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A subgrid model is developed and applied to a large-eddy simulation of the Kolmogorov 
inertial subrange. Currently popular subgrid models are derived from models of the turbulent 
energy equation, resulting in a significant loss of information as a consequence of the statistical 
averaging performed in going from the Navier-Stokes equation to the energy equation. The 
subgrid model developed here is based directly on a model of the Navier-Stokes equation. The 
improved subgrid model contains two terms: an ed3y viscosity and a stochastic force. These 
terms are computed from the EDQNM stochastic model representation of the momentum 
equation, and from a fully resolved direct numerical simulation, Use of the subgrid model in a 
forced large-eddy simulation results in an energy s+ctrum that exhibits a clear k -‘I3 power- 
law subrange with an approximate value Ko = 2.1 of the Kolmogorov constant. 

I. INTRODUCTION 

Exact numerical simulation of turbulent flows is pres- 
ently restricted to lower Reynolds numbers than are of inter- 
est to many researchers. Since higher Reynolds number 
flows contain a wider range of interacting scales than can be 
computationally resolved, to simulate these flows it is neces- 
sary to model the effect of the small unresolved scales on the 
large resolved scales, Such a model is called a subgrid model, 
and the resulting numerical simulation is referred to as a 
large-eddy simulation (LES) . ’ The philosophy behind an 
LES is that the large-scale motions of turbulence are the 
scales most directly affected by the source of instability, vary 
from flow to flow, and must be simulated explicitly. On the 
other hand, the small scales of turbulence contain features 
that are more universal in nature, and their effect ori the 
large scales may be represented by comparatively fewer pa- 
rameters. 

In fact, there is considerable experimental evidence that 
many different types of instabilities result in the generation 
of small-scale turbulence that is common to all highly turbu- 
lent Rows. The most prominent characteristic of these uni- 
versal small scales is their inertial subrange energy spectrum, 
This spectrum was first proposed by KolmogorovP2 who 
considered the inertial subrange of wave numbers to be de- 
fined by the following two conditions. First, there is effec- 
tively no energy input into the turbulent velocity fluctu- 
ations directly from the mechanism of instability fall of the 
energy input is to scales having wave numbers smaller than 
those considered), and; second, direct dissipation due to vis- 
cosity is negligible (it effectively acts on scales having wave 
numbers larger than those considered f . In the inertial sub- 
range, the energy which is supplied to the large scales pro- 
gressively cascades to smaller and smaller scales having larg- 
er and larger wave numbers until dissipative effects become 
significant. The inertial subrange of wave numbers is as- 
sumed to be characterized only by t; the flux of turbulent 
kinetic energy across wave number k, and k. Accordingly, 
the three-dimensional energy spectrum E(k) in the inertial 
subrange must have the following universal form: 

E(k) = Ko clr3k -5f3, (1) 

where Ko is the Kolmogorov constant. The integral of E( k) 
over ail wave numbers k yields the total turbulent kinetic 
energy of the fluid, 

Beginning with the tidal channel experiment of Grant et 
a/,3 there is now ample experimental evidence for the exis- 
tence of an inertial subrange in highly turbulent flows. As a 
consequence of the experimental evidence, as well as the ear- 
ly theortical argument advanced by Kolmogorov, one of the 
major goals of turbulence theorists and simulators has been 
the attainment of the inertial subrange spectrum, Eq. ( 1 ), as 
well as a determination of Ko. Some of the published values 
for Ko obtained from experimental data, numerical simula- 
tion data, and theoretical models are shown in Table 1. 

The methods used to simulate an inertial subrange are of 
four types. First, researchers have resolved all relevant scales 
of turbulent motion in a direct numerical simulation 
(DNS). ” Such a simulation may be considered the most 
physical, but is currently limited to moderate Reynolds 
numbers. Second, researchers have artificially forced the 
large scales of the turbulence to raise the Reynolds number 
of the Bow above that attainable in an unforced DNS.9t12*‘4 If 
thearguments of Kolmogorov presented above are correct, a 
forcing concentrated at the lowest wave numbers of the sim- 
ulation should only modify the inertial subrange form of 
E(k) through the value oft. Third, researchers have exploit- 
ed symmetries which may be present in an initial flow field 
by artificially requiting that the turbulent ff ow remain sym- 
metrical for all later times.8*‘0Such simulations substantially 
widen the range of scale sizes that can be computationally 
resolved, and hence makes possible the simulation of larger 
Reynolds numbers. And, fourt!Z, researchers have used a 
subgrid mode1 to represent the effect of unresolved dissipa- 
tive scales on resolved inertial range scales. This method 
may be combined with an artificial force,26 or applied to 
freely decaying turbulence, 13V27*28 In principle, the infinite 
Reynolds number limit may be approached by this proce- 
dure, 
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TABLE I. Some of the published values for Ko. 

Theoretical 

Kraichnan’ ALHDI 
Herring and Kraichnans ALHDI 

SBALHDI 
Qian LFP 
Yakhot and Orszag’ RNG 

Computational 

Brachet et al.* Symmetric DNS 
KC& Forced DNS 
Kida and M~rakami’~ Symmetric DNS 
Yamamoto and Hosokawa” Unforced DNS 
Panda et al.lz Forced DNS 
L&cur and Rogallo” Unforced LES 
Kerr I4 Forced DNS 

Experimental 

Grant et al.’ Tidal channel 
M. M. Gibson’s Round jet 
C. H. Gibson and Schwartz’6 Grid 
Pond et al.” Atmosphere 
C. H. Gibson et al.” Atmosphere 
Paquin and Pond” Atmosphere 
Shieh et aLm Atmosphere 
Wyngaard and Co@ Atmosphere 
Boston and Burlingz2 Atmosphere 
Schedvin et al.” Grid 
Williams and Paulson*’ Atmosphere 
Champagne et al.” Atmosphere 

1.77 
1.78 

-2.0 
1.2 
1.617 

4 
2.45 
1.6-1.9 
2.1 
1.6 
1.5-1.8 
2 

1.44*0.06 
1.57, 1.62 
1.34 j, 0.06 
1.50 f 0.12 
2.1 
1.74 * 0.31 
2.0 
1.59 f 0.12 
1.56 f0.06 
1.47 f 0.18 
1.65 j-- 0.03 
1.53 f 0.06 

‘Translated from one-dimensional spectra. 

