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The decay of a homogeneous turbulence generated by an axisymmetric distribution of random 
impulsive forces acting at the initial instant is studied by means of large-eddy simulations. The 
impulsive forces may be either parallel or perpendicular to the symmetry axis. For impulsive forces, 
which result in a k4 low wave number energy spectrum of the turbulence, it is determined that the 
flow approaches isotropy on all scales of motion at long times, provided the Reynolds number is 
large. However, for the type of impulsive forces originally proposed by Saffman [J. Fluid Mech. 27, 
581 (1967)], in which a k2 low wave number energy spectrum is produced, the turbulence 
approaches isotropy only at the smallest scales, and remains significantly anisotropic at the largest 
and energy-containing scales. Nevertheless, a similarity state of the flow field establishes itself 
asymptotically, in which the kinetic energy per unit mass of the turbulence decays as tC6”. Q 1995 
American Institute of Physics. 

I. INTRODUCTION of the anisotropic initial state toward isotropy was indicated. 

An asymptotic similarity state of decaying isotropic tur- 
bulence at high Reynolds numbers was predicted by 
Kolmogorov’ based on a supposed dynamical invariant of 
the flow field found earlier by Loitsianski.’ However, it was 
later shown by Batchelor and Proudman that the Loitsianski 
integral is, in fact, not invariant. Furthermore, Saffman” pro- 
posed a means of turbulence generation for which this inte- 
gral diverges. For this Saffman llow, a new invariant was 
discovered, and a similarity state of decaying homogeneous 
turbulence at high Reynolds numbers was postulated based 
on this invariant.5 Recent large-eddy simulations of decaying 
isotropic turbulence6 have confirmed the existence of this 
exact similarity state to within a few percent. Here, we ex- 

_ tend these recent large-eddy simulations of isotropic turbu- 
lence to a decaying statistically axisymmetric flow field. Our 
main objective here is to determine if a long-time, high Rey- 
nolds number similarity state of decaying axisymmetric tur- 
bulence occurs. Of course, if the axisymmetric turbulence 
approaches isotropy asymptotically, then the earlier found 
similarity state would necessarily be recovered. 

This earlier work postulated arbitrary initial states of the 
axisymmetric turbulence without considering whether or not 
the large-scale structure of the tlow was invariant. Here, fol- 
lowing closely the work of Saffman4 we assume that our 
initial flow fields are generated by random axisymmetric im- 
pulsive forces at the initial instant, such as may be generated 
by laminar flow passing through a vigorously shaken grid. 
We consider impulsive forces that are either parallel or per- 
pendicular to the symmetry axis. Both the Saffman flow and 
the original Batchelor-Proudman l-low, in which the Loitsi- 
anski integral is finite but not invariant, will also be consid- 
ered. In the Batchelor-Proudman flow, the nonpermanence 
of the large-scale structure of the turbulence is due to non- 
linear transfer from small to large scales, so that a return to 
isotropy of al1 scales of motion may be possible. 

II. GENERATION BY RANDOM AXISYMMETRIC 
IMPULSIVE FORCES 

However, a complete return to isotropy of the turbulence 
is impossible for the Saffman flow, since the large-scale 
structure of the turbulence is preserved for all times. For 
instance, if the initial flow field was anisotropic as a result of 
the method of turbulence generation, then this initial anisot- 
ropy would always be present in the large scales of the flow. 
The small scales of the flow may eventually become isotro- 
pic, but the main scales of interest to us here with regards to 
an asymptotic similarity state are those that contain most of 
the energy of the turbulence; and these scales may be more 
directly affected by the presence of large-scale anisotropy. 

We consider an infinite incompressible fluid initially at 
rest to which is applied random impulsive forces at the initial 
instant. The continuity and Navier-Stokes equations that 
govern the fluid motion are 

v-u=o, (1) 

dU 
Tg+u.vu= - z+ v V2u+fcT(t), 

Previous closure calculations and numerical simulations 
have studied the decay of an initially axisymmetric 
turbulence7-’ in the context of the return-to-isotropy prob- 
lem. The direct numerical simulations performed in the latter 
two works were necessarily limited to low Reynolds num- 
bers, and the computer resources available at those times 
allowed only a resolution of 323. Nevertheless, an approach 

where f is the impulsive force field per unit mass distributed 
throughout the tIuid; we assume that this vector force field is 
a stationary random function of the coordinate x. It’s multi- 
plier 8((t) is the usual Dirac-delta function, which confines 
the impulse to the initial instant. Equation (2) may be inte- 
grated to t= O+, at which time the impulse ceases. Denoting 
the Fourier transform of ui(X,t) by iii&t), and the Fourier 
transform of fi(x) by jijkj, the Fourier components of the 
resulting impulse-generated velocity field at t = 0 ’ are given 
by 

