E0

q.

The resulting dimensionless equation for the RLC circuit is then given by

d2Q
dτ2 + α

dQ
dτ

+ Q = cos βτ, (8.34)

where α and β are dimensionless parameters given by

α =
R

Lω0
, β =

ω

ω0
.

Notice that the original five parameters in (8.33), namely R, L, C, E0 and ω, have
been reduced to the two dimensionless parameters α and β. We will return later to
solve (8.34) after visiting two more applications that will be shown to be governed
by the same dimensionless equation.
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Figure 8.2: Mass-spring system (top view).

8.8.2 Mass on a spring

View Mass on a Spring on YouTube

Consider a mass lying on a flat surface connected by a spring to a wall, with top
view shown in Fig. 8.2. The spring force is modeled by Hooke’s law, Fs = −kx, and
sliding friction is modeled as Ff = −cdx/dt. An external force is applied and is
assumed to be sinusoidal, with Fe = F0 cos ωt. Newton’s equation, F = ma, results
in

m
d2x
dt2 = −kx− c

dx
dt

+ F0 cos ωt.

Rearranging terms, we obtain

d2x
dt2 +

c
m

dx
dt

+
k
m

x =
F0

m
cos ωt.

Here, the natural frequency of oscillation is given by

ω0 =

√
k
m

,

and we define a dimensionless time τ and a dimensionless position X by

τ = ω0t, X =
mω2

0
F0

x.

The resulting dimensionless equation is given by

d2X
dτ2 + α

dX
dτ

+ X = cos βτ, (8.35)

where here, α and β are dimensionless parameters given by

α =
c

mω0
, β =

ω

ω0
.

Notice that even though the physical problem is different, and the dimensionless
variables are defined differently, the resulting dimensionless equation (8.35) for the
mass-spring system is the same as that for the RLC circuit (8.34).
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Figure 8.3: The pendulum.

8.8.3 Pendulum

View Pendulum on YouTube

Here, we consider a mass that is attached to a massless rigid rod and is constrained
to move along an arc of a circle centered at the pivot point (see Fig. 8.3). Suppose l is
the fixed length of the connecting rod, and θ is the angle it makes with the vertical.

We can apply Newton’s equation, F = ma, to the mass with origin at the bottom
and axis along the arc with positive direction to the right. The position s of the mass
along the arc is given by s = lθ. The relevant gravitational force on the pendulum
is the component along the arc, and from Fig. 8.3 is observed to be

Fg = −mg sin θ.

We model friction to be proportional to the velocity of the pendulum along the arc,
that is

Ff = −cṡ = −clθ̇.

With a sinusoidal external force, Fe = F0 cos ωt, Newton’s equation ms̈ = Fg + Ff +
Fe results in

mlθ̈ = −mg sin θ − clθ̇ + F0 cos ωt.

Rewriting, we have

θ̈ +
c
m

θ̇ +
g
l

sin θ =
F0

ml
cos ωt.

At small amplitudes of oscillation, we can approximate sin θ ≈ θ, and the natural
frequency of oscillation ω0 of the mass is given by

ω0 =

√
g
l

.
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Nondimensionalizing time as τ = ω0t, the dimensionless pendulum equation be-
comes

d2θ

dτ2 + α
dθ

dτ
+ sin θ = γ cos βτ,

where α, β, and γ are dimensionless parameters given by

α =
c

mω0
, β =

ω

ω0
, γ =

F0

mlω2
0

.

The nonlinearity of the pendulum equation, with the term sin θ, results in the addi-
tional dimensionless parameter γ. For small amplitude of oscillation, however, we
can scale θ by θ = γΘ, and the small amplitude dimensionless equation becomes

d2Θ
dτ2 + α

dΘ
dτ

+ Θ = cos βτ, (8.36)

the same equation as (8.34) and (8.35).

8.9 Damped resonance

View Damped Resonance on YouTube

We now solve the dimensionless equations given by (8.34), (8.35) and (8.36), written
here as

ẍ + αẋ + x = cos βt, (8.37)

where the physical constraints of our three applications requires that α > 0. The
homogeneous equation has characteristic equation

r2 + αr + 1 = 0,

so that the solutions are

r± = −α

2
± 1

2

√
α2 − 4.

When α2 − 4 < 0, the motion of the unforced oscillator is said to be underdamped;
when α2 − 4 > 0, overdamped; and when α2 − 4 = 0, critically damped. For all
three types of damping, the roots of the characteristic equation satisfy Re(r±) < 0.
Therefore, both linearly independent homogeneous solutions decay exponentially
to zero, and the long-time asymptotic solution of (8.37) reduces to the non-decaying
particular solution. Since the initial conditions are satisfied by the free constants
multiplying the decaying homogeneous solutions, the long-time asymptotic solu-
tion is independent of the initial conditions.

If we are only interested in the long-time asymptotic solution of (8.37), we can
proceed directly to the determination of a particular solution. As before, we con-
sider the complex ode

z̈ + αż + z = eiβt,

with xp = Re(zp). With the ansatz zp = Aeiβt, we have

−β2 A + iαβA + A = 1,
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or

A =
1

(1− β2) + iαβ

=

(
1

(1− β2)2 + α2β2

)(
(1− β2)− iαβ

)
.

(8.38)

To determine xp, we utilize the polar form of a complex number. The complex
number z = x + iy can be written in polar form as z = reiφ, where r =

√
x2 + y2

and tan φ = y/x. We therefore write

(1− β2)− iαβ = reiφ,

with
r =

√
(1− β2)2 + α2β2, tan φ = − αβ

1− β2 .

Using the polar form, A in (8.38) becomes

A =

(
1√

(1− β2)2 + α2β2

)
eiφ,

and xp = Re(Aeiβt) becomes

xp =

(
1√

(1− β2)2 + α2β2

)
Re
{

ei(βt+φ)
}

=

(
1√

(1− β2)2 + α2β2

)
cos (βt + φ).

(8.39)

We conclude with a couple of observations about (8.39). First, if the forcing
frequency ω is equal to the natural frequency ω0 of the undamped oscillator, then
β = 1 and A = 1/iα, and xp = (1/α) sin t. The oscillator position is observed
to be π/2 out of phase with the external force, or in other words, the velocity of
the oscillator, not the position, is in phase with the force. Second, the value of β
that maximizes the amplitude of oscillation is the value of β that minimizes the
denominator of (8.39). To determine βm we thus minimize the function g(β2) with
respect to β2, where

g(β2) = (1− β2)2 + α2β2.

