DECAYING TURBULENCE IN
TWO AND THREE DIMENSIONS

J. R. Chasnov

The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong

A review of decaying isotropic turbulence in two and three dimensions is presented. In both
dimensions, exact results can be obtained by assuming that for small Reynolds numbers
the nonlinear convective terms in the equation of motion are negligible. These analytical
results obtained from a linear equation demonstrate explicitly that the decay laws depend
on the form of the energy spectrum near zero wavenumber. In three dimensions, high
Reynolds number decay laws can be obtained by assuming that these laws continue to
depend on invariant or near-invariant low wavenumber spectral coefficients but become
independent of viscosity. Results of numerical simulations are presented which smoothly
connect the asymptotically high and low Reynolds number solutions. In two dimensions
however, high Reynolds number solutions can not be as easily obtained since the dominant
nonlinear energy cascade is from small-to-large scales so that an assumption such as the
invariance or near-invariance of low wavenumber spectral coefficients becomes untenable.
However, exact analytical results in two dimensions can be determined at a transitional
Reynolds number, below which final period of decay solutions result and above which the
turbulence evolves with increasing Reynolds number.

I. Introduction

Decaying turbulent motions constitute an important class of turbulent flows. Although
these flows never attain statistical stationarity, the turbulence decay may nevertheless be
self-similar. The meaning of self-similarity in this context is that the turbulence spectrum
at time ¢t can be made to coincide with the spectrum at earlier times through a time-
dependent scaling of the wavenumber and spectral amplitude. On a log-log plot, the
spectrum would then appear to decay without change of shape. Typically, the desired
axes scalings are power-laws in time and are related to the decay laws for the mean-square
velocity and characteristic length scales of the turbulence. In this paper, we review known
similarity solutions of decaying isotropic turbulence in two and three dimensions. We will
see that the physics of these two flows is quite different as is the nature of the similarity
states which may develop.

II. Decaying three-dimensional turbulence

That the decay laws of homogeneous isotropic turbulence depend on the form of the
energy spectrum at low wavenumbers can be shown explicitly from the governing equations
for the final period of decay'. Defining the energy spectrum E(k,t) in the usual way
to be the spherically integrated three-dimensional Fourier transform of the covariance
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%<ui(x,t)ui(x—|— r,t)), the equation governing its time-evolution can be written in the

form

OE(k,t)
ot
where T'(k,t) represents the nonlinear transfer. During the final period of decay, one

assumes that T'(k,t) is negligible so that the analytical solution for the spectrum is given
trivially by

+ 2wk2B(k,t) = T(k, 1), (1)

E(k,t) = E(k,0)exp (—2vk>t). (2)

The decay law of the mean-square velocity of the turbulence, or equivalently, (twice) the
kinetic energy of the turbulence per unit mass, is obtained upon integration of (2) over k.
As time advances, it is clear that the support for this integral moves to smaller and smaller
wavenumbers. Changing variables to n = kv/vt, the integral of (twice) Eq. (2) becomes

() = 2087 [ B/ Vit 0)exp (222 ). ®)

0

To obtain the asymptotic solution of (3) as t — oo, the form of the energy spectrum
near zero wavenumber is required. Following the work of Batchelor & Proudman? and
Saffman?®, we assume that the asymptotic expansion of the energy spectrum near & = 0
can be written as one of

E(k,t) = 2rBok® + o(k®), or E(k,t) =27By(t)k* 4+ o(k*). (4)

Saffman® showed that By is an invariant during the entire history of the turbulence decay
as a consequence of the transfer spectrum T'(k,t) in (1) being of order k*. When By is
zero initially, it remains so and the expansion of E(k,t) follows the second of (4) with B;
in general a function of time except during the final period?.

Taking the limit of (3) as t — oo, one uses (4) and obtains the exact solutions

(u?) = aog(47By)(vt) 2%, or (u?) = ay(4xBy)(vt)7%/2, (5)

where the integrals ag and a; are given explicitly by

> 1
Clo:/ n® exp (—2n*)dn = —\/3 (6a)
A sV 2
a —/oo Yexp (—2n%)dn = — /T (6b)
2 = A n P n 77—32 9"

Furthermore, the characteristic length scale of the turbulence increases as /vt in the final
period due to the erosion of the spectrum at large wavenumbers through viscous energy
dissipation, so that a Reynolds number formed by <u2>1/2l/1/ eventually decays to zero as
the fluid returns to rest.

The t73/? and t73/? decay laws were first determined by Batchelor* and Saffman?,

respectively. Apart from the numerical constants, these decay laws may be determined
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also by dimensional analysis, with [Bg] = [°/t? and [B;] = [7/t2, if one assumes that the
decay depends linearly on the low wavenumber coefficients, and on v (with [v] = [?/t) and
t alone.