li,(k,O’)=Pij(k)~~(k), c3j 
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where Pij(k)=Sii- kikjfk2, and Sii is the usual Kronecker 
delta. The projection operator Pi](k) appearing on the right- 
hand side of (3) occurs because the pressure forces respond 
instantaneously to the initial impulse, so as to maintain the 
incompressibility of the fluid. The spectral tensor @ij(k,t) of 
the velocity correlation after the fluid is acted on by the 
impulsive forces is thus given by 

~ii(~O’)=Pi,~(k)Pj,(k)J~~,(k), (4) 

where AS,,,,,(k) is the spectral tensor of the force correlation, 
which is assumed to exist. The result (4) was previously 
obtained by Saffman.4 We now specialize to two particular 
impulsive force distributions that exhibit statistical axisym- 
metry and could conceivably be generated in a laboratory 
experiment. 

A. Impulse parallel to the symmetry axis 

The physical situation we envision is that of grid- 
generated turbulence, in which the grid is randomly shaken 
along the direction of the mean fluid velocity. The impulsive 
force of the grid on the Fluid should ideally be a stationary 
random function of time and of the coordinates in the plane 
perpendicular to the mean velocity. Taylor’s hypothesis can 
then be invoked to relate the grid turbulence experiment to 
the decaying homogeneous turbulence considered here. 

We shall, without loss of generality, assume symmetry 
about the x3 axis. The spectral tensor of the force correlation 
corresponding to the above physical experiment can be writ- 
ten as 

vZij(k)= cS,,SjsM(k); (5) 

and the corresponding spectral tensor of the velocity corre- 
lation generated at the initial instant thus becomes 

~ij(~O’)=P,(k)Pj,jk)M(k). (6) 

It will later be convenient to write the spectral tensor in 
terms of two unit vectors, which are perpendicular to k and * 
thus explicitly satisfy the continuity equation.7 These unit 
vectors are defined as 

e%)= ,~~~,, 
kxe(‘)( k) 

ei2)W= Ikxe(l)(k)l z (7) 

where n=(O,O,l) is the unit vector along the symmetry axis. 
Using the relation Pij(k)=e{1’(k)ef’)(k)+e$2)(k)e~)(k), it is 
easy to show that (6) becomes 

. (8) 

B. Impulse perpendicular to the symmetry axis 

Here, the grid-generated turbulence experiment we envi- 
sion is the same as above, except that now the grid is ran- 
domly shaken in the direction perpendicular to the mean 
fluid velocity. To maintain the statistical axisymmetry of the 
force distribution and the resulting flow field, we assume that 
the random impulsive forces acting on the fuid have no pre- 
ferred direction in the plane perpendicular to the symmetry 
axis. The spectral tensor of the force correlation may now be 
written as 

sz.&ij(k)= f( Sii- Si3~~js)M(k), (9) 

where the factor of 4 has been inserted for later convenience. 
The spectral tensor of the velocity correlation at the initial 
instant thus becomes 

(10) 

which, in terms of the e basis, can be written as 

C. Specification of the spectral tensor of the force 
correlation 

The initial spectrum of the homogeneous turbulence 
flow field immediately after generation by the random impul- 
sive forces is now completely specified, provided the form of 
the spectrum M(k) of the force correlation is known. For 
simplicity, we assume that M is a function only of the wave 
number magnitude k. The general form we choose for M(k) 
is 

3 M(k) = G asw$ 2 M3(t)I-2 exp[ -ks(f)‘], (12) 

where ua is the root-mean-square velocity of the fluid imme- 
diately after generation by both types of impulsive force dis- 
tributions, kp is the wave number at which the initial spheri- 
cally integrated energy spectrum of the turbulence is 
maximum, and s = 2 or 4, corresponding either to the Saff- 
man tlow4 or the Batchelor-Proudman flo~,~ further details 
of which will be presented in the next section. The normal- 
ization constant a, is given by 

as= (13) 

Ill. POSSIBLE SIMILARITY STATES 

We consider here whether a similarity state of the decay- 
ing turbulence may develop asymptotically in time, provided 
the Reynolds number of the flow is large. Saffman4 has 
shown that when s = 2 in (12), the form of the spectral ten- 
sor, (8) or (ll), persists for all times near k=O. It is custom- 
ary to define the associated dynamical invariant of the flow 
field in terms of the leading-order spectral coefficient of the 
spherically integrated energy spectrum E(k). By spherically 
integrating either (8) or ill), using (12), the energy spectrum 
at the initial instant can be shown to have the form 