The uncertainty in the value for Ko obtained from nu- 
merical simulations (see Table I) is a consequence of either 
an unreliable, or a too narrow inertial subrange. In this pa- 
per, we develop a subgrid model which, in combination with 
an artificial force, is used to simulate a clear k -5’3 energy 
spectrum. 

Currently popular subgrid models for homogeneous 
turbulence use a wave-number-dependent eddy viscosity to 
represent the effect of the subgrid scales on the numerically 
resolved scales.27*29 The expression for the eddy viscosity is 
derived from an energy equation; however, in a numerical 
simulation, the eddy viscosity is used to solve a momentum 
equation. In contrast, it is possible to develop a subgrid mod- 
el directly from a momentum equation.30*3’ We will show 
that the subgrid model thus developed provides two concep- 
tual improvements over the standard eddy viscosity model. 
First, the energy transfer from the subgrid scales to the large 
scales is modeled as a random force acting on the large 
scales, whereas the drain of energy from the large scales to 
the subgrid scales is modeled as an eddy viscosity. In the 
eddy viscosity model, these two effects are not separated; 
instead, they are combined to construct a net eddy viscosity. 
Second, a new effect is modeled: the random sweeping of 
small scales by large scales. Since such a physical effect does 
not cause a net energy transfer, and thus is not present in an 
energy equation, it is omitted in the subgrid eddy viscosity. 

In Sec. II we review the eddy viscosity model. We then 
rectify some of the deficiencies of this model by developing a 
subgrid model directly from the momentum equation repre- 
sentation of the eddy-damped quasinormal Markovian 

(EDQNM) model. In Sec. III, we show how the terms of 
this subgrid model may also be computed independently of 
the EDQNM model, using the results of a DNS. Such a com- 
putation is necessary to determine that the proposed model 
is consistent with the Navier-Stokes equation. Finally, in 
Sec. IV, the subgrid model, together with an artificial force, 
is applied to an LES of the inertial subrange. 

II. ANALYTICAL DEVELOPMENT OF THE SUBGRID 
MODEL 
A. Subgrid eddy viscosity 

In a procedure developed by Kraichnan,29 an effective 
eddy (turbulent) viscosity Y, (k 1 k, ,t) acting at time t on 
scales of wave number k due to the effect of scales with wave 
numbers greater than k,, is defined from the turbulence 
energy equation. In an LES in which not all of the relevant 
scales of motion are resolved, k, is taken to be the wave 
number of the smallest scale that is resolved. The eddy vis- 
cosity Y, (k ] k, ,t) is defined as a part of the energy transfer 
T(k,t) as follows. One can write the energy equation for 
isotropic turbulence as 

($+2vk2)E(k,t)=T(k,r), (2) 

where E(k,t) is the kinetic energy spectrum, Y is the kine- 
matic viscosity of the fluid, and T( k,t) is the energy transfer. 
The energy transfer may be written as 

T(k,t) = 
SI 

dp dq St k, pm), (3) 
A 

where the double integral is evaluated on the domain A of the 
p-q plane such that k, p, and q form a triangle (i.e., 
k = P + q),S(kp,q,f) = W&q, p,t),andwhereS(k,p,q,t) 
contains products of three velocity Fourier components. 
Kraichnan then defined an effective subgrid eddy viscosity 
acting on scales with wave number k by 

vt(k Ik,,t) = - T(k jk,,t)/2k*E(k,t), (4) 
where T( k 1 k, ,t) is the part of the total energy transfer cal- 
culated by restricting the double integral in Eq. (3) to wave 
numbersp and q such thatp or q > k, . With this definition of 
Ye (k 1 k, ,t), the energy equation, Eq. (2)) may be rewritten 
for wave numbers k<k, as 

~+2[v+v,(kIkm,t)]k2E(k,t) = T,(k,t), 

(5) 
where T, (k,t) refers to the part of the integral in Eq. (3) 
where p and q are in the resolved scales, i.e., p, q < k, . The 
usefulness of Eq. (5) is that TR (k,t) may be calculated ex- 
plicitly using the numerically resolved scales. 

Two methods have been successfully used to compute 
Y, (k 1 k, ,t) . First, one may use analytical models of turbu- 
lence.27v29 For homogeneous turbulence the preferred mod- 
els are of the two-point closure variety, since these models 
contain sufficient information about the energy transfer 
among different scales. Second, Y, (k I k, ,t) has been com- 
puted using a DNS.32 In this method, a fully resolved nu- 
merical simulation is performed for scales k such that 
k,<k<k, , where k. is the minimum, and k, is the maxi- 
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mum wave number of the simulation, An artificial cut is then 
made at a wave number k, <km + One further labels the 
scales k such that k, .C k<k, as fictitious “subgrid” scales, 
and the scales k such that k,<k<k, as “resolved” scales, and 
then proceeds to calculate the subgrid energy transfer and 
vt f k Ik,,t). However, this method is of limited use for the 
calculation of a subgrid eddy viscosity associated with a high 
Reynolds number flow, since a fully resolved numerical sim- 
ulation can be performed only for low Reynolds numbers. 
To calculate a subgrid eddy viscosity for high Reynolds 
number flows, one would have to perform a numerical simu- 
lation using an existing subgrid model, and then measure a 
new subgrid eddy viscosity using the results of the LES.13 

However, it is important to note that in a numerical 
simulation one does not solve the turbulence energy equa- 
tion; rather, one solves the Navier-Stokes equation directly. 
For incompressible turbulence the Fourier transformed Na- 
vier-Stokes equation may be written, in component form, as 
dui (k,t) 

at 
+ vk 2ui (k,t) 

= - iP,(k)k, 2 qP,fb,, (426, (6) 
p+q=k 

where Pii (k) = 6, - kikj/k ‘. Since in an LES the terms in 
the summation on the right-hand side of Eq. (6) with p or 
q > k, are not resolved, one actually solves 
dui (kt) 

at + [“+ vt(k Ik,,f)jk2ui(k,t) 

= - iPv(k)k,, 2 uj (PJIU,z (q&j (7) 
p+q=k 

~mdq<.k, 
using the expression for the eddy viscosity defined by Eq. 
(4). 

The eddy viscosity model has met with some success. 
Because of its definition from the turbulence energy equa- 
tion, the use of an eddy viscosity model results in the correct 
net energy transfer between the numerically resolved scales 
and the unresolved subgrid scales. Furthermore, as noted by 
Kraichnan,29 in an inertial subrange and for k( k,, 
Y, (k Ik, ,t) is positive and independent of k, apusteriuri jus- 
tifying the modeling of the subgrid scales as an enhancement 
of the kinematic viscosity. 