Taking the derivative of g with respect to β2 and setting this to zero to determine
βm yields

−2(1− β2
m) + α2 = 0,

or

βm =

√
1− α2

2
≈ 1− α2

4
,

the last approximation valid if α << 1 and the dimensionless damping coefficient
is small. We can interpret this result by saying that small damping slightly lowers
the “resonance” frequency of the undamped oscillator.
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Chapter 9

Series solutions of
homogeneous linear
second-order differential
equations

Reference: Boyce and DiPrima, Chapter 5

We consider the homogeneous linear second-order differential equation for y =
y(x):

P(x)y′′ + Q(x)y′ + R(x)y = 0, (9.1)

where P(x), Q(x) and R(x) are polynomials or convergent power series around
x = x0, with no common polynomial factors that could be divided out. The value
x = x0 is called an ordinary point of (9.1) if P(x0) 6= 0, and is called a singular
point if P(x0) = 0. Singular points can be further classified as regular singular points
and irregular singular points. Here, we will only consider series expansions about
ordinary points. Our goal is to find two independent solutions of (9.1).

9.1 Ordinary points

If x0 is an ordinary point of (9.1), then it is possible to determine two power series
(i.e., Taylor series) solutions for y = y(x) centered at x = x0. We illustrate the
method of solution by solving two examples, with x0 = 0.

Example: Find the general solution of y′′ + y = 0.

View tutorial on YouTube

By now, you should know that the general solution is y(x) = a0 cos x + a1 sin x,
with a0 and a1 constants. To find a power series solution about the point x0 = 0, we
write

y(x) =
∞

∑
n=0

anxn;

and upon differentiating term-by-term

y′(x) =
∞

∑
n=1

nanxn−1,

and

y′′(x) =
∞

∑
n=2

n(n− 1)anxn−2.
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Substituting the power series for y and its derivatives into the differential equation
to be solved, we obtain

∞

∑
n=2

n(n− 1)anxn−2 +
∞

∑
n=0

anxn = 0. (9.2)

The power-series solution method requires combining the two sums on the left-
hand-side of (9.2) into a single power series in x. To shift the exponent of xn−2 in
the first sum upward by two to obtain xn, we need to shift the summation index
downward by two; that is,

∞

∑
n=2

n(n− 1)anxn−2 =
∞

∑
n=0

(n + 2)(n + 1)an+2xn.

We can then combine the two sums in (9.2) to obtain

∞

∑
n=0

(
(n + 2)(n + 1)an+2 + an

)
xn = 0. (9.3)

For (9.3) to be satisfied, the coefficient of each power of x must vanish separately.
(This can be proved by setting x = 0 after successive differentiation.) We therefore
obtain the recurrence relation

an+2 = − an

(n + 2)(n + 1)
, n = 0, 1, 2, . . . .

We observe that even and odd coefficients decouple. We thus obtain two indepen-
dent sequences starting with first term a0 or a1. Developing these sequences, we
have for the sequence beginning with a0:

a0,

a2 = −1
2

a0,

a4 = − 1
4 · 3 a2 =

1
4 · 3 · 2 a0,

a6 = − 1
6 · 5 a4 = − 1

6!
a0;

and the general coefficient in this sequence for n = 0, 1, 2, . . . is

a2n =
(−1)n

(2n)!
a0.

Also, for the sequence beginning with a1:

a1,

a3 = − 1
3 · 2 a1,

a5 = − 1
5 · 4 a3 =

1
5 · 4 · 3 · 2 a1,

a7 = − 1
7 · 6 a5 = − 1

7!
a1;
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and the general coefficient in this sequence for n = 0, 1, 2, . . . is

a2n+1 =
(−1)n

(2n + 1)!
a1.

Using the principle of superposition, the general solution is therefore

y(x) = a0

∞

∑
n=0

(−1)n

(2n)!
x2n + a1

∞

∑
n=0

(−1)n

(2n + 1)!
x2n+1

= a0

(
1− x2

2!
+

x4

4!
− . . .

)
+ a1

(
x− x3

3!
+

x5

5!
− . . .

)
= a0 cos x + a1 sin x,

as expected.
In our next example, we will solve the Airy’s Equation. This differential equation

arises in the study of optics, fluid mechanics, and quantum mechanics.

Example: Find the general solution of y′′ − xy = 0.

View tutorial on YouTube

With

y(x) =
∞

∑
n=0

anxn,

the differential equation becomes

∞

∑
n=2

n(n− 1)anxn−2 −
∞

∑
n=0

anxn+1 = 0. (9.4)

We shift the first sum to xn+1 by shifting the exponent up by three, i.e.,

∞

∑
n=2

n(n− 1)anxn−2 =
∞

∑
n=−1

(n + 3)(n + 2)an+3xn+1.

When combining the two sums in (9.4), we separate out the extra n = −1 term in
the first sum given by the constant term 2a2. Therefore, (9.4) becomes

2a2 +
∞

∑
n=0

(
(n + 3)(n + 2)an+3 − an

)
xn+1 = 0. (9.5)

Setting coefficients of powers of x to zero, we first find a2 = 0, and then obtain the
recursion relation

an+3 =
1

(n + 3)(n + 2)
an. (9.6)

Three sequences of coefficients—those starting with either a0, a1 or a2—decouple.
In particular the three sequences are

a0, a3, a6, a9, . . . ;
a1, a4, a7, a10, . . . ;
a2, a5, a8, a11 . . . .
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Since a2 = 0, we find immediately for the last sequence

a2 = a5 = a8 = a11 = · · · = 0.

We compute the first four nonzero terms in the power series with coefficients cor-
responding to the first two sequences. Starting with a0, we have

a0,

a3 =
1

3 · 2 a0,

a6 =
1

6 · 5 · 3 · 2 a0,

a9 =
1

9 · 8 · 6 · 5 · 3 · 2 a0;

and starting with a1,

a1,

a4 =
1

4 · 3 a1,

a7 =
1

7 · 6 · 4 · 3 a1,

a10 =
1

10 · 9 · 7 · 6 · 4 · 3 a1.

The general solution for y = y(x), can therefore be written as

y(x) = a0

(
1 +

x3

6
+

x6

180
+

x9

12960
+ . . .

)
+ a1

(
x +

x4

12
+

x7

504
+

x10

45360
+ . . .

)
= a0y0(x) + a1y1(x).

Suppose we would like to graph the solutions y = y0(x) and y = y1(x) versus x
by solving the differential equation y′′− xy = 0 numerically. What initial conditions
should we use? Clearly, y = y0(x) solves the ode with initial values y(0) = 1 and
y′(0) = 0, while y = y1(x) solves the ode with initial values y(0) = 0 and y′(0) = 1.

