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Recent numerical simulations [2] of decaying two-dimensional homoge-
neous turbulence at high Reynolds numbers have exhibited an approximate
self-similar evolution of the energy spectrum. We analyze here the theoret-
ical implications of self-similarity.

We consider a two-dimensional velocity field u = (uq, uz, 0) with vortic-
ity w =V x u=(0,0,w). The equations for the mean-square velocity (2x
energy) and mean-square vorticity (2x enstrophy) are given by [1]
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dt
where v is the kinematic viscosity of the fluid. Our main objective is to
determine the long-time decay laws of the energy and enstrophy.
We begin with some relevant definitions. In two-dimensional turbulence,
the following characteristic length scales A and u are of some importance:

A= @A) = @Y (V) (2)

The Reynolds numbers Ry and R, constructed from these length scales are

defined as N2 iz
u A u
Ry = L7 R, = <>7N7 (3)
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and their ratio p will play a pivotal role in our analysis:

p=FRr/R,=\p. (4)

We will consider separately two distinct kinds of self-similar decay. First,
we consider complete self-similarity for which the energy spectrum during
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the decay maintains its shape on log-log axes over all wave numbers. Second,
we consider partial self-similarity for which the spectral shape is maintained
only over scales directly unaffected by viscosity.

Using the length scale A, we look for an energy spectrum of self-similar
form

E(k,t) = (WAE(E), &k =k (5)

For complete self-similarity, the length scale ratio p is necessarily constant
during the decay: physically, all length scales must grow at the same rate. It
is also simple to determine that p is directly related to the time-independent
self-similar spectrum via

o=
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(6)

p:

We assume that for times ¢t > t, following an initial transient, the spectrum
undergoes complete self-similar decay with p = p, constant. Assuming con-
stant p during the decay results in closure of (1), and an analytical solution
for the decay laws is most easily determined by first obtaining an equation

for A:

d
—A%=2w(p? - 1);
A = 2w(p? - 1); (7)

which may be integrated immediately from ¢, to t:
A2 =20(p? = 1)(t — t,) + ul/w?, (8)

where u, and w, are the root-mean-square values of the velocity and vortic-
ity at t = t,. The energy and enstrophy equations may then be subsequently
integrated to obtain

}—1/(93—1)

(u?) = u? [142(p2 = R wn(t = 1) , (9)

: (10)

where R, is the value of Ry at t = t,. Fully-developed turbulence corre-
sponds to large values of p, signifying a wide separation of scales between
A and p. For asymptotically large p., we see from (9) and (10) that the
energy is conserved for finite times, (though for fixed p. as ¢ — oo, the
energy decays to zero), and that the enstrophy decays as

<w2> = wf {1 + 2(,03 _ 1)3)\:1“)*@ _ t*)}_p*/(p*_l)
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Previously [2], we have shown that complete self-similarity also occurs
for decaying turbulence at constant R). The Reynolds number R) can be
shown to satisfy the equation

d
Dy = (0 - 2?12 (12)
t
so that decay with constant R, corresponds to p? = 2. It can be further
shown that the analytical results found in [2] can be recovered directly from
(9) and (10).

The time-evolution equation for the energy spectrum is written as

%E(k,t) + 20k*E(k,t) = T(k,1), (13)

where T'(k,t) is the nonlinear transfer spectrum. We now transform (13)
into an equation for the self-similar spectrum (k). Using (1), (5) and (7),
and after some algebraic manipulations, we find

2k = 1) E(k) + (p* - 1) (E(E) + E%E(E)) = (A PRk, 1) . (14)

For complete self-similar decay with p = p, constant, the transfer spectrum
must thus evolve with self-similar form

T(k,t) = (u¥?2RIT(R), |k =k, (15)

which depends explicitly on the viscosity v through the Reynolds number
R). This differs from standard two-point closure theories [4], for which the
factor R;l is absent.

On the other hand, partial self-similarity assumes that the self-similar
form (5) is valid only over wave numbers for which viscosity is negligible.
The transfer scaling given by (15) is thus unsuitable because of its direct
dependence on viscosity. Partial self-similar decay solutions may be ob-
tained from (14) under the assumption p — oo, asymptotically. Equation
(14) then reduces at long-times to

Ay 4o aa  a-3/2 Ry
(E(k) +kﬁE(k)) = ()T (k) (16)

In order for viscosity to cancel from the right-hand side of (16), p* must
scale like

p* = cR\, (17)

where ¢ is a nondimensional proportionality constant. Together with (4),
this implies Ry = cRi.
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The relationship between p and R) given by (17) permits analytical
closure of (1). We obtain for the enstrophy equation

d A 2\3/2
(@) = 2, (15)

which may be integrated from a time ¢, after which partial self-similarity
occurs:

(W) = W1+ ew, (t —1,)]72. (19)

Further integration of the energy equation results in the solution

2R wl(t — t.)
2 — . 2 1— A . 9
(u?) [ e (20)
The long-time asymptotic solutions of (19) and (20) are given by
(w) =2 [1-2(chy)7Y, (@)= ()72 (21)

The assumption of partial self-similarity thus results in the =2 enstrophy
decay law originally proposed by Batchelor [1], and found by standard two-
point closures [4].

For partial self-similar decay the energy approaches a nonzero value
asymptotically (apart from the special case p? = 2 discussed earlier, for
which (u?) vanishes in (21)). This presents a significant physical difference
between complete and partial self-similarity.

Our previous direct numerical simulations [2] seem to support complete
self-similarity in decaying two-dimensional turbulence, where the asymp-
totic decay law of the enstrophy for high initial Reynolds numbers was found
to be approximately t~%8. Numerical simulations currently in progress pro-
vide even stronger support in favor of complete self-similarity. Hence the
partial self-similar decay obtained by standard two-point closure theories
accounts for the disagreement found earlier between simulations and theory

[3]-
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