However, there are theoretical difficulties associated 
with the eddy viscosity subgrid model defined by Eq. (4). 
Although the eddy viscosity model is plausible for k<k, 
(where there exists a clear separation in sizes between the 
resolved scales and the subgrid scales), when k-t k, this 
scale separation does not exist and an eddy viscosity model is 
no longer physically justified, In fact, Y, (k 1 k, ,t) becomes k 
dependent and rises to a cusp as k-k, .29 

In addition, the eddy viscosity subgrid term 
2~, (k I k, ,t) k *E( k,t) in Eq. (5) models the net statistically 
averaged energy transfer from the resolved scales to the sub- 
grid scales. In a given flow realization, this net energy trans- 
fer is expected to fluctuate about its statistical mean. Fur- 
thermore, the net energy transfer is the result of a two-way 
exchange of energy across k, . Although the transfer of ener- 
gy from the large scales to the small scales across k, is by far 

the largest in three-dimensional turbulence (assuming that 
k, is in the inertial subrange), there is, nevertheless, a sub- 
stantial backscatter of energy from the small scales to the 
large scale across k, . This backscatter of energy has been 
referred to as an eddy noise,33 or as a stochastic back- 
scatter,34 and Leslie and Quarini35 have suggested that it 
should be modeled distinctly from the forward cascade, 
since the physics in these two types of energy transfers is 
quite different. Furthermore, this backscatter of energy, 
after a sufficiently long time, will render the resolved large- 
scale velocity field unpredictable in anything but a statistical 
sense. This unpredictable natureof the large scales in an LES 
is, however, not respected by the eddy viscosity subgrid 
model, which for a given initial large-scale velocity field, will 
always yield the same large-scale velocity field at a later 
time, 

The difficulties associated with an eddy viscosity sub- 
grid model are predominantly a consequence of a simple 
fact: an energy equation is used to construct an eddy viscos- 
ity term which is then used in the numerical solution of a 
momentum equation. j6 The information lost in the statisti- 
cal averaging performed to obtain an energy equation is irre- 
coverable. What one actually needs is a subgrid model that is 
based directly on a momentum equation. Fortunately, mod- 
els of the momentum equation do exist in the two-point clo- 
sure theories. These are the so-called stochastic model equa- 
tions,37 from which one can derive two-point closure energy 
equations. The stochastic model equations are constructed 
by neglecting the phase correlations in the nonlinear term of 
the corresponding momentum equation, while simulta- 
neously requiring the resulting equation to conserve energy 
and satisfy other fundamental consistency requirements. 

In the following section, we will show how one can use 
the stochastic equation for the EDQNM model to formulate 
a subgrid model which corrects some of the deficiencies of 
the eddy viscosity model. 

B. Subgrid eddy damping and random force 
1. EDaN.& s~ooc~asilc model equ&ion 

Use of an analytical closure approximation, such as the 
EDQNM or one of its related closures, typically results in an 
energy equation for turbulence, i.e., the closure approxima- 
tion yields an analytical form for the energy transfer T( k,t) 
of Eq. (2). However, there is another perspective on these 
closures.3u~37738 It has been noted that themodel energy equa- 
tions derived using these approximations are the eXacf solu- 
tions of particular models of the momentum equation. That 
is, the model energy equations are exact solutions of equa- 
tions which are direct models of the Navier-Stokes equation 
itself In particular, the EDQNM representation of the Na- 
vier-Stokes equation may be a more suitable starting point in . 
the development of a subgrid model than the EDQNM ener- 
gy equation. Use of the stochastic model equations for the 
development of a subgrid model was originally suggested by 
Kraichnan” and has been pursued by Bertoglio3’ for homo- 
geneous shear turbulence. 

The EDQNM stochastic model equation may be written 
as3’ 
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au, oh 
+ tv + vW)lk2u, (W =f;:W), (8) 

at 
where fI (k,t) is assumed to be uncorrelated in time. The 
EDQNM eddy-damping term 7 (k,t) and the spectrum of 
the stochastic force F( k,t), defined by 

F(k,t) = 4rk2 
I 

of (AW)fi(k,~‘)*)d~‘, (9) 

where ( * * * ) denotes an average over spherical shells in k 
space, can be related to the energy spectrum E( k,t) as39 

v(k,t) = + dp dq 8, (0 f W,p,q)Nq,fA 

(10) 
and 

F(k,t) = 
II 

dp dq 6+,rJt) k3 akp,qM pAB~q,t~, 
A P4 

(11) 
where the geometrical coefficients, a(k, p,q) and b(k,p,q) 
may be written as 

dk,p,q) =@-2y2~-xyz) (12) 
and 

b(kp,q) = (p/k) (xv + 21, (13) 
and where x, y, and z are the cosines of the interior angles of 
the triangle formed by k, p, and q facing, respectively, the 
sides k, p, and q. For fully developed flows, the function 
19~~ (t) becomes 

e,(t) = [pkW(t) +v(k2+p2+q2)]-', (14) 
where,u,, is an “eddy-damping rate” of the third-order mo- 
ments associated with the wave vectors k, p, and q. In the 
EDQNM model, ,ukw is assumed to be of the form 

pkm =pk +-pp +/$* (15) 

In the inertial subrange, all acceptable expressions for ,u~ 
reduce to the simple form first proposed by Orszag,40 

/,ik (t) = 0.19 Ko3’2[k3E(k,t)]“2. (16) 

The stochastic equation for the EDQNM model, Eq. 
(8), may be used to construct a subgrid model for the Na- 
vier-Stokes equation. One can define an effective eddy- 
damping term v( k (k, ,t) and a stochastic force A (kl k, ,t) 
with spectrum F( k 1 k, ,t) by restricting the double integrals 
in Eqs. ( 10) and ( 11) to wave numbers k,p, and q such that 
k<k, and p or q>k,. The functions v(k jk,,t) and 
f;(klk,,,,t) ma y th en be used as a subgrid model in an LES; 
the eddy-damping term augments the kinematic viscosity, 
whereasx (kl k, ,t) appears as a random force in the Navier- 
Stokes equation. It should be noted thatA (kl k, ,t) is chosen 
to be a particular realization of F( k jk,,, ,t), and to make 
f; (klk, ,t) uncorrelated in time we choose realizations of 
F(k Ik,,t) such that & (klk,,t ‘) is uncorrelated with 
f; (kl k, ,t) when t ’ # r. Furthermore, for the random force to 
supply a finite amount of energy to the turbulence, we must 
also requireA (kl k, ,t) a I/( At) “2, where At is the time step 
in the simulation. Note that the arbitrary random phases in 
J; (kl k, ,t) will result in a nondeterministic evolution of the 

resolved scales, since every simulation performed will use 
different phases, although the spectrum of J; (kl k, ,t) may 
be unchanged. 