The numerical solutions, obtained using MATLAB, are shown in Fig. 9.1. Note
that the solutions oscillate for negative x and grow exponentially for positive x.
This can be understood by recalling that y′′ + y = 0 has oscillatory sine and cosine
solutions and y′′ − y = 0 has exponential hyperbolic sine and cosine solutions.
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Figure 9.1: Numerical solution of Airy’s equation.
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Chapter 10

Systems of linear differential
equations

Reference: Boyce and DiPrima, Chapter 7

Here, we consider the simplest case of a system of two coupled homogeneous linear
first-order equations with constant coefficients. The general system is given by

ẋ1 = ax1 + bx2, ẋ2 = cx1 + dx2, (10.1)

or in matrix form as
d
dt

(
x1
x2

)
=

(
a b
c d

)(
x1
x2

)
.

The short-hand notation will be
ẋ = Ax. (10.2)

Although we can write these two first-order equations as a single second-order
equation, we will instead make use of our newly learned techniques in matrix al-
gebra. We will also introduce the important concept of the phase space, and the
physical problem of coupled oscillators.

10.1 Distinct real eigenvalues

We illustrate the solution method by example.

Example: Find the general solution of ẋ1 = x1 + x2, ẋ2 = 4x1 + x2.

View tutorial on YouTube

The equation to be solved may be rewritten in matrix form as

d
dt

(
x1
x2

)
=

(
1 1
4 1

)(
x1
x2

)
, (10.3)

or in short hand as (10.2).
We take as our ansatz x(t) = veλt, where v is a vector and λ is a scalar, and both

are independent of t. Upon substitution into (10.2), we obtain

λveλt = Aveλt;

and upon cancellation of the exponential, we obtain the eigenvalue problem

Av = λv. (10.4)

Finding the characteristic equation using (5.4), we have

0 = det (A− λI)

= λ2 − 2λ− 3
= (λ− 3)(λ + 1).
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Therefore, the two eigenvalues are λ1 = 3 and λ2 = −1.
To determine the corresponding eigenvectors, we substitute the eigenvalues suc-

cessively into
(A− λI)v = 0. (10.5)

We will write the corresponding eigenvectors v1 and v2 using the matrix notation(
v1 v2

)
=

(
v11 v12
v21 v22

)
,

where the components of v1 and v2 are written with subscripts corresponding to
the first and second columns of a 2-by-2 matrix.

For λ1 = 3, and unknown eigenvector v1, we have from (10.5)

−2v11 + v21 = 0,
4v11 − 2v21 = 0.

Clearly, the second equation is just the first equation multiplied by −2, so only one
equation is linearly independent. This will always be true, so for the 2-by-2 case
we need only consider the first row of the matrix. The first eigenvector therefore
satisfies v21 = 2v11. Recall that an eigenvector is only unique up to multiplication
by a constant: we may therefore take v11 = 1 for convenience.

For λ2 = −1, and eigenvector v2 = (v12, v22)
T , we have from (10.5)

2v12 + v22 = 0,

so that v22 = −2v12. Here, we take v12 = 1.
Therefore, our eigenvalues and eigenvectors are given by

λ1 = 3, v1 =

(
1
2

)
; λ2 = −1, v2 =

(
1
−2

)
.

Using the principle of superposition, the general solution to the ode is therefore

X(t) = c1v1eλ1t + c2v2eλ2t,

or explicitly writing out the components,

x1(t) = c1e3t + c2e−t,

x2(t) = 2c1e3t − 2c2e−t. (10.6)

We can obtain a new perspective on the solution by drawing a phase portrait,
shown in Fig. 10.1, with “x-axis” x1 and “y-axis” x2. Each curve corresponds to a
different initial condition, and represents the trajectory of a particle with velocity
given by the differential equation. The dark lines represent trajectories along the
direction of the eigenvectors. If c2 = 0, the motion is along the eigenvector v1
with x2 = 2x1 and the motion with increasing time is away from the origin (arrows
pointing out) since the eigenvalue λ1 = 3 > 0. If c1 = 0, the motion is along the
eigenvector v2 with x2 = −2x1 and motion is towards the origin (arrows pointing
in) since the eigenvalue λ2 = −1 < 0. When the eigenvalues are real and of opposite
signs, the origin is called a saddle point. Almost all trajectories (with the exception
of those with initial conditions exactly satisfying x2(0) = −2x1(0)) eventually move
away from the origin as t increases. When the eigenvalues are real and of the same
sign, the origin is called a node. A node can be stable (negative eigenvalues) or
unstable (positive eigenvalues).
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Figure 10.1: Phase portrait for example with two real eigenvalues of opposite sign.

10.2 Solution by diagonalization

Another way to view the problem of coupled first-order linear odes is from the
perspective of matrix diagonalization. With

ẋ = Ax, (10.7)

we suppose A can be diagonalized using

S−1AS = Λ, (10.8)

where Λ is the diagonal eigenvalue matrix, and the columns of S hold the eigen-
vectors. We can change variables in (10.7) using

x = Sy (10.9)

and obtain
Sẏ = ASy.

Multiplication on the left by S−1 and using (10.8) results in

ẏ = S−1ASy
= Λy.

The first-order differential equations in the y-variables are now uncoupled and can
be immediately solved, and the x-variables can be recovered using (10.9).
Example: Solve the previous example

d
dt

(
x1
x2

)
=

(
1 1
4 1

)(
x1
x2

)
,

by the diagonalization method.
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The eigenvalues and eigenvectors are known, and we have

Λ =

(
3 0
0 −1

)
, S =

(
1 1
2 −2

)
,

and the uncoupled y-equations are given by

ẏ1 = 3y1, ẏ2 = −y2,

with solution

y1(t) = c1e3t, y2 = c2e−t.

Transforming back to the x-variables using (10.9), we have(
x1
x2

)
=

(
1 1
2 −2

)(
c1e3t

c2e−t

)
=

(
c1e3t + c2e−t

2c1e3t − 2c2e−t

)
,

which agrees with solution (10.6).

10.3 Solution by the matrix exponential

Another interesting approach to this problem makes use of the matrix exponential.
Let A be a square matrix, tA the matrix A multiplied by the scalar t, and An the
matrix A multiplied by itself n times. We define the matrix exponential function etA

similar to the way the exponential function may be defined using its Taylor series.
The corresponding definition is

etA = I + tA +
t2A2

2!
+

t3A3

3!
+

t4A4

4!
+ . . . .

We can differentiate etA with respect to t and obtain

d
dt

etA = A + tA2 +
t2A3

2!
+

t3A4

3!
+ . . .

= A
(

I + tA +
t2A2

2!
+

t3A3

3!
+ . . .

)
= AetA,

as one would expect from differentiating the exponential function. We can therefore
formally write the solution of

ẋ = Ax

as

x(t) = etAx(0).
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If the matrix A is diagonalizable such that A = SΛS−1, then observe that

etA = etSΛS−1

= I + tSΛS−1 +
t2(SΛS−1)2

2!
+

t3(SΛS−1)3

3!
+ . . .

= I + tSΛS−1 +
t2SΛ2S−1

2!
+

t3SΛ3S−1

3!
+ . . .

