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The time evolution of the Loitsianski integral at high-Reynolds numbers is determined by 
computing an ensemble average of a large number of independent large-eddy simulations of 
decaying isotropic turbulence. It is found that the Loitsianski integral becomes proportional to 
tr at large times and that y ~0.25. The present simulations illustrate the efficient use of 
massively parallel computers for simulating large ensembles of turbulent flows. 

It was originally thought’ that the integral 

1 - 
B2=-zi? ;Tm J 

(ui(x)ui(x+r>)? dr (1) y 

was invariant during the decay of an isotropic turbulence, 
and that this invariance was a consequence of the more 
general law of conservation of angular momentum.’ How- 
ever, it was subsequently demonstrated that B2 is in fact 
not invariant,3’4 and under certain conditions of turbulence 
generation may diverge.s 

When B2 is finite it can be shown to be directly related 
to the form of the energy spectrum E(k) at low wave- 
number magnitudes.6*7 An asymptotic expansion of the 
trace of the spectrum tensor cP,(k,t) in isotropic turbu- 
lence near k=O yields to leading order cP,(k,t) - B2k2 so 
that the spherically integrated energy spectrum near k=O 
follows 

E(k,t) -2rrB2k4. (2) 

Studies of decaying isotropic turbulence using the 
eddy-damped quasinormal Markovian (EDQNM) 
approximation8,9 shows that B2 = B2( t) is a monotonically 
increasing function of time and in the limit of long times 
and high-Reynolds numbers, 

B2( t) =pty. (3) 

The EDQNM results indicate that an asymptotic similarity 
state develops during the turbulence decay which depends 
only on the value of this new “invariant” p, which arises 
from the nonlinear dynamics of the turbulence. Although 
the precise value of the exponent y depends on the choice 
of free parameters within the EDQNM model, it was esti- 
mated to be approximately y=O.16. Further support for 
the existence of this similarity state was obtained from 
recent large-eddy numerical simulations.” 

The coefficient B,(t) deflned by ( 1) can be computed 
directly by means of a numerical simulation. In the usual 
way, we assume that the velocity field is periodic in three 

directions with periodicity length L = 27r. The velocity field 
may then be expanded in a Fourier series as 

u(x)= 2 ii(k) exp (11.x), 
k 

(4) 

where the components of k in the sum span the set of 
integers. A good approximation to homogeneous turbu- 
lence is thus obtained when the integral scale of the turbu- 
lence is much less than rr. Under this condition, the coef- 
ficient Bz given by ( 1) can be computed accurately within 
the finite volume V= (2~-)~ of the periodic domain. Treat- 
ing the average in ( 1) as a volume average, and substitut- 
ing the Fourier expansion (4) into ( 1) , we obtain after one 
integration over the volume 

Bz=-& z u^i(k>u^i( m-k) J exp (&*r)? dr. 
V 

(5) 

The remaining volume integral in (5) may be evaluated 
analytically, and making use of fii( -k) = u^i(k)*, where 
* denotes the complex conjugate, and u^i(O,O,O) =0 we ob- 
tain 

+ 1 iXO,O,k) 1’1. (6) 

There are two main difficulties in the direct use of (6) 
to compute B2 in a numerical simulation. First, the corre- 
lation (Ui(x) ui(x+r)) in (1) decreases in general as 
0( rm5) in homogeneous turbulence4-although it de- 
creases faster as o( rv6) in an isotropic turbulence-so that 
the integral scale of the turbulence must be small enough 
for the integral in ( 1) to converge within the computa- 
tional domain. Second, as the value of r in ( 1) becomes 
comparable to rr, the replacement of the ensemble average 
in ( 1) by a volume average becomes inaccurate because of 
a lack of sample of the largest computed scales. Explicit 
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FIG. 1. Time evolution of the energy spectrum. 

computation has shown that direct use of (6) to compute 
B2 in a single realization of a turbulent flow is highly in- 
accurate. We are thus led to average B2 over an ensemble 
of such flows. This is equivalent to treating the original 
average in ( 1) as a combination of a volume and ensemble 
average. 

In this Letter, we report on a computation of B,(t) 
accomplished by performing 1024 independent simulations 
of resolution 643. The size of this ensemble is sufficient to 
compute B,(t) to a statistical accuracy better than 5% 
over the entire time-evolution considered. The computa- 
tions are performed on an Intel iPSC/860 hypercube ma- 
chine containing 128 processors. The machine had 8 mega- 
bytes RAM per processor which allowed 64 realizations to 
be performed in parallel with each independent realization 
computed on 2 processors. Communication between pro- 
cessors computing different realizations is minimal so that 
the simulation of an ensemble of turbulent flows makes 
very efficient use of parallel computer architectures. Six- 
teen independent runs - each of 800 total time steps - 
were performed. With each time step taking approximately 
10.6 set of CPU time, a total of 38 h of dedicated machine 
use was required. 