2. Nonlocal expansions 

It is possible to determine the analytical form for 
v (k 1 k, ,t) and F( k I k, ,t) in the limiting case k < k, . In this 
limit, the integral over q in Eqs. ( 10) and ( 11) may be evalu- 
ated. To lowest order in k /k, , 

v(k Ikr,t) = -+ s 
m 

dp ekpp (t) 
aE( p,t) 

=( p,t> + p ~ 
km ap > 

and 
(17) 

F(kJk,,r) =+k4 - EC i-N* 
dp ekpp (f> ~. (18) 

,n P2 
Equation ( 17) is the well-known form of the turbulent vis- 
cosity for k( k,.39 Since ekPP (t) ~0,~~ (t) when k( k,, 
v( k 1 k, ,t) becomes independent of k for k( k, , hence ef- 
fectively renormalizing the kinematic viscosity. Equation 
( 18) represents the energy transfer from the subgrid scales 
to the resolved scales. This backscatter of energy is the origin 
of the characteristic k4 spectrum observed at small wave 
numbers in a numerical simulation of freely decaying turbu- 
lence when the initial energy spectrum is chosen to be steeper 
than k 4 at small wave numbers.39 

It is current practice in large-eddy simulations of homo- 
geneous turbulencei to write the effective eddy viscosity as 
in Eq. (4), i.e., 

v,(k Ik,,t) = g(k Ik,,t) - F(k Ik,,t)/2k2E(k,t). 

(19) 

From Eqs. (17) and (18), one can show that for k in the 
inertial subrange and k ( k, , the ratio of the second to the 
first term on the right-hand side of Eq. (19) is equal to 
fs” (k/k, 1 ‘1’3. In this limit, it may be reasonable to neglect 
the contribution ofA (klk,,r) to the subgrid model. How- 
ever, for k-k,,,, q(k Ik,,t) and F(k Ik,,t)/[2k2E(k,t)] 
are of the same order of magnitude. In fact, as noted by 
Kraichnan,29 for an inertial subrange extending to wave 
number zero, both contributions to Y, (k 1 k, ,t) diverge as 
k-k, , but the net result is finite due to an exact cancellation 
of infinities. Hence the use of an qFmode1 at wave numbers 
near k, may yield very different results than the use of a Y, 
model. 

The interactions which contribute the most to the sub- 
grid eddy-damping term and to the stochastic force near 
k = k, arise from interactions in which the length of one of 
the legs p or q of the triangle formed by k, p, and q is much 
less than k. The clearest way to examine these nonlocal inter- 
actions is to consider the effect of scales with wave numbers 
less than some minimum wave number k. on scales with 
wave numbers k, where k) k,. The scales with wave number 
less than k, may be considered “supergrid” scales. We define 
the corresponding supergrid eddy-damping term 
$“P( k I k,,t) and supergrid spectrum of the stochastic force 
Fsup( k Ik,,t) by restricting the double integrals in Eqs. ( 10) 
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and ( 11) to wave numbers k, p, and q such that k) kO andp 
orqck,. 

An analytical form for @“P(k Ik,,t) and Fs”p( k Ik,,t) 
may be determined in the limiting case kg kP Since eitherp 
or q must beless than k,, the condition k) k, implies that the 
other must be of order k. This interaction contains the same 
physics as the subgrid interactions in which k-k, and ei- 
therp or q is much less than k. In the limit kg k,, the integral 
over p in Eqs. ( 10) and ( 11) can be evaluated.42 To lowest 
order in kdk 

Ts”P( k \k,,t) = +- 
s 

4, 
dq &,q ( t> E(q,t) (20) 

0 

and 

FSup(k Iko,t) = f k2E(k,t) fr’dq ekkq (t)E(q,t), 
0 

(21) 

Equations (20) and (2 1) separately affect the time evo- 
lution of the resolved scales. However, the net effect on the 
energy of the resolved scales is determined by calculating the 
supergrid energy transfer. It can be easily seen that the terms 
of Eqs. (20) and (2 1) cancel exactly in computing the trans- 
fer. This implies that although these terms affect the evolu- 
tion of the resolved scales in the numerical simulation, they 
do not directly change the energy of these scales. When there 
exists an inertial subrange extending to wave number zero, 

“P and Fs”p diverge as q --+ 0. This divergence is a conse- 
zuence of the same physics as the divergence of g( k 1 k, ,t) 
and F( k jk, ,t) as k -+ k, . These divergences are the result of 
the random uniform convection of the small scales by the 
large scales.42 The next higher-order terms which enter in 
Eqs. (20) and (2 1) contribute to the energy equation and 
result in a net flux of energy from the supergrid scales to the 
resolved scales when E( k,t) cc k -5’3+ 

3. Numerical solution of the EDQNM mode! 
To calculate the terms of the q-Fsubgrid model for all k 

between the minimum wave number k, and the maximum 
wave number k, of the simulation, the EDQNM equations 
must be solved numerically for a( k 1 k, ,i) and F( k l k, ,t). 
Since weare interested in using the subgrid model to perform 
high Reynolds number numerical simulations, we will as- 
sume that the energy spectrum E( k,t) is well represented by 
its inertial subrange form, Eq. ( I), for k between k. and k, . 
We further assume that the inertial form for E( k,t) extends 
appreciably into the subgrid scales, so that it becomes rea- 
sonable to neglect the kinematic viscosity in Eq. ( 14) and to 
suppose that the energy is dissipated at infinite wave num- 
ber. For wave numbers less than k. we assume, somewhat 
artificially, that E( k,t) = 0. In solving the EDQNM model, 
we use Eq. ( 16) for the phenomenological time scale with a 
value of the Kolmogorov constant taken to be 1.8. 