= S
(

I + tΛ +
t2Λ2

2!
+

t3Λ3

3!
+ . . .

)
S−1

= SetΛS−1.

If Λ is a diagonal matrix with diagonal elements λ1, λ2, etc., then the matrix ex-
ponential etΛ is also a diagonal matrix with diagonal elements given by eλ1t, eλ2t,
etc. We can now use the matrix exponential to solve a system of linear differential
equations.
Example: Solve the previous example

d
dt

(
x1
x2

)
=

(
1 1
4 1

)(
x1
x2

)
,

by matrix exponentiation.
We know that

Λ =

(
3 0
0 −1

)
, S =

(
1 1
2 −2

)
, S−1 = −1

4

(
−2 −1
−2 1

)
.

The solution to the system of differential equations is then given by

x(t) = etAx(0)

= SetΛS−1x(0)

= −1
4

(
1 1
2 −2

)(
e3t 0
0 e−t

)(
−2 −1
−2 1

)
x(0).

Successive matrix multiplication results in

x1(t) =
1
4
(2x1(0) + x2(0))e3t +

1
4
(2x1(0)− x2(0))e−t,

x2(t) =
1
2
(2x1(0) + x2(0))e3t − 1

2
(2x1(0)− x2(0))e−t,

which is the same solution as previously found, but here the c1 and c2 free coeffi-
cients are replaced by the initial values of x(0).

10.4 Distinct complex-conjugate eigenvalues

Example: Find the general solution of ẋ1 = − 1
2 x1 + x2, ẋ2 = −x1 − 1

2 x2.

View tutorial on YouTube

The equations in matrix form are

d
dt

(
x1
x2

)
=

(
−1/2 1
−1 −1/2

)(
x1
x2

)
.
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The ansatz x = veλt leads to the equation

0 = det (A− λI)

= λ2 + λ +
5
4

.

Therefore, λ = −1/2± i; and we observe that the eigenvalues occur as a complex
conjugate pair. We will denote the two eigenvalues as

λ = −1
2
+ i and λ̄ = −1

2
− i.

Now, if A a real matrix, then Av = λv implies Av = λ̄v, so the eigenvectors also
occur as a complex conjugate pair. The eigenvector v associated with eigenvalue λ
satisfies −iv1 + v2 = 0, and normalizing with v1 = 1, we have

v =

(
1
i

)
.

We have therefore determined two independent complex solutions to the ode, that
is,

veλt and veλ̄t,

and we can form a linear combination of these two complex solutions to construct
two independent real solutions. Namely, if the complex functions z(t) and z̄(t) are
written as

z(t) = Re{z(t)}+ iIm{z(t)}, z̄(t) = Re{z(t)} − iIm{z(t)},

then two real functions can be constructed from the following linear combinations
of z and z̄:

z + z̄
2

= Re{z(t)} and
z− z̄

2i
= Im{z(t)}.

Thus the two real vector functions that can be constructed from our two complex
vector functions are

Re{veλt} = Re
{(

1
i

)
e(−

1
2+i)t

}
= e−

1
2 tRe

{(
1
i

)
(cos t + i sin t)

}
= e−

1
2 t
(

cos t
− sin t

)
;

and

Im{veλt} = e−
1
2 tIm

{(
1
i

)
(cos t + i sin t)

}
= e−

1
2 t
(

sin t
cos t

)
.

Taking a linear superposition of these two real solutions yields the general solution
to the ode, given by

x = e−
1
2 t
[

A
(

cos t
− sin t

)
+ B

(
sin t
cos t

)]
.
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Figure 10.2: Phase portrait for example with complex conjugate eigenvalues.

The corresponding phase portrait is shown in Fig. 10.2. We say the origin is a
spiral point. If the real part of the complex eigenvalue is negative, as is the case here,
then solutions spiral into the origin. If the real part of the eigenvalue is positive,
then solutions spiral out of the origin.

The direction of the spiral—here, it is clockwise—can be determined easily. Re-
consider the original differential equations given by

ẋ1 = −1
2

x1 + x2, ẋ2 = −x1 −
1
2

x2.

If we examine these equations with x1 = 0 and x2 = 1, we see that ẋ1 = 1 and
ẋ2 = −1/2. The trajectory at the point (0, 1) is moving to the right and downward,
and this is possible only if the spiral is clockwise. A counterclockwise trajectory
would be moving to the left and downward.

10.5 Repeated eigenvalues with one eigenvector

Example: Find the general solution of ẋ1 = x1 − x2, ẋ2 = x1 + 3x2.

View tutorial on YouTube

The equations in matrix form are

d
dt

(
x1
x2

)
=

(
1 −1
1 3

)(
x1
x2

)
. (10.10)

The ansatz x = veλt leads to the characteristic equation

0 = det (A− λI)

= λ2 − 4λ + 4

= (λ− 2)2.
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Therefore, λ = 2 is a repeated eigenvalue. The associated eigenvector is found from
−v1 − v2 = 0, or v2 = −v1; and normalizing with v1 = 1, we have

λ = 2, v =

(
1
−1

)
.

We have thus found a single solution to the ode, given by

x1(t) = c1

(
1
−1

)
e2t,

and we need to find the missing second solution to be able to satisfy the initial
conditions. An ansatz of t times the first solution is tempting, but will fail. Here, we
will cheat and find the missing second solution by solving the equivalent second-
order, homogeneous, constant-coefficient differential equation.

We already know that this second-order differential equation for x1(t) has a
characteristic equation with a degenerate eigenvalue given by λ = 2. Therefore, the
general solution for x1 is given by

x1(t) = (c1 + tc2)e2t.

Since from the first differential equation, x2 = x1 − ẋ1, we compute

ẋ1 =
(
2c1 + (1 + 2t)c2

)
e2t,

so that

x2 = x1 − ẋ1

= (c1 + tc2)e2t −
(
2c1 + (1 + 2t)c2

)
e2t

= −c1e2t + c2(−1− t)e2t.

Combining our results for x1 and x2, we have therefore found(
x1
x2

)
= c1

(
1
−1

)
e2t + c2

[(
0
−1

)
+

(
1
−1

)
t
]

e2t.

Our missing linearly independent solution is thus determined to be

x2(t) = c2

[(
0
−1

)
+

(
1
−1

)
t
]

e2t. (10.11)

The second term of (10.11) is just t times the first solution; however, this is not
sufficient. Indeed, the correct ansatz to find the second solution directly is given by

x = (w + tv) eλt, (10.12)

where λ and v are the eigenvalue and eigenvector of the first solution, and w is an
unknown vector to be determined. To illustrate this direct method, we substitute
(10.12) into ẋ = Ax, assuming Av = λv . Canceling the exponential, we obtain

v + λ (w + tv) = Aw + λtv.