E(k,O+)= i asuikil (t)‘exp[-is(:)‘], (14 

so that when s=2, E(k,t) behaves for all times near k=O as 
E(k,tj--2rk”B,, where 

(15) 

J. R. Chasnov 601 Phys. fluids, Vol. 7, No. 3, March 1995 

Downloaded 06 Nov 2000  to 143.89.14.33.  Redistribution subject to AIP copyright, see http://ojps.aip.org/phf/phfcpyrts.html.



is a dynamical invariant. Normalization constants in (12) 
have been chosen so that (14) agrees with our previous large- 
eddy simulations of decaying isotropic turbulence6 

A similarity state of the turbulence that is now based on 
the invariant B,, leads directly to the decay of the mean- 
square kinetic energy per unit mass as5 

06) 

The power-law exponent --g was verified to within a few 
percent in a decaying isotropic turbulence.6 Saffmar? has 
further speculated that the decay law given by (16) may be 
valid for a decaying turbulence which does not exhibit iso- 
tropic symmetry, and one of the purposes of the present work 
is to test this hypothesis. 

When the initial impulsive force distribution is such that 
s = 4 in (14), the spherically integrated three-dimensional en- 
ergy spectrum of the turbulence follows E(k) - 2 rrk4B, near 
k = 0, where now B, = B2( t) is a function of time.” Lesieur 
and collaborators,rO following the earlier work of 
Kolmogorov’ and Comte-Bellot and Corrsin,r’ have postu- 
lated a similarity state of the flow field based on B,(t), 
which was then confirmed within the framework of two- 
point closure calculations. A numerical calculation of B,(t) 
was also performed by computing an ensemble average of a 
large number (1024) of large-eddy simulations of decaying 
isotropic turbulence.12 From the ,two-point closure calcula- 
tions and large-eddy simulations, the time dependence of 
B2(t) has been shown to be weak relative to the overall 
turbulence decay [the large-eddy simulations of isotropic tur- 
bulence determined approximately B2(t)K t”.25]. The decay 
of the mean-square kinetic energy per unit mass may thus be 
written as 

(+B, 2/7t-10/7 9 (17) 

where the power-law exponent -y is only approximate (a 
more precise exponent of -1.36 results when the time de- 
pendence of B2 is taken into account). 

Of special interest to the present work is the approach of 
the initially axisymmetric turbulence to isotropy. As a simple 
measure of the anisotropy of the energy-containing scales, 
we define the parameter y to be 

(18) 

The value of y is easily computed for the tlow fields gener- 
ated at the initial instant: we determine that AO)=8 or fiO> 
=$ for impulsive forces which are parallel or perpendicular 
to the symmetry axis, respectively. Nonlinear transfer pro- 
cesses may reasonably be expected to bring the turbulence 
closer to statistical isotropy ( y= 1) at later times. 

We have already noted an interesting difference between 
flows with s=2 or 4 in (12), which may affect the eventual 
return to isotropy of the flow fields. When s=2, the perma- 
nence of the large-scale structure of the flow precludes the 
entire flow from ever becoming isotropic. However, the pa- 
rameter y is primarily a measure of the anisotropy of the 
energy-containing scales, SO it is yet unclear whether these 
scales will approach isotropy, or whether the anisotropy 
present in the largest scales will affect the asymptotic state of 

the energy-containing scales. When s=4, the large-scale 
structure of the turbulence is no longer preserved for all 
times, since the low wave number coefficients of the spectral 
tensor are no longer invariant. It is plausible, although per- 
haps not entirely obvious, that nonlinear interactions can, in 
this case, result in a completely isotropic flow field asymp- 
totically in time for sufficiently large Reynolds numbers. 

Large-eddy simuIations presented in the next section will 
shed further light on the existence of an asymptotic similarity 
state in decaying axisymmetric turbulence, and the approach 
(or nonapproach) to isotropy of the flow fields. 

IV. LARGE-EDDY SIMULATION 

The large-eddy simulations presented here were per- 
formed using a pseudospectral code for turbulence in a peri- 
odic box of length 2rr,r3 
grid scale model.‘4*‘5 

and a spectral eddy-viscosity sub- 
More details about the large-eddy 

simulation technique can be found in Chasnov.” Four 1283 
resolution simulations were performed, corresponding to an 
impulse parallel or perpendicular to the symmetry axis, and 
s=2 or 4 in (12). We also choose uo=l and k,=50. The 
relatively large value of k, allows a similarity state to de- 
velop before the integral scales of the flow increase to a size 
comparable to the unphysical periodicity length. 