To evaluate the integrals in Eqs. (10) and ( 111, they 
may be written in thep-q symmetric form 

7j(k fkn) =+s,: dP(pp_kdqQkpq (5 (v+zl~E(q~ 

F(klk,)=~==dp~ dqB,,$ 
km P--k 

x (I - 2.w - xyz)E(q)E( PI, (23) 
and may be evaluated by Gaussian quadrature. Anticipating 
high Reynolds number numerical simulations, we solve the 
equations for k. = 1 and k, = 30.17, as appropriate for a 
643 numerical simulation, 43 The integrals overp in Eqs. (22) 
and (23) are computed numerically fork, (p(3k,, where- 
as the contributions to the integrals from p> 3k, are ob- 
tained using the asymptotic analytical results presented in 
Eqs. ( 17) and ( 18 ). As in Chollet and Lesieur,” we have 
rendered T( k /k, ,t) and F( k 1 k, ,t) dimensionless using the 
maximum wave number k, and the value of the energy spec- 
trum at k, 2 i.e,, we define the dimensionless time-indepen- 
dent eddy-damping term qf (k/k, ) and the spectrum of 
the stochastic force F -)- (k /k, ) by 

T(k jk,,t) = r71(k/k,)E(k,,t)‘/2k,“2 (24) 
and 

F(k(k,,t) =F+(k/k,)[k,E(k,,t)]3’2. (25) 
It should be noted that qf and Ff depend on the Kolmo- 
gorov constant as Ko-~‘~ (which is a free parameter in the 
EDQNM model), so that if the numerical simulation yields 
a Kolmogorov constant significantly different than the cho- 
sen value of 1.8, then the numerical values of T+ and F+ 
need to be resealed to coincide with the Kolmogorov con- 
stant emerging from the simulation. 

The net eddy viscosity defined by Kraichnanz9 and used 
by Chollet and Lesieur2’ is given by 

F+(k/k,) 

W/k, )*[E(k,tMWW] 
(26) 

In Fig. 1 we plot the three terms in Eq. (26) appropriate 
for use in a 64” simulation. The asymptotic (kgk,,, ) eddy- 
damping term and the spectrum of the stochastic force in the 
EDQNM model may be calculated analytically from the 
nonlocal expansions, Eqs. ( 17) and ( 18). They are deter- 
mined to be rf+(k/k,,,) ==O&%KO-~‘~ and F’(k/k,) 
= 0.49 Ko-3’2(k/k,).4 

4 summ;iry 
In the preceding subsections, a modification of the eddy 

viscosity subgrid model has been proposed. Having based 
the subgrid model on the EDQNM stochastic equation, the 
subgrid eddy viscosity v,(k [k,,t) has been split into two 
terms-an eddy-damping term 17 (k 1 k, ,r) and a stochastic 
forcefj (klk, ,t). By computing nonlocal expansions of the 
EDQNM equations when k4k,, clear interpretations for 
q(k Ik,,t) andA(kjk,,,,r) have been obtained: the eddy- 
damping term renormalizes the kinematic viscosity of the 
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model is a good physical model for the omitted subgrid scale 
interactions. 

-5’ ’ ’ ’ ’ ,’ ’ ’ I I I Illll’ 
3x10-2 10-l 

k/k, 
I 

FIG. 1. Subgrid eddy viscosity, eddy-damping term, and spectrum of the 
stochastic force compute-d from the EDQNM model. 

fluid, whereas the stochastic force models the backscatter of 
energy from the subgrid scales to the resolved scales. 

However, although our discussion has focused on the 
EDQNM model, it is important to note that the form for the 
7-F subgrid model, 

q;(klk,,t) =Jl(klk,,t) - v(k Ik,,t)k2uj(k,t), (27) 
is independent of any particular analytical closure approxi- 
mation. In Eq. (27), q, (klk, ,t) is the subgrid nonlinear 
term in the Navier-Stokes equation that must be modeled in 
an LES, i.e., 

q, (klk,z,O = - iP,(k)k, c uj (PJ)un (at), 
p+q=k 
porq>k,, 

(28) 
andf; (klk,,t) is assumed to be uncorrelated in time. One 
could use the EDQNM model, as we have in the last few 
subsections, to compute v( k Ik,,t) and F(k Ik,,t). How- 
ever, in Sec. III, we shall also show that v( k I k,,t) and 
F( k ] k, ,t) may be computed independently of the EDQNM 
model by using the flow field calculated in a low Reynolds 
number DNS. Such a computation may then be used to cor- 
roborate the EDQNM model results. If these results are con- 
sistent with the DNS at low Reynolds numbers, then the 
subgrid model terms calculated using the EDQNM model 
may be used to perform an LES at Reynolds numbers unat- 
tainable in a DNS. 

However, it is important to recognize that the computa- 
tion of q( k ] k,,t) and F( k I k,,t) in the numerical simula- 
tion by no means implies that the 7-F subgrid model is a 
good physical model (in the same way that the calculation of 
vl in a DNS and an LES did not imply that Y, was a good 
physical model). Rather, it only indicates what v and Fmust 
be to be consistent with the Navier-Stokes equation. Other 
means, such as a comparison of LES results with experimen- 
tal data, are necessary to determine whether the v-Fsubgrid 

III. COMPUTATION FROM A DIRECT NUMERICAL 
SIMULATION 

In this section we will use the results of a DNS to com- 
pute the eddy-damping term and the stochastic force in the 
v-F subgrid model, Eq. (27). Such a computation will be 
performed independent of any particular analytical closure 
theory. To compute the subgrid terms of the V-F model we 
divide the Fourier space into “resolved” and “subgrid” 
scales-the Fourier components at wave numbers less than 
the wave number cut k, being the “resolved” scales, and the 
Fourier components at wave numbers greater than k, being 
the subgrid scales. Both the resolved and the subgrid scales 
will be fully resolved in the DNS. 