Further canceling the common term λtv and rewriting yields

(A− λI)w = v. (10.13)
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Figure 10.3: Phase portrait for example with only one eigenvector.

If A has only a single linearly independent eigenvector v, then (10.13) can be solved
for w (otherwise, it cannot). Using A, λ and v of our present example, (10.13) is the
system of equations given by(

−1 −1
1 1

)(
w1
w2

)
=

(
1
−1

)
.

The first and second equation are the same, so that w2 = −(w1 + 1). Therefore,

w =

(
w1

−(w1 + 1)

)
= w1

(
1
−1

)
+

(
0
−1

)
.

Notice that the first term repeats the first found solution, i.e., a constant times the
eigenvector, and the second term is new. We therefore take w1 = 0 and obtain

w =

(
0
−1

)
,

as before.
The phase portrait for this ode is shown in Fig. 10.3. The dark line is the single

eigenvector v of the matrix A. When there is only a single eigenvector, the origin is
called an improper node.

10.6 Normal modes

View tutorials on YouTube: Part 1 Part 2
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Figure 10.4: Top view of a double mass, triple spring system.

We now consider an application of the eigenvector analysis to the coupled mass-
spring system shown in Fig. 10.4. The position variables x1 and x2 are measured
from the equilibrium positions of the masses. Hooke’s law states that the spring
force is linearly proportional to the extension length of the spring, measured from
equilibrium. By considering the extension of the spring and the sign of the force,
we write Newton’s law F = ma separately for each mass:

mẍ1 = −kx1 − K(x1 − x2),
mẍ2 = −kx2 − K(x2 − x1).

Further rewriting by collecting terms proportional to x1 and x2 yields

mẍ1 = −(k + K)x1 + Kx2,
mẍ2 = Kx1 − (k + K)x2.

The equations for the coupled mass-spring system form a system of two second-
order linear homogeneous odes. In matrix form, mẍ = Ax, or explicitly,

m
d2

dt2

(
x1
x2

)
=

(
−(k + K) K

K −(k + K)

)(
x1
x2

)
. (10.14)

In analogy to a system of first-order equations, we try the ansatz x = vert, and upon
substitution into (10.14) we obtain the eigenvalue problem Av = λv, with λ = mr2.
The eigenvalues are determined by solving the characteristic equation

0 = det (A− λI)

=

∣∣∣∣−(k + K)− λ K
K −(k + K)− λ

∣∣∣∣
= (λ + k + K)2 − K2.

The solution for λ is
λ = −k− K± K,

and the two eigenvalues are

λ1 = −k, λ2 = −(k + 2K).

The corresponding values of r in our ansatz x = vert, with r = ±
√

λ/m, are

r1 = i
√

k/m, r̄1, r2 = i
√
(k + 2K)/m, r̄2.
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Since the values of r are pure imaginary, we know that x1(t) and x2(t) will oscillate
with angular frequencies ω1 = Im{r1} and ω2 = Im{r2}, that is,

ω1 =
√

k/m, ω2 =
√
(k + 2K)/m.

The positions of the oscillating masses in general contain time dependencies of the
form sin ω1t, cos ω1t, and sin ω2t, cos ω2t.

It is of further interest to determine the eigenvectors, or so-called normal modes
of oscillation, associated with the two distinct angular frequencies. With specific
initial conditions proportional to an eigenvector, the mass will oscillate with a single
frequency. The eigenvector with eigenvalue λ1 satisfies

−Kv11 + Kv12 = 0,

so that v11 = v12. The normal mode with frequency ω1 =
√

k/m thus follows a
motion where x1 = x2. Referring to Fig. 10.4, during this motion the center spring
length does not change, which is why the frequency of oscillation is independent
of K.

Next, we determine the eigenvector with eigenvalue λ2:

Kv21 + Kv22 = 0,

so that v21 = −v22. The normal mode with frequency ω2 =
√
(k + 2K)/m thus fol-

lows a motion where x1 = −x2. Again referring to Fig. 10.4, during this motion the
two equal masses symmetrically push or pull against each side of the middle spring.
This two-sided push and pull results in the contribution of 2K to the frequency.

A general solution for x(t) can be constructed from the eigenvalues and eigen-
vectors. Our ansatz was x = vert, and for each of two eigenvectors v, we have a
pair of complex conjugate values for r. Accordingly, we first apply the principle of
superposition to obtain four real solutions, and then apply the principle again to
obtain the general solution. With ω1 =

√
k/m and ω2 =

√
(k + 2K)/m, the general

solution is given by(
x1
x2

)
=

(
1
1

)
(A cos ω1t + B sin ω1t) +

(
1
−1

)
(C cos ω2t + D sin ω2t) ,

where the now real constants A, B, C, and D can be determined from the four
independent initial conditions, x1(0), x2(0), ẋ1(0), and ẋ2(0).
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Chapter 11

Nonlinear differential
equations

Reference: Strogatz, Sections 2.2, 2.4, 3.1, 3.2, 3.4, 6.3, 6.4, 8.2

We now turn our attention to nonlinear differential equations. In particular, we
study how small changes in the parameters of a system can result in qualitative
changes in the dynamics. These qualitative changes in the dynamics are called
bifurcations. To understand bifurcations, we first need to understand the concepts
of fixed points and stability.

11.1 Fixed points and stability

11.1.1 One dimension
View tutorial on YouTube

Consider the one-dimensional differential equation for x = x(t) given by

ẋ = f (x). (11.1)

We say that x∗ is a fixed point, or equilibrium point, of (11.1) if f (x∗) = 0. At the fixed
point, ẋ = 0. The terminology fixed point is used since the solution to (11.1) with
initial condition x(0) = x∗ is x(t) = x∗ for all time t.

A fixed point, however, can be stable or unstable. A fixed point is said to be
stable if a small perturbation of the solution from the fixed point decays in time; it is
said to be unstable if a small perturbation grows in time. We can determine stability
by a linear analysis. Let x = x∗ + ε(t), where ε represents a small perturbation of
the solution from the fixed point x∗. Because x∗ is a constant, ẋ = ε̇; and because
x∗ is a fixed point, f (x∗) = 0. Taylor series expanding about ε = 0, we have

ε̇ = f (x∗ + ε)

= f (x∗) + ε f ′(x∗) + . . .

= ε f ′(x∗) + . . . .

The omitted terms in the Taylor series expansion are proportional to ε2, and can be
made negligible over a short time interval with respect to the kept term, propor-
tional to ε, by taking ε(0) sufficiently small. Therefore, at least over short times,
the differential equation to be considered, ε̇ = f ′(x∗)ε, is linear and has by now the
familiar solution

ε(t) = ε(0)e f ′(x∗)t.