Exact closure of (1) is unknown at high Reynolds numbers. Nevertheless, asymptotic
decay laws of the energy have been obtained by working in analogy to the final period of
decay solutions. One assumes that the scaling of the energy now depends nonlinearly on
the low wavenumber spectral coeflicients and the time ¢ alone. Viscosity no longer enters
the scaling law as an independent parameter. This is in accordance with the usual turbu-
lence phenomenology that the energy dissipation rate has a nonzero limit with vanishing
viscosity. By dimensional analysis, one then obtains

(u2) = co(4nBo)*/5t5/5 | 1o BY/°#2/5 (7a)

or

(u?) = ¢y (47 By)Y/ 7107 1o BY/ T (7b)

where proportionality constants for the mean-square velocity have been inserted for later
use. The time-dependence in (7a) is expected to be exact because of the invariance of By
whereas the explicit time-dependence in (7b) is modified by the time-dependence of Bj.

Equation (7a) was first obtained by Saffman®, and (7b) much earlier by Kolmogorov®,
who assumed that B, was invariant as argued by Loitsianskii’. At very high Reynolds
numbers, closure calculations and large-eddy simulations show that By(t) o« 7, with v =
0.16 from closure® and 0.25 from large-eddy simulation®. Use of the latter time-dependence
of By in (7b) results in a somewhat slower decay law for the mean-square velocity of ¢~ 1-36
instead of the Kolmogorov law ¢~ 143,

The high Reynolds number decay laws given by (7) have been confirmed by large-eddy
simulations'®. The decay of the energy spectrum with k% and k?* low wavenumber asymp-
totics is shown in Figs. 1(a) and (b) and the computation of the decay exponents of the
mean-square velocity is shown in Fig. 2. A self-similar decay of the energy spectrum has
been observed by scaling the spectrum by ((u?)(¢)I(¢)) and the wavenumber by I(¢)~'.
The Reynolds number of the flow field <u2>1/2l/1/ decays in time during the flow evolution.
High Reynolds number turbulence will thus eventually decay to low Reynolds numbers
and the final period of decay solutions given by (5) should eventually become valid.

Equations (5) and (7) give the asymptotic energy decay at the lowest and highest
Reynolds numbers, respectively. Exact solution including the proportionality constant is
know for the final period of decay while only the overall scaling is known at high Reynolds
numbers. Numerical simulations can be used to connect the two asymptotic solutions for
the decay. In particular, for nonzero initial By, the proportionality constant cg in (7a)
should be independent of the history of the decay, and it becomes possible to construct a
universal curve which follows the decay of the energy from the highest Reynolds numbers
into the final period.

To compute this universal decay curve, it is necessary to first define nondimensional
variables. According to the asymptotic decay laws (5) and (7a), the only two dimensional
parameters (apart from time ¢) of the problem are By and v, and these parameters may
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FIG. 1. Time-evolution of the energy spectrum in three-dimensional turbulence: (a)
with leading-order coefficient By; (b) with leading-order coefficient Bs.

be used to nondimensionalize our variables. Accordingly, we define a nondimensional time
T and a nondimensional mean-square velocity U? by

t = (47Bo)’T/v°, (u®) =1v°U?%/(4rBy)*. (8)

The factor of 47 has been introduced for convenience. In these nondimensional variables,
the final period and high Reynolds number decay laws become

U? = aqT73?, U?=ceT%5, (9)

with ag given by (6a) and ¢p the constant defined in (7a). The proportionality constant
co can be computed by a large-eddy simulation'® and one determines that ¢y ~ 4.0. The
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FIG. 2. Time evolution of the logarithmic derivative of (u?) for decaying three dimen-
sional turbulence at high Reynolds numbers. The solid lines are the results of the large-eddy
simulations and the dashed lines are the analytical results assuming the invariance of the
low-wavenumber coeflicients.
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FIG. 3. The universal decay curve of U? versus T obtained from five numerical simula-
tions over a range of viscosities. The dashed and dotted lines correspond to the asymptotic
high and low Reynolds number solutions, respectively.

high Reynolds number and final period of decay solutions thus match at a transition time
of Ty = (ag/co)'®/? ~ 2.04 x 1075,

The universal decay curve from small to large times, or equivalently large to small
Reynolds numbers, has been computed by smoothly connecting the results of large-eddy
and direct numerical simulations. Five numerical simulations of 256 resolution have been
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power-law exponent

FIG. 4. The logarithmic derivative of (u?) versus the microscale Reynolds number Ry
for decaying three-dimensional turbulence, obtained from the computations shown in Fig.
3. The dashed lines are the asymptotic high and low Reynolds number solutions.

performed. An initial isotropic random phase velocity field with period 27 in each direction
is constructed from the energy spectrum

E(k,0) = 27 Bok? exp {— (k/kp)ﬂ , (10)

with By = ug/ﬂ'?’ﬂk;, and k, = 100, up = 1. The kinematic viscosity v is varied from
4.0x107° to 1.6 x 1073, In the calculation, the viscosity is augmented by an eddy viscosity

of the Kraichnan!!, Chollet-Lesieur'? form

—3.03km \1 [E(km,t)]"
VBl 1) = ().145—|—5.016Xp< P )H (k ’)] , (11)

where k,,, 1s the maximum wavenumber of the simulation. For well-resolved simulations at
low Reynolds number, the eddy-viscosity is negligible with respect to v and the calculation
is a direct numerical simulation.