A. Required statistics 

Tocalculateboth~(kjk,,t) andF(k]k,,t),weneedto 
compute statistics over the subgrid scales in the numerical 
simulation. The first statistic we compute is the subgrid scale 
energy transfer. This statistic was previously computed to 
calculate a subgrid scale eddy viscosity.32 The subgrid scale 
energy transfer to wave numbers greater than k, may be 
determined in a numerical simulation by 

T(k Ik,>t) = 4rk2(u, (kt)qi(k Ikc,f)*), (29) 
using the masking method. 32 Here, qz (kl k,,t) is defined to 
be the subgrid nonlinear term in the Navier-Stokes equation 
[see Eq. (28)) where now k, is replaced by k, 1. The mask- 
ing method consists of computing the complete Navier- 
Stokes nonlinear term qi (k,t) using fast Fourier transforms 
for the full velocity field, and for a velocity field which is 
masked for k> k,, i.e., a velocity field in which all of the 
Fourier components with wave numbers greater than k, 
have been set to zero. The latter nonlinear term is denoted by 
q: (k,t), where the superscript indicates that if one were to 
compute qic (k,t) by performing the required convolution 
sums both p and q would have lengths less than k,. The 
subgrid scale energy transfer is then equal to the energy 
transfer calculated using qi (k,t) minus the transfer calculat- 
ed using q; (k,t), i.e., 

T(k ILO = T(U) - T < (k ILO, 
where 

(30) 

T(k,t) = 4?rk2(ui(k,t)*qi(k,t)) (31) 
is the full energy transfer, and 

T’(k,t) = 4?rk2(uj(k,t)*q:(k,t)) (32) 
is the masked energy transfer. 

Once T( k Ik,,t) and E(k,t) have been computed, we 
can write an equation for the unknown subgrid model terms 
q(k Ik,,Q and F(k ILO: 

T(k Ikd) = - 2q(k Ik,,t)k2E(k,t) + F(k Ik,,t). 
(33) 

To separate the effects of the eddy-damping term r] ( k I k, ,t) 
and the spectrum of the stochastic force F( k I k, ,t) we need 
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to compute an additional subgrid scale statistic, A reasona- 
ble choice which accomplishes this separation is the statistic 
we will call S( k 1 k, ,t) , defined by 

S(k Ik,,r) = 
J 

tdt’ 4nk2( qi(klk,,t) 4i(klk,,t’)*), 
0 

(34) 
where qi (kl k, ,t) is again the subgrid nonlinear term. In con- 
trast with the eddy viscosity subgtid model, it is evident that 
the q-subgrid model will contain information about the time 
correlations in the turbulent field. 

The function S( k 1 k,,t) may also be computed in a nu- 
merical simulation by use of the masking method. To com- 
pute this function, one must calculate 

S(k[k,,t) = 0’dt’4rik2(f qi(k,t) -q:(k,t)] 
J 

X [ qi(kt’) -Q:(k,f’)]*)* (35) 
Again, qi (k,t) and q; (k,t) are calculated by fast Fourier 
transforms. 

Using Eq. (27) and the definition of the subgrid scale 
statistic S(k lk,,t) we can derive another equation for 
T(k Ik,,t) and Rk Ik,,G: f 

S(k Ik,,t) = F(k lk,,t) + 2k4 J dt’ q(k Ik,,t) 
0 

xdk Ik,,t’fE(k,t,t’f, (36) 
where we define the two-time energy spectrum E(k,t,t ‘) by 

E(k,t,t’) = 2?rk2(Ui(k,t)Ui(k,t’)*). (37) 
As a consequence of the time integration in Eq. (36)) to solve 
for y(k Ik,,t) and F(k Ik,,t) using Eqs. (33) and (36), we 
need S(k Ik,,t’), T(k /k,,t’), and E(k,t’,t “f for all times 
O<t ‘, t ‘<f. Assuming that the simulation is performed for 
times t = 0, At, 2At,..., NAt, Eqs. (33) and (36) yields 2N 
equations with 2iV unknowns, which may then be solved for 
T(k Ik,,r) and F(k (k,,t) at times t = 0, At, 2At ,,.., NAt, 

It is instructive to solve Eqs. (33) and (36) analytically 
at the time At, assuming that the initial simulation velocity 
field has random phases. It can be shown4z that the solution 
yields the EDQNM model results exactly provided that the 
EDQNM model reduces to the quasinormal approximation 
for small times, i.e., ~9~~ (At) = A$, as it should. 

8. DNS results 
To compute the terms of the T-Fsubgrid model from a 

numerical simulation, we perform a 643 DNS of freely de- 
caying turbulence using the Rogallo code43 for isotropic tur- 
bulence. Numerical simulations of freely decaying turbu- 
lence are characterized by the initial energy spectrum of a 
Gaussian velocity field and the value of the kinematic viscos- 
ity Y of the fluid. We take as our initial energy spectrum 

Xev[ -2($)2], (38) 

normalized so that u. is the initial root-mean-square turbu- 

lent velocity. The use of a steep initial spectrum at small 
wave numbers permits the development of a k 4 power law as 
ii- 0, as a result of the backscatter of energy from scales at 
larger wave numbers, In our simulation, we take 94, = 1, kp 
= 5, and Y = 0.01. The simulation is perFormed for 200 time 

steps and the velocity field is saved every ten time steps, 
Subgrid scale statistics are then computed for the stored ve- 
locity fields. The initial microscale Reynolds number of the 
flop: is R, = 30, while the final value is determined to be RX 
= 15‘ 

Figure 2 is a plot of the energy spectrum as it evolves in 
time; the cut is taken at k, = 16. Energy is cascaded from 
smaller wave numbers to larger wave numbers as a result of 
the nonlinear interactions. Energy is also backscattered to 
smaller wave numbers, resulting in the formation of the 
characteristic k 4 spectrum at small k. 

In Fig. 3, we plot the dimensionless eddy-damping term 
?I+ (k lk,,t), the dimensionless spectrum of the stochastic 
force (written for comparison purposes as a viscosity 
- F+(k /k,,t)/{2(k/k,)*[E(k,t)/E(k,,t) ]I), as well as 

the dimensionless eddy viscosity v,+ (k /k,,t), at two differ- 
ent times. Also shown in the plots are the values of the di- 
mensionless kinematic viscosity Y*. The characteristic 
cusps of the subgrid terms at k = k, are evident. At small 
wave numbers, the eddy-damping term and the eddy viscos- 
ity are negative. Although the stochastic force is expected to 
model the energy transfer that results dn the formation of the 
k ‘spectrum at small wave numbers, oneobserves that for the 
subgrid scale interactions that we have measured, more en- 
ergy is transferred to the large scales by the negative eddy- 
damping term than by the stochastic force. This is also pre- 
dicted by the EDQNM model for an energy spectrum which 
is very steep fork > k,. In fact, one notices that the kinematic 
viscosity of the fluid is typically larger than both the 7 and F 
terms for kg k, . 