Our main goal in computing B,(t) is to determine its 
long time, high-Reynolds number behavior. Under the 
constraints imposed by 643 resolution simulations, this ne- 
cessitates the use of a large-eddy simulation with the initial 
peak of the energy spectrum placed at as large a value of k 
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FIG. 2. Tiie evolution of the Loitsianski integral. 
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FIG. 3. Time evolution of the logarithmic derivative of the Loitsianski 
integral. 

magnitude as possible.” Here, the initial energy spectrum 
is taken to be 

E(k,O) =2n-B,(0)k4 exp [ -2(k/k,)‘], (7) 

with k,=25 and B,(O) =6.934x lo-*, so that (u2) = 1. As 
we have done previously, an eddy-viscosity subgrid scale 
model”~‘2 is used to model the unresolved small-scale tur- 
bulence. Although the inclusion of a stochastic backscatter 
term in the subgrid model13 can directly affect the time 
variation of B2, this effect is negligible at the later times of 
the turbulence evolution of interest to us here. 

The finite resolution of the simulation results in a 
spherical truncation of the Fourier series in (4) at k, , the 
maximum wave number of the simulation, so that the sum 
to OC, in (6) is replaced by a sum to km/ 8. At small times 
when the peak of the energy spectrum is near k,, this 
sharp cutoff results in errors in the computed value of B,. 
We have shown that these errors can be easily removed by 
applying an additional Gaussian filter of the form 
exp[ - ( k/kf)‘] with kf= 12 to a(k) before computing 
(6). At the later evolution times of interest to us here, the 
effect of this additional filter is negligible 

The results obtained from the simulations are shown in 
Figs. l-3. In Fig. 1, we plot the time evolution of the 
ensemble-averaged energy spectrum obtained from the 
large-eddy simulations by summing the contributions of 
I a(k) I ’ into wave-number shells of thickness Ak= 1 in the 
usual way, i.e., 

2%-P 
E(k,t) =- c 

Sk k-(l/Z)<lqj <k+(lD) 
Gi(qtt>U^i( --Q,t)t 

where Sk is the number of Fourier modes in each wave- 
number shell and k=1.5,2.5,...,29.5. A good approxima- 
tion to the homogeneous turbulence energy spectrum is 
this obtained at high wave numbers, while the approxima- 
tion is less accurate at low wave numbers. Nevertheless, 
the increase in time of the low wave number k4 coefficient 
is clearly evident from the plot. 

The coefficient B,(t)/B,(O) versus time, in units of 
the initial large-eddy turnover time r(O), where 
T(O) = 1.38/[k;B2(0)]1’2, is plotted in Fig. 2. The points 
represent the statistical mean of the ensemble while the 
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pluses represent one standard deviation from the mean. 
The standard deviation of the distribution of B2 itself, 
which we have shown from the simulation data to be ap- 
proximately Gaussian, varies somewhat over the course of 
the simulation but at the last time plotted is 80% of the 
mean. With 1024 realizations, the statistical uncertainty of 
the mean at the latest time is 2.5%. 

In Fig. 3, we plot the logarithmic derivative of B,, 
with respect to time in order to determine the validity of 
(3) and to compute a value of y from the simulation. In 
agreement with the EDQNM mode1,8*9 we find that Bz(t) 
follows an approximate power law at large times. From 
Fig. 3, we estimate the power law exponent to be ~~0.25, 
with a statistical uncertainty of 6% at the latest time. The 
straight line drawn on the log-log plot of Fig. 2 represents 
this result. The value of y we obtain from the simulation is 
about 50% larger than that estimated previously.829 

The statistical uncertainty of our asymptotic result for 
y can be reduced further by computing additional realiza- 
tions. However, there may be other errors in our result 
associated with the deviation of “periodic turbulence” 
from homogeneous turbulence at the latest times of evolu- 
tion, as well as the expected slow approach of the turbu- 
lence to asymptotics. lo The evident trend of Fig. 3 is to- 
wards a somewhat smaller asymptotic value for y than we 
have estimated. It would be of interest to repeat the present 
computation at higher resolution with a larger ensemble 
after parallel machines have become substantially more 
powerful. 

We also note here another approach to the current 
computation. Rather than simulate 1024 643 turbulent 
fields, we could have simulated 16 2563 fields with slightly 
more computer time due to the need for interprocessor 
communications. To obtain similar statistics between these 
two simulations, we would have to increase the initial peak 
of the energy spectrum kp by a factor of 4 and truncate the 
volume integration in (5) to l/64 the volume of the entire 
periodic domain. It is unclear which simulation would re- 

sult in a more accurate computation of B2 (t) , but we chose 
the former mainly to illustrate the efficiency of performing 
realization averages of turbulent flows on parallel ma- 
chines. 
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