The perturbation of the fixed point solution x(t) = x∗ thus decays exponentially
if f ′(x∗) < 0, and we say the fixed point is stable. If f ′(x∗) > 0, the perturbation
grows exponentially and we say the fixed point is unstable. If f ′(x∗) = 0, we say
the fixed point is marginally stable, and the next higher-order term in the Taylor
series expansion must be considered.

137

http://youtu.be/xx4nhZiNNmg


11.1. FIXED POINTS AND STABILITY

Example: Find all the fixed points of the logistic equation ẋ = x(1 − x) and
determine their stability.

There are two fixed points at which ẋ = 0, given by x∗ = 0 and x∗ = 1. Stability
of these equilibrium points may be determined by considering the derivative of
f (x) = x(1− x). We have f ′(x) = 1− 2x. Therefore, f ′(0) = 1 > 0 so that x∗ = 0 is
an unstable fixed point, and f ′(1) = −1 < 0 so that x∗ = 1 is a stable fixed point.
Indeed, we have previously found that all solutions approach the stable fixed point
asymptotically.

11.1.2 Two dimensions
View tutorial on YouTube

The idea of fixed points and stability can be extended to higher-order systems of
odes. Here, we consider a two-dimensional system and will need to make use of
the two-dimensional Taylor series expansion of a function F(x, y) about the origin.
In general, the Taylor series of F(x, y) is given by

F(x, y) = F + x
∂F
∂x

+ y
∂F
∂y

+
1
2

(
x2 ∂2F

∂x2 + 2xy
∂2F

∂x∂y
+ y2 ∂2F

∂y2

)
+ . . . ,

where the function F and all of its partial derivatives on the right-hand-side are
evaluated at the origin. Note that the Taylor series is constructed so that all partial
derivatives of the left-hand-side match those of the right-hand-side at the origin.

We now consider the two-dimensional system given by

ẋ = f (x, y), ẏ = g(x, y). (11.2)

The point (x∗, y∗) is said to be a fixed point of (11.2) if f (x∗, y∗) = 0 and g(x∗, y∗) =
0. Again, the local stability of a fixed point can be determined by a linear analysis.
We let x(t) = x∗ + ε(t) and y(t) = y∗ + δ(t), where ε and δ are small independent
perturbations from the fixed point. Making use of the two dimensional Taylor series
of f (x, y) and g(x, y) about the fixed point, or equivalently about (ε, δ) = (0, 0), we
have

ε̇ = f (x∗ + ε, y∗ + δ)

= f + ε
∂ f
∂x

+ δ
∂ f
∂y

+ . . .

= ε
∂ f
∂x

+ δ
∂ f
∂y

+ . . . .

δ̇ = g(x∗ + ε, y∗ + δ)

= g + ε
∂g
∂x

+ δ
∂g
∂y

+ . . .

= ε
∂g
∂x

+ δ
∂g
∂y

+ . . . ,

where in the Taylor series f , g and all their partial derivatives are evaluated at the
fixed point (x∗, y∗). Neglecting higher-order terms in the Taylor series, we thus
have a system of odes for the perturbation, given in matrix form as

d
dt

(
ε
δ

)
=

( ∂ f
∂x

∂ f
∂y

∂g
∂x

∂g
∂y

)(
ε
δ

)
. (11.3)
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Figure 11.1: Phase space plot for two-dimensional nonlinear system.

The two-by-two matrix in (11.3) is called the Jacobian matrix at the fixed point. An
eigenvalue analysis of the Jacobian matrix will typically yield two eigenvalues λ1
and λ2. These eigenvalues may be real and distinct, complex conjugate pairs, or
repeated. The fixed point is stable (all perturbations decay exponentially) if both
eigenvalues have negative real parts. The fixed point is unstable (some perturba-
tions grow exponentially) if at least one of the eigenvalues has a positive real part.
Fixed points can be further classified as stable or unstable nodes, unstable saddle
points, stable or unstable spiral points, or stable or unstable improper nodes.

Example: Find all the fixed points of the nonlinear system ẋ = x(3 − x − 2y),
ẏ = y(2− x− y), and determine their stability.

View tutorial on YouTube

The fixed points are determined by solving

f (x, y) = x(3− x− 2y) = 0, g(x, y) = y(2− x− y) = 0.

Evidently, (x, y) = (0, 0) is a fixed point. On the one hand, if only x = 0, then
the equation g(x, y) = 0 yields y = 2. On the other hand, if only y = 0, then the
equation f (x, y) = 0 yields x = 3. If both x and y are nonzero, then we must solve
the linear system

x + 2y = 3, x + y = 2,

and the solution is easily found to be (x, y) = (1, 1). Hence, we have determined
the four fixed points (x∗, y∗) = (0, 0), (0, 2), (3, 0), (1, 1). The Jacobian matrix is
given by ( ∂ f

∂x
∂ f
∂y

∂g
∂x

∂g
∂y

)
=

(
3− 2x− 2y −2x
−y 2− x− 2y

)
.
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Stability of the fixed points may be considered in turn. With J∗ the Jacobian matrix
evaluated at the fixed point, we have

(x∗, y∗) = (0, 0) : J∗ =
(

3 0
0 2

)
.

The eigenvalues of J∗ are λ = 3, 2 so that the fixed point (0, 0) is an unstable node.
Next,

(x∗, y∗) = (0, 2) : J∗ =
(
−1 0
−2 −2

)
.

The eigenvalues of J∗ are λ = −1,−2 so that the fixed point (0, 2) is a stable node.
Next,

(x∗, y∗) = (3, 0) : J∗ =
(
−3 −6

0 −1

)
.

The eigenvalues of J∗ are λ = −3,−1 so that the fixed point (3, 0) is also a stable
node. Finally,

(x∗, y∗) = (1, 1) : J∗ =
(
−1 −2
−1 −1

)
.

The characteristic equation of J∗ is given by (−1−λ)2− 2 = 0, so that λ = −1±
√

2.
Since one eigenvalue is negative and the other positive the fixed point (1, 1) is an
unstable saddle point. From our analysis of the fixed points, one can expect that all
solutions will asymptote to one of the stable fixed points (0, 2) or (3, 0), depending
on the initial conditions.

It is of interest to sketch the phase space diagram for this nonlinear system. The
eigenvectors associated with the unstable saddle point (1, 1) determine the direc-
tions of the flow into and away from this fixed point. The eigenvector associated
with the positive eigenvalue λ1 = −1 +

√
2 can be determined from the first equa-

tion of (J∗ − λ1I)V1 = 0, or
−
√

2v11 − 2v12 = 0,

so that v12 = −(
√

2/2)v11. The eigenvector associated with the negative eigen-
value λ1 = −1−

√
2 satisfies v22 = (

√
2/2)v21. The eigenvectors give the slope

of the lines with origin at the fixed point for incoming (negative eigenvalue) and
outgoing (positive eigenvalue) trajectories. The outgoing trajectories have negative
slope −

√
2/2 and the incoming trajectories have positive slope

√
2/2. A rough

sketch of the phase space diagram can be made by hand (as demonstrated in class).
Here, a computer generated plot obtained from numerical solution of the nonlinear
coupled odes is presented in Fig. 11.1. The curve starting from the origin and at
infinity, and terminating at the unstable saddle point is called the separatrix. This
curve separates the phase space into two regions: initial conditions for which the
solution asymptotes to the fixed point (0, 2), and initial conditions for which the
solution asymptotes to the fixed point (3, 0).