According to the EDQNM model, most of the back- 
scatter of energy arises from the most energetic scales, so 

k/k, 

FIG. 2. Time evolution of the energy spectrum computed from the DNS of 
freely decaying turbulence. Time steps O-200 by 10; k, = 16. 
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FIG. 3. Subgrid eddy viscosity, eddy-damping term, and spectrum of the 
stochastic force computed from the DNS of freely decaying turbulence; k, 
= 16. (a) 30th time step; (b) 200th time step. 

that if we want to measure the stochastic backscatter, it 
would be better to choose k, nearer to the energy peak. In 
Fig. 4, we show the spectrum with a cut taken at k, = 6. 
Here, k, is slightly to the left of the maximum of E( k,O) and 
slightly to the right of the maximum of E(k,t) at the final 
time step. In Fig. 5 we plot the subgrid terms for this value of 
k, at two different times. As expected, we now observe that 
the stochastic forcing term is substantially larger in magni- 
tude than the eddy-damping term for k( k,, and further- 
more, the eddy-damping term 77 (k 1 k,,t) is now observed to 
be positive, indicating a substantial enhancement of the kine- 
matic viscosity by the nonlinear interactions. The eddy vis- 
cosity model yields a negative Y, (k 1 k, ,t) that, in this case, 
would result in an incorrect physical representation of the 
subgrid nonlinear interactions. On this basis, one would ex- 
pect very different simulation results using the g-F subgrid 
model than using the Y, subgrid model for a simulation hav- 
ing its maximum wave number in the most energetic scales. 

In Fig. 6, we plot the time evolution of F ‘(k/k,,t)/ 

IO-* I I ,,,,I I 
0.2 

k/k, 

FIG. 4. Time evolution of the energy spectrum computed from the DNS of 
freely decaying turbulence. Time steps O-200 by 10; k, = 6. 
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FIG. 5. Subgrid eddy viscosity, eddy-damping term, and spectrum of the 
stochastic force computed from the DNS of freely decaying turbulence; k, 
= 6. (a) 30th time step; (b) 200th time step. 
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FIG. 6. Time evolution of the subgrid spec- 
trum of the stochastic force divided by k 4 
computed from the DNS of freely decaying 
turbulence. (a) k, = 6; (b) k, = 16. 
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(k /kc )4 for k, = 6 and k, = 16. The EDQNM model pre- model derived from the EDQNM stochastic model equation 
diets that this function approaches a constant value for is consistent with the Navier-Stokes equation. Assuming 
k (k, [Le., F + (k /k,,t) cc k “1. The numerical simulations that the q,Gsubgrid model is also a good physical model of 
are observed to be in excellent agreement with this predic- the subgrid scale interactions, in the following section we 
tion. apply this subgrid model to an LES ofthe Kolmogorov iner- 

The results of this section indicate that the q-F subgrid tial subrange. 
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IV. LARGE-EDDY SIMULATION OF THE KOLMOGOROV 
CONSTANT 

The 7-F subgrid model has been implemented in the 
Rogallo code.42 Furthermore, to obtain an inertial subrange 
beginning at the earliest possible wave number of the simula- 
tion, we artificially force the turbulence. The forcing which 
we use is a modification of a forcing originally proposed by 
Siggia and Patterson.26 In their forcing scheme, all velocity 
Fourier components with k satisfying 1 < 1 kl < 2 are frozen at 
their initial values. The net result of freezing these modes is 
to restore, at each time step of the simulation, the energy 
cascaded out of these modes during the previous time step. 
This is accomplished by keeping all of the amplitudes and all 
of the phase relations among these modes fixed. The forcing 
which we adopt is similar to that of Siggia and Patterson in 
that we keep the energy in each mode with k satisfying 
l< Ikl< 2 constant, i.e., lui (k,t) I = const. However, we now 
allow the phases and the distribution of energy among the 
velocity components of the forced modes to evolve according 
to their interactions with all the other modes in the simula- 
tion. The advantage of this method over the Siggia and Pat- 
terson forcing is twofold. First, higher-order correlations 
among the Fourier components in the forced modes are al- 
lowed to develop, and second, the forcing we use results in 
more realistic two-time correlations among the forced Four- 
ier modes. Simply freezing these Fourier modes results in an 
infinite correlation time among these modes. We have deter- 
mined that this further results in unphysical two-time corre- 
lations among modes at slightly larger wave numbers. 

We initially simulate a 643 stationary flow taking the 
values of the 7-F subgrid model terms from the EDQNM 
model computations discussed in Sec. II. The resulting sta- 
tionary energy spectrum determined from the LES is then 
reintroduced into the EDQNM subgrid model equations. 
Assuming that the k --‘I3 power law of the spectrum contin- 
ues beyond k, to very large wave numbers, the EDQNM 
subgrid model equations are then resolved. Furthermore, we 
adjust the value of the Kolmogorov constant assumed in the 
EDQNM model to be in agreement with the LES results. 
This procedure is iterated until a satisfactory k -‘I3 energy 
spectrum is obtained over a substantial range of wave 
numbers in the LES. 

Figure 7 presents these final results. In Fig. 7 (a) we plot 
the time average of k 5’3E( k,t)/e( t)2’3, while in Fig. 7 (b) we 
plot this function at a single instant of time. The cascade rate 
g(t) is computed by calculating the energy flux across k,, 
I.e., 

e(t) = 
s 

ken 
2r](k Ik,,t)k2E(k,t)dk 

%t 

s 

km 
- F(k Ik,,t)dk. (39) 

Lb 

If E( k) has a Kolmogorov inertial subrange, Eq. ( 1 ), then 
the time average plotted in Fig. 7(a) should be a constant, 
with a value equal to the Kolmogorov constant Ko. Examin- 
ing the time-averaged spectrum in Fig. 7 (a), we observe that 
a k -5’3 spectrum begins to develop a decade in wave number 
space from the minimum wave number of the simulation. 
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FIG. 7. Spectrum of k”“E( k)/Z” computed from the LES of stationary 
turbulence. (a) Time average; (b) single instant of time. 

For an inertial subrange to develop at a smaller wave num- 
ber, we need to improve the artificial force we use so that it 
better represents the physical cascade of energy from scales 
with wave numbers smaller than k,, into our resolved scales. 