Particular realizations of the impulsive-force-generated 
velocity fields are constructed as follows. By virtue of the 
continuity equation, the Fourier components of the velocity 
field may be projected onto the two unit vectors perpendicu- 
lar to k given by (7): 

ui(k)=~l(k)e~1’(k)+~2(k)e12’(k). (19) 

When the impulsive forces are parallel to the symmetry axis, 
the spectral tensor at t = O+ is given by (8), with M(k) given 
by (12), and we construct random fields that satisfy (8) by 
setting 

&(k)=O, yn2(k)=[ (I- $~M(k)]1i2 exp i2T0, 

cm 
where 0 is a uniformly distributed random number between 0 
and 1, chosen independently for each k, subject to the com- 
plex conjugate symmetry of the Fourier components of the 
velocity field. Similarly, when the impulsive forces are per- 
pendicular to the symmetry axis, the relevant equations are 
(11) and (12), and the random fields are chosen as 

l/2 

exp i2rrB1, 

+2(k)= ; l”T) 1’2 exp i2&, 
(21) 

with 0, and 6a random numbers as above. The three compo- 
nents of the velocity field may then be determined directly 
from (20) and (21) using (19). The particular realization of 
the velocity field constructed above is a generalization of the 
method proposed by Rogallo13 for isotropic turbulence. 

In Fig. 1, we present the time evolution of the power-law 
exponent (logarithmic derivative) of (u’). Time is normalized 
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FIG. 1. Time evolution of the power-law exponent of (II’). The solid lines 
correspond to the results of the four large-eddy simulations, as explained in 
the text, and the dashed lines correspond to the Saffman and Kolmogorov 
laws discussed in Sec. III. 

in terms of the initial large-eddy turnover time T,, where 
~O=LO/uO, and Lo is the initial spherically averaged integral 
scale of the flow, given by Lo= &$k, for s = 2 or Lo 
-2 Gf3k, for s=4. The curves are labeled by B, or B,, 
the leading-order spectral coefficients of the energy spectrum 
corresponding to s = 2 or 4 in (12), and; the Roman number 
I or II, corresponding to whether the impulsive forces are 
parallel or perpendicular to the symmetry axis, respectively. 
The dashed lines are the exact and approximate results dis- 
cussed in Sec. III. It is immediately apparent that similarity 
states in good agreement with either the Saffman or Kolmog- 
orov laws develop in all of the simulations. 

An evolution of the anisotropy parameter y(t) as defined 
in Eq. (18), for short- and long-time evolutions, is shown in 
Fig. 2. Over short-time evolutions, it is apparent that all four 
of the flow fields rapidly become more isotropic than the 
initial state. However, consideration of the long-time asymp- 

totics of y clearly demonstrates that only when s=4 (solid 
lines) does y approach its isotropic value of unity, whereas 
when s = 2 (dashed lines), y deviates substantially from unity 
at the latest times. In fact, the asymptotic values of y for the 
Saffman flows are computed to be approximately yh1.5 or 
~0.8 for impulsive forces parallel or perpendicular to the 
symmetry axis, respectively. 

The anisotropy of turbulent eddies should depend on 
their length scale. To observe this effect, we apply the pro- 
jection of the velocity field defined in (19) to construct the 
following spherically integrated spectral functions: 

02) 

where * denotes the complex conjugate, and the angular 
brackets used here denote an average over a spherical shell 
(of unit thickness) in wave space. The usual energy spectrum 
is obtained from E(k,t)=i[F,(k,t)+F,(k,t)]. In an isotro- 
pic turbulence, F,(k,t)=F,(k,t), and this will serve as an 
indication of isotropy for scales characterized by a wave 
number magnitude k. In Figs. 3(a) and 3(b) we plot the 
F1(k,t) and F,(k,t) spectra computed from the fow simu- 
lation when the impulsive forces are parallel to the symmetry 
axis and s = 2 in (12). At the initial instant, Fl(k,O+) = I), as 
seen from (20). The spectrum of F,(k,t) develops rapidly in 
time, and a k” low wave number spectral form becomes ap- 
parent at small wave numbers, due to the nonlinear transfer 
of energy from small to large scales. The form of the F,(k,t) 
spectrum as k-+0 is exactly 47rB,k” for all times. 

