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Turbulent penetrative convection with an internal heat source
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Abstract

An in,nite -uid with a vertical cubic temperature pro,le in the absence of -uid motion is considered as a model for
penetrative convection in which a central unstably strati,ed -uid layer is bounded above and below by stably strati,ed
layers. Turbulence statistics from direct and large eddy numerical simulations for the mean temperature gradient, the
velocity and temperature variances and the heat -ux are presented for Rayleigh numbers R up to four orders of magnitude
above critical. By means of a simpli,ed second-moment closure, analytical scaling laws for the statistics are determined.
For high Rayleigh numbers, the mean temperature gradient approaches zero in a central well-mixed layer, a reduced
positive (stable) value in upper and lower partially mixed layers, and an unmixed value far above and below. The
temperature variance is a factor of R1=3 larger in the partially mixed layers compared to the well-mixed layer; the velocity
variance and heat -ux scales the same in both layers. Approximation of the three layers by a two layer model yields
an estimate for the height of the mixed layer: the height decreases slowly with increasing Rayleigh number and at the
highest Rayleigh number simulated is approximately 30% longer than the unstable layer in the absence of -uid motion.
c© 2001 Published by The Japan Society of Fluid Mechanics and Elsevier Science B.V. All rights reserved.
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1. Introduction

Penetrative convection occurs when vertical buoyancy-driven motion originating in an unstably
strati,ed layer of -uid penetrates into surrounding stably strati,ed layers. If the Reynolds number
of the -ow ,eld is su>ciently large, the -uid motion will be