A plot of U? versus T is shown in Fig. 3. The dashed line represents the asymptotic high
Reynolds number result and the dotted line the exact final period of decay solution. Apart
from initial transients which should be discarded, the five simulations taken together show
the entire evolutionary history of a decaying isotropic turbulence with By # 0.

It is of further interest to determine the power-law exponent of the energy decay (i.e.,
its logarithmic derivative) as a function of an experimentally measurable quantity such as
the microscale Reynolds number R, defined as

_ (3 (w%)
Bx=\/3 7e:

(12)
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A plot of dlog (u?)/dlogt versus Ry for the five simulations is shown in Fig. 4. It appears
that high Reynolds number scaling occurs when Ry > 30, while the final period of decay
solution requires By < 1. High Reynolds number grid turbulence experiments!® reached
an Ry of 70, which seems to be sufficiently large to attain asymptotic decay laws, while
low Reynolds number experiments'* have been performed down to Ry = 4, which may be
too large to be considered a true final period of decay.

ITI. Decaying two-dimensional turbulence

Decaying two-dimensional turbulence differs qualitatively from that of three-dimensional
turbulence due to the absence of the vortex stretching term in the vorticity evolution
equation. As in three-dimensional turbulence, the evolution equation for the mean-square
velocity (2x energy) is given by

d, 2

—(u’) = 2w 13
9 w?) = ~2w(e?). (13)
where w is the vorticity w = V x u. In two-dimensional turbulence only the vorticity
component perpendicular to the plane of the turbulent motion is nonzero. The equation

for the mean-square vorticity (2x enstrophy) is

d 2\ _ 2 /
S (W) = —2v((Vw)T), (14)

which differs from three-dimensional turbulence in that the enstrophy is now bounded by
its initial value. In three-dimensions, it is suspected that the enstrophy diverges in finite
time as v — 0, leading to an energy cascade from large-to-small scales. In two-dimensions,
an enstrophy cascade has been postulated instead of an energy cascade!®.

Since the enstrophy is bounded by its initial value as a consequence of (14), the energy
goes to a constant in the limit v — 0. Nonzero enstrophy dissipation at constant energy
implies that energy is transfered predominantly from small-to-large scales. This is easily
illustrated by considering the evolution of a model energy spectrum which remains sharply
peaked about a single wavenumber k,(t) so that 2F(k,t) = udd(k — k), where § is the
usual Dirac-delta function. The energy and enstrophy are related to the energy spectrum
by means of

>0 (oo}
(u?) = / 2E(k,t)dk, (w?)= / 2k*E(k,t)dk , (15)
0 0
so that the model energy spectrum yields (u?) = u and (w?) = udk.(t)?. An enstrophy
decay with constant energy thus implies a continual decrease in k, signifying an inverse
cascade of energy from small-to-large scales.

This inverse cascade is in marked contrast to decaying three-dimensional turbulence
where the dominant energy cascade is from large-to-small scales. Although the charac-
teristic length scale of three-dimensional turbulence increases during the decay this is due
to the dissipation of small scale energy with a corresponding depletion of large-scale en-
ergy (the source of the cascade). The assumption that the decay laws in two-dimensional
turbulence depend on invariant, or near-invariant low wavenumber spectral coefficients
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becomes untenable at higher Reynolds numbers than that of the final period of decay.
High Reynolds number decay laws in two-dimensional turbulence are currently unknown
except by numerical experiment!'®, and an early hypothesis of Batchelor!® — equivalent to
ki« o< (ugt)™! in the simplistic energy spectrum model above — does not agree with the
results of the numerical simulations.