11.2 Bifurcation theory

A bifurcation occurs in a nonlinear differential equation when a small change in
a parameter results in a qualitative change in the long-time solution. Examples of
bifurcations are when fixed points are created or destroyed, or change their stability.
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Figure 11.2: Saddlenode bifurcation. (a) ẋ versus x; (b) bifurcation diagram.

We now consider four classic bifurcations of one-dimensional nonlinear differen-
tial equations: saddle-node bifurcation, transcritical bifurcation, supercritical pitch-
fork bifurcation, and subcritical pitchfork bifurcation. The corresponding differen-
tial equation will be written as

ẋ = fr(x),

where the subscript r represents a parameter that results in a bifurcation when
varied across zero. The simplest differential equations that exhibit these bifurcations
are called the normal forms, and correspond to a local analysis (i.e., Taylor series
expansion) of more general differential equations around the fixed point, together
with a possible rescaling of x.

11.2.1 Saddle-node bifurcation

View tutorial on YouTube

The saddle-node bifurcation results in fixed points being created or destroyed. The
normal form for a saddle-node bifurcation is given by

ẋ = r + x2.

The fixed points are x∗ = ±
√
−r. Clearly, two real fixed points exist when r < 0

and no real fixed points exist when r > 0. The stability of the fixed points when
r < 0 are determined by the derivative of f (x) = r + x2, given by f ′(x) = 2x.
Therefore, the negative fixed point is stable and the positive fixed point is unstable.

Graphically, we can illustrate this bifurcation in two ways. First, in Fig. 11.2(a),
we plot ẋ versus x for the three parameter values corresponding to r < 0, r = 0 and
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Figure 11.3: Transcritical bifurcation. (a) ẋ versus x; (b) bifurcation diagram.

r > 0. The values at which ẋ = 0 correspond to the fixed points, and arrows are
drawn indicating how the solution x(t) evolves (to the right if ẋ > 0 and to the left
if ẋ < 0). The stable fixed point is indicated by a filled circle and the unstable fixed
point by an open circle. Note that when r = 0, solutions converge to the origin from
the left, but diverge from the origin on the right. Second, in Fig. 11.2(b), we plot a
bifurcation diagram illustrating the fixed point x∗ versus the bifurcation parameter
r. The stable fixed point is denoted by a solid line and the unstable fixed point by
a dashed line. Note that the two fixed points collide and annihilate at r = 0, and
there are no fixed points for r > 0.

11.2.2 Transcritical bifurcation

View tutorial on YouTube

A transcritical bifurcation occurs when there is an exchange of stabilities between
two fixed points. The normal form for a transcritical bifurcation is given by

ẋ = rx− x2.

The fixed points are x∗ = 0 and x∗ = r. The derivative of the right-hand-side is
f ′(x) = r − 2x, so that f ′(0) = r and f ′(r) = −r. Therefore, for r < 0, x∗ = 0
is stable and x∗ = r is unstable, while for r > 0, x∗ = r is stable and x∗ = 0 is
unstable. The two fixed points thus exchange stability as r passes through zero.
The transcritical bifurcation is illustrated in Fig. 11.3.
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Figure 11.4: Supercritical pitchfork bifurcation. (a) ẋ versus x; (b) bifurcation diagram.

11.2.3 Supercritical pitchfork bifurcation

View tutorial on YouTube

The pitchfork bifurcations occur in physical models where fixed points appear and
disappear in pairs due to some intrinsic symmetry of the problem. Pitchfork bi-
furcations can come in one of two types. In the supercritical bifurcation, a pair of
stable fixed points are created at the bifurcation (or critical) point and exist after
(super) the bifurcation. In the subcritical bifurcation, a pair of unstable fixed points
are created at the bifurcation point and exist before (sub) the bifurcation.

The normal form for the supercritical pitchfork bifurcation is given by

ẋ = rx− x3.

Note that the linear term results in exponential growth when r > 0 and the non-
linear term stabilizes this growth. The fixed points are x∗ = 0 and x∗ = ±

√
r, the

latter fixed points existing only when r > 0. The derivative of f is f ′(x) = r− 3x2

so that f ′(0) = r and f ′(±
√

r) = −2r. Therefore, the fixed point x∗ = 0 is stable for
r < 0 and unstable for r > 0 while the fixed points x = ±

√
r exist and are stable for

r > 0. Notice that the fixed point x∗ = 0 becomes unstable as r crosses zero and two
new stable fixed points x∗ = ±

√
r are born. The supercritical pitchfork bifurcation

is illustrated in Fig. 11.4.

11.2.4 Subcritical pitchfork bifurcation

View tutorial on YouTube
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r

Figure 11.5: Subcritical pitchfork bifurcation.

In the subcritical case, the cubic term is destabilizing. The normal form (to order
x3) is

ẋ = rx + x3.

The fixed points are x∗ = 0 and x∗ = ±
√
−r, the latter fixed points existing only

when r ≤ 0. The derivative of the right-hand-side is f ′(x) = r+ 3x2 so that f ′(0) = r
and f ′(±

√
−r) = −2r. Therefore, the fixed point x∗ = 0 is stable for r < 0 and

unstable for r > 0 while the fixed points x = ±
√
−r exist and are unstable for

r < 0. There are no stable fixed points when r > 0.
The absence of stable fixed points for r > 0 indicates that the neglect of terms of

higher-order in x than x3 in the normal form may be unwarranted. Keeping to the
intrinsic symmetry of the equations (only odd powers of x) we can add a stabilizing
nonlinear term proportional to x5. The extended normal form (to order x5) is

ẋ = rx + x3 − x5,

and is somewhat more difficult to analyze. The fixed points are solutions of

x(r + x2 − x4) = 0.

The fixed point x∗ = 0 exists for all r, and four additional fixed points can be found
from the solutions of the quadratic equation in x2:

x∗ = ±
√

1
2
(1±

√
1 + 4r).

These fixed points exist only if x∗ is real. Clearly, for the inner square-root to be
real, r ≥ −1/4. Also observe that 1−

√
1 + 4r becomes negative for r > 0. We thus

have three intervals in r to consider, and these regions and their fixed points are

r < −1
4

: x∗ = 0 (one fixed point);

−1
4
< r < 0 : x∗ = 0, x∗ = ±

√
1
2
(1±

√
1 + 4r) (five fixed points);

r > 0 : x∗ = 0, x∗ = ±
√

1
2
(1 +

√
1 + 4r) (three fixed points).