Using the invariant B,, asymptotic similarity states can 
be constructed for the spectra F,(k,t) and F2(k,t): 

F,(k,t)=B;‘5t-“‘5&(i), 

F,(k,t)= B;t5t-4’5i2(i), i=B;‘5t”5k. (23) 

The last nine spectra of Figs. 3(a) and 3(b) are replotted on 
the same graph in Fig. 4, ysi-:g the s@i?gs given by (23). An 
excellent collapse of the F,(k) and Fz(k) spectra at different 

FIG. 2. Time evolution of the anisotropy factor y, defined in (18). The dashed and solid lines correspond to s = 2 and s = 4 in (12), respectively; y= 1 for an 
isotropic turbulence. Curves above or below ~1 correspond to impulsive forces parallel or perpendicular to the symmetry axis, respectively. (a) Short-time 
evolution to t/Tn=lOO; (b) Long-time evolution to t/r0=5000. 
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FIG. 3. Time evolution of the spectra defined in (22), for s=2 in (12) and 
impulsive forces parallel to the symmetry axis. (a) F,(k,t); (b) F,(k,t). 

. 
k 

HG. 4. Time evolution of the similarity spectra defined in (23) for s=2 in 
(12) and impulsive forces parallel to the symmetry axis. 

k 

FIG. 5. Time evolution of the spectra defined in (22), for s = 2 in (12) and 
impulsive forces perpendicular to the symmetry axis. (a) F,(k,t); (b) 
Fdkt). 

tjmes is observed. Furthermore, tke collapse of $,(k) and 
.F2(k) together at large values of k indicates an approach of 
the small-scale turbulence to isotropy. Clearly, however, the 
flow remains anisotropic at the largest and energy-containing 
scales, as already indicated by the deviation of y from unity 
at large times. Apparently, the local value of y-8 for the 
largest scales of the flow, and ~1 for the smallest scales 
results in a balance in the energy-containing scales of ‘y” 1.5. 

An interesting theoretical result can be obtained from the 
similarity state given in (23) and confirmed by the results of 
Fig. 4. The form of the P,(k, t) spectrum near k= 0 can be 
written as 

ww-w)k4, i-24) 

where, as we have already noted, the k4 spectrum arises from 
the nonlinear transfer from small to large scales. Substitution 
of this low wave number form of the FI(kLf) spectrum into 
(23), and using the independence of F,(k) on t and Bo, 
yields the exact result 

C(tj~B;‘v? (25) 
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FIG. 6. Time evolution of the similarity spectra defined in (23), for s = 2 in 
(12) and impulsive forces perpendicular to the symmetry axis. 

Hence, our simple similarity analysis can determine the 
large-scale structure of the turbulence characterized by the 
spectrum F, (k,t), even though this structure is a conse- 
quence of complicated nonlinear interactions. 

Similar ideas apply when the impulsive forces are per- 
pendicular to the symmetry axis. In Figs. 5, the time evolu- 
tion of the F,(k,t) and F,(k,t) spectra are plotted. The 
forms of the F,(k,t) and F,(k,t) spectra near k=O are 
F,(k,t)-3dlolcZ and F2(k,t)-d?,k2 for all times. The 
resealed spectra are plotted in Fig. 6, and again we find that 
the largest and energy-containing scales of the flow remain 
anisotropic at the latest times, and the smallest scales ap- 
proach isotropy. 

When s= 4 in (12) [and (14)], corresponding to the 
Batchelor-Proudman flow, the turbulence becomes isotropic 
asymptotically and the present results reduce to the decay of 
an isotropic turbulence, whose asymptotic similarity state 
has already been discussed in sufficient detail by Chasnov.” 

V. CONCLUSIONS 

We have thus demonstrated the existence of asymptotic 
similarity states of a decaying axisymmetric turbulence at 
high Reynolds numbers. A complete return to isotropy of the 
turbulence occurs in Batchelor-Proudman flows, but does 
not occur in Saffman flows due to the permanence of the 
anisotropic structure of the large scales in the latter type of 
flows. Simulations were performed based on initial flow 
fields, which were generated by axisymmetric random im- 

pulsive forces acting at the initial instant. Such a turbulence 
generation mechanism has an analogy in active grid turbu- 
lence experiments,‘6’17 and it would be of interest to see if 
the results obtained here may be reproducible in the labora- 
tory. In addition, the simulations presented here may be of 
some use to the turbulence modeling community, for which 
the return-to-isotropy problem is of great importance.‘s 
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