As in three-dimensional turbulence, at very low Reynolds numbers the equation for the
energy spectrum is closed under the assumption of a final period of decay for which the
nonlinear transfer may be neglected. Equation (3) holds for two-dimensional turbulence,
but instead of (4) we have

E(k,t) = nByk® + o(k*), (16)

where the phase space factor is now 27k instead of 47k? because of integration over a
circle rather than a sphere. Here, we only consider the case By = 0 in anticipation that
the initial low wavenumber form of the spectrum is irrelevant at high Reynolds numbers,
and that the nonlinear transfer results in a nonzero value for the coefficient B,. The final
period of decay solution can thus be found analytically to be

(u?) = dy (27 By)(vt) 2, (17)

where
= 3 2 1
dy = / n° exp (—2n°)dn = g (18)
0

The final period solution for the enstrophy may be found from (17) and (13) to be
(w?) = dy (27 By (vt) 3. (19)

The (microscale) Reynolds number of the turbulence, for convenience in this section

defined as

R(t) = w, with 1= {<“2>r , (20)

v (w?)

decreases in time as t~'/2 so that the final period of decay solution is internally consistent
with the eventual approach of the turbulence to zero Reynolds number. However, at high
Reynolds numbers we have already stressed that (u?) should remain close to its initial
value while (w?) decays. From (20), this implies that R(t) increases during the decay. In
other words, although the velocity scale stays constant during the decay, the length scale
grows because of the inverse energy cascade. An argument can then be advanced that a
transitional, or critical, Reynolds number R. must exist, below which the nonlinear transfer
eventually becomes negligible and a final period of decay solution results, and above which
the nonlinear transfer becomes more and more essential to the dynamics since the Reynolds
number of the turbulence increases in time.

Exactly at R(0) = R., the flow field evolves with constant Reynolds number and an
analytical closure of (13) is possible. If we assume that a flow with initial Reynolds
number R, evolves in time so that after an initial transient the decay proceeds at constant
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FIG. 5. Time-evolution of the Reynolds number R(¢#) for initial values R(0) = 13, 15.4
and 18.
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FIG. 6. Time-evolution of the energy and enstrophy for R(0) = 15.4 compared to the
analytical results of (21).

Reynolds number R/, then the enstrophy on the right-hand-side of (13) may be eliminated
in favor of R!. Doing so, we obtain the closed evolution equation

d 2 2 2\2
ai\" = et .

which may be solved analytically. The asymptotic solution of (21) at large times is given

by
1 1
@5=§ﬂ¥fﬂ W%ZZRﬁ”, (22)
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FIG. 7. Evolution of the energy spectrum in time with R(0) = 15.4. The times plotted
correspond to 7 = 0,5, 10,..., 30.
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FIG. 8. Rescaling of the energy spectrum of Fig. 7. The times plotted correspond to
T =10,15,...,30.

where the solution for the enstrophy has been determined using (13). The only unknown
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parameter in (22) is R, and its computation is easily obtained from relatively low resolution
numerical simulations.

In Fig. 5, the evolution of the Reynolds number R(t) verus 7(¢) is shown for initial
values above and below the critical value R., and at R, = 15.4, where

t
T:/ dt<w2>1/2.
0

The value for R. obtained here is slightly less than that reported earlier'® due to the better
resolution of the present simulations, though it is expected that R. (and R.) depends
weakly on the initial conditions of the flow field. In Fig. 6, the decay of the energy and
enstrophy are compared to the analytical results (22), with R. = 12 obtained from Fig. 5.
Excellent agreement between the simulation and the theoretical scaling laws i1s observed.

As seen from Fig. 5, the analytical solution given by (22) is rather special, being unstable
to perturbations in R(0) = R., with values slightly lower or higher resulting in asymptoti-
cally decreasing or increasing Reynolds numbers, respectively. Nevertheless, exact results
in turbulence theory are rare, particularly when nonlinearity plays an essential role, and
it is worthwhile to consider this solution in greater detail.

Exactly at R(0) = R., the energy spectrum E(k,t) has been determined!'S to decay
self-similarly over all wavenumbers with scaling

2 3 1 =~ -~
E(k,t) = §1/5R/2t_5E(k); k= (2vt)

Cc

=

k, (23)

-~

where the normalization of the self-similar spectrum E(E) is such that
/ E(k)dk = / K*E(k)dk = 3 (24)
0 0

In Fig. 7, the evolution of the energy spectrum E(k,t) at the times 7 = 0,5,10,...,30
is plotted. The spectra are smoother than those computed earlier'® as a consequence of
ensemble-averaging over a large number of independent realizations. In Fig. 8, the self-
similar spectrum E(k) versus k is plotted at the times 7 = 10,15,...,30. A near-perfect
collapse of the spectra is found indicating that the scaling given by (23) 1s exact.

With E(k,t) = mk®By(t) + o(k?) as k — 0, the self-similar solution of (23) requires the
scaling

By(t) < v* Rt (25)

Apparently, nonlinearity plays an essential role in establishing this self-similar solution
since By(t) is independent of time during the final period when the nonlinear transfer is
negligible. Also, an assumption such as the near-invariance of Bj is clearly untenable, in
contrast to three-dimensional decay where Bs is weakly dependent on time.
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