Stability is determined from f ′(x) = r + 3x2 − 5x4. Now, f ′(0) = r so x∗ = 0 is
stable for r < 0 and unstable for r > 0. The calculation for the other four roots can
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be simplified by noting that x∗ satisfies r + x2
∗ − x4

∗ = 0, or x4
∗ = r + x2

∗. Therefore,

f ′(x∗) = r + 3x2
∗ − 5x4

∗

= r + 3x2
∗ − 5(r + x2

∗)

= −4r− 2x2
∗

= −2(2r + x2
∗).

With x2
∗ =

1
2 (1±

√
1 + 4r), we have

f ′(x∗) = −2
(

2r +
1
2
(1±

√
1 + 4r)

)
= −

(
(1 + 4r)±

√
1 + 4r

)
= −
√

1 + 4r
(√

1 + 4r± 1
)

.

Clearly, the plus root is always stable since f ′(x∗) < 0. The minus root exists only
for − 1

4 < r < 0 and is unstable since f ′(x∗) > 0. We summarize the stability of the
various fixed points:

r < −1
4

: x∗ = 0 (stable);

−1
4
< r < 0 : x∗ = 0, (stable)

x∗ = ±
√

1
2
(1 +

√
1 + 4r) (stable);

x∗ = ±
√

1
2
(1−

√
1 + 4r) (unstable);

r > 0 : x∗ = 0 (unstable)

x∗ = ±
√

1
2
(1 +

√
1 + 4r) (stable).

The bifurcation diagram is shown in Fig. 11.5, and consists of a subcritical pitch-
fork bifurcation at r = 0 and two saddle-node bifurcations at r = −1/4. We can
imagine what happens to x as r increases from negative values, supposing there is
some small noise in the system so that x = x(t) will diverge from unstable fixed
points. For r < −1/4, the equilibrium value of x is x∗ = 0. As r increases into
the range −1/4 < r < 0, x will remain at x∗ = 0. However, a catastrophe occurs
as soon as r > 0. The x∗ = 0 fixed point becomes unstable and the solution will
jump up (or down) to the only remaining stable fixed point. Such behavior is called
a jump bifurcation. A similar catastrophe can happen as r decreases from positive
values. In this case, the jump occurs as soon as r < −1/4.

Since the stable equilibrium value of x depends on whether we are increasing or
decreasing r, we say that the system exhibits hysteresis. The existence of a subcriti-
cal pitchfork bifurcation can be very dangerous in engineering applications since a
small change in a problem’s parameters can result in a large change in the equilib-
rium state. Physically, this can correspond to a collapse of a structure, or the failure
of a component.
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11.2.5 Application: a mathematical model of a fishery
View tutorial on YouTube

We illustrate the utility of bifurcation theory by analyzing a simple model of a fish-
ery. We utilize the logistic equation (see §7.4.6) to model a fish population in the
absence of fishing. To model fishing, we assume that the government has estab-
lished fishing quotas so that at most a total of C fish per year may be caught. We
assume that when the fish population is at the carrying capacity of the environ-
ment, fisherman can catch nearly their full quota. When the fish population drops
to lower values, fish may be harder to find and the catch rate may fall below C,
eventually going to zero as the fish population diminishes. Combining the logistic
equation together with a simple model of fishing, we propose the mathematical
model

dN
dt

= rN
(

1− N
K

)
− CN

A + N
, (11.4)

where N is the fish population size, t is time, r is the maximum potential growth
rate of the fish population, K is the carrying capacity of the environment, C is the
maximum rate at which fish can be caught, and A is a constant satisfying A < K
that is used to model the idea that fish become harder to catch when scarce.

We nondimensionalize (11.4) using x = N/K, τ = rt, c = C/rK, α = A/K:

dx
dτ

= x(1− x)− cx
α + x

. (11.5)

Note that 0 ≤ x ≤ 1, c > 0 and 0 < α < 1. We wish to qualitatively describe the
equilibrium solutions of (11.5) and the bifurcations that may occur as the nondi-
mensional catch rate c increases from zero. Practically, a government would like to
issue each year as large a catch quota as possible without adversely affecting the
number of fish that may be caught in subsequent years.

The fixed points of (11.5) are x∗ = 0, valid for all c, and the solutions to x2 −
(1− α)x + (c− α) = 0, or

x∗ =
1
2

[
(1− α)±

√
(1 + α)2 − 4c

]
. (11.6)

The fixed points given by (11.6) are real only if c < 1
4 (1 + α)2. Furthermore, the

minus root is greater than zero only if c > α. We therefore need to consider three
intervals over which the following fixed points exist:

0 ≤ c ≤ α : x∗ = 0, x∗ =
1
2

[
(1− α) +

√
(1 + α)2 − 4c

]
;

α < c <
1
4
(1 + α)2 : x∗ = 0, x∗ =

1
2

[
(1− α)±

√
(1 + α)2 − 4c

]
;

c >
1
4
(1 + α)2 : x∗ = 0.

The stability of the fixed points can be determined with rigor analytically or graph-
ically. Here, we simply apply biological intuition together with knowledge of the
types of one dimensional bifurcations. An intuitive argument is made simpler if we
consider c decreasing from large values. When c is large, that is c > 1

4 (1 + α)2, too
many fish are being caught and our intuition suggests that the fish population goes
extinct. Therefore, in this interval, the single fixed point x∗ = 0 must be stable. As
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Figure 11.6: Fishery bifurcation diagram.

c decreases, a bifurcation occurs at c = 1
4 (1 + α)2 introducing two additional fixed

points at x∗ = (1− α)/2. The type of one dimensional bifurcation in which two
fixed points are created as a square root becomes real is a saddlenode bifurcation,
and one of the fixed points will be stable and the other unstable. Following these
fixed points as c→ 0, we observe that the plus root goes to one, which is the appro-
priate stable fixed point when there is no fishing. We therefore conclude that the
plus root is stable and the minus root is unstable. As c decreases further from this
bifurcation, the minus root collides with the fixed point x∗ = 0 at c = α. This ap-
pears to be a transcritical bifurcation and assuming an exchange of stability occurs,
we must have the fixed point x∗ = 0 becoming unstable for c < α. The resulting
bifurcation diagram is shown in Fig. 11.6.

The purpose of simple mathematical models applied to complex ecological prob-
lems is to offer some insight. Here, we have learned that overfishing (in the model
c > 1

4 (1 + α)2) during one year can potentially result in a sudden collapse of the
fish catch in subsequent years, so that governments need to be particularly cautious
when contemplating increases in fishing quotas.
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