Examining Fig. 7 (a), we observe that the k --5’3 spec- 
trum is best fitted for wave numbers 0.3 < k/k, < 0.7. For 
this range of wave numbers, the Kolmogorov constant is 
observed to be slightly greater than 2.1. The final value we 
used in the EDQNM model to compute the subgrid terms 
was Ko = 2.1. Use of a lesser or greater value of Ko in the 
EDQNM model resulted in substantially larger deviations 
from the k -5’3 spectrum than that finally obtained. 

Our simulation results indicate a Kolmogorov constant 
substantially larger than experimentally acceptable values 
(Table I). A plausible explanation given for this ( Rogallo44) 
is that the discretization of wave numbers due to the imposi- 
tion of periodic boundary conditions may inhibit the trans- 
fer, resulting in a larger value of Ko. To test this hypothesis, 
we have performed an LES using a 1283 lattice, with all wave 
numbers less than two truncated (i.e., we take the minimum 
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wave number k, = 2 1. The forcing and subgrid model we use 
is identical to that used in the 643 LES. This ensures that the, 
1283 LES is identical to the 643 LES, except for a finer wave 
number discretization in the former. A plot of the time aver- 
age of k 5’3E(k,t)/e(f)2’3 is shown in Fig. 8(a). A better 
k --‘I3 energy spectrum appears to have developed. However, 
Ko is now even slightly larger, being approximately 2.15. 
Hence, we conclude that the periodic boundary conditions 
are not the cause of the large value of Ko observed in our 
simulation. 

In Fig. 8(b), we plot the time average of the energy 
spectrum (prior to normalization) resulting from the 1283 
simulation. The appearance of a k -s’3 power law over a wide 
range of wave numbers is quite remarkable. 

We have also simulated a velocity field using an eddy 
viscosity model. 27*29 The eddy viscosity model we use results 
in the identical subgrid scale transfer as the model used to 
compute the energy spectrum displayed in Fig. 7. The time 
average of k 5/3iZ( k,t)/e( t)2/3 is shown in Fig, 9. Although a 
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FIG. 8. Time-averaged spectra computed from the LES of stationary turbu- 
lence with 12S3 grid points and k,, = 2. (a) k”‘“E(k)/8”J; (b) E(k). 

25 

FIG. 9. Time-averaged spectrum of k”‘E(k)/t?‘” computed from the LES 
of stationary turbulence using an eddy viscosity subgrid model. 

log-log plot of E(k) vs k would show a reasonable k -5i3 
power law, we observe that a computation of a reliable value 
for Ko from this simulation data is impossible. 

We have remeasured the subgrid terms in our 643 sta- 
tionary LES by taking a fictitious cut in wave number space 
at kc = 16. The subgrid terms we have measured are actually 
only the effect of wave numbers between k, and k, on scales 
with wave numbers less than k,. The results are shown in 
Fig. 10. The asymptotically constant eddy-damping term is 
observed to be approximately 0.08. If one considers the miss- 
ing subgrid scale interactions (wave numbers greater than 
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FIG. to. Subgrid eddy viscosity, eddy-damping term, and spectrum of the 
stochastic force computed from the LES of stationary turbulence, 
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k, ), one can easily show’3*42 that for k/k, 4 1, v+ (k /kc) 
-0.14. Since the asymptotic EDQNM result is 7) (k /kc ) 
-0.44 Ko-~“, one observes that for the EDQNM model 
result to be consistent with the simulation data, we must take 
Ko = 2.1. This further corroborates the value of Ko ob- 
tained from the energy spectrum computed in our LES. 

V. DISCUSSION 

Today, the most extensively used subgrid model for ho- 
mogeneous turbulence is the eddy viscosity subgrid model. 
We have presented physical arguments which suggest that 
this model may be incomplete, especially for wave numbers 
near the maximum wave number k, of the numerically re- 
solved scales. We further showed how an improved model of 
the subgrid scales may be constructed by using two separate 
terms: an eddy viscosity (the eddy-damping term 7)) and a 
stochastic force that is uncorrelated in time (the stochastic 
force J; with spectrum fl. Both terms of this 7-F subgrid 
model were computed in two different ways: from the 
EDQNM stochastic equation, and from the Navier-Stokes 
equation using the results of a DNS. When computing 7 and 
Fin a DNS, two subgrid scale statistics are required. In addi- 
tion to the subgrid scale energy transfer, a fourth-order two- 
time moment of the velocity field must also be computed. In 
contrast, the subgrid scale energy transfer-which is the 
only statistic required to compute a subgrid eddy viscosity- 
is a single-time third-order moment. Hence the 77-F model 
contains substantially more statistical information concem- 
ing the subgrid scales than does the eddy viscosity model. 
This additional information results in a more complete phys- 
ical model of the subgrid scales. In the 7-F subgrid model, a 
two-way exchange of energy occurs between the numerically 
resolved scales and the modeled subgrid scales, whereas in 
the eddy viscosity model, energy is transferred one way from 
the resolved scales to the subgrid scales. Furthermore, the v- 
F subgrid model contains an additional effect that is com- 
pletely absent in the eddy viscosity subgrid model: the ran- 
dom sweeping of small scales by large scales. 

The computation of the subgrid model terms using a 
DNS showed that the results of the EDQNM model are con- 
sistent with the Navier-Stokes equation. We then applied 
the 7-F subgrid model computed from the EDQNM equa- 
tions to the large-eddy simulation of the Kolmogorov iner- 
tial subrange energy spectrum. We showed that the use of an 
v-Fsubgrid model results in a closer k --5’3 energy spectrum 
than an identical simulation using an eddy viscosity subgrid 
model. The Kolmogorov constant of this inertial subrange 
was determined to be approximately 2.1. 

The high Reynolds number atmospheric turbulence ex- 
periments24*25 performed in 1977 yield a value 1.4 < Ko < 1.7 
for the Kolmogorov constant. These values are obtained 
from measured one-dimensional energy spectra by assuming 
isotropy (although it has been suggested4’ that isotropy may 
not be satisfied in the inertial subrange of these high Reyn- 
olds number experiments). Although our simulation result 
Ko = 2.1 is internally self-consistent, it is also appreciably 
higher than the accepted experimental values. However, our 
result is in agreement with other numerical simulations”~‘4 
performed without a subgrid model. 

In conclusion, it appears that the value of Ko obtained 
from numerical simulations is approximately 30% higher 
than that obtained in high Reynolds number atmospheric 
experiments. The origin of this discrepancy remains to be 
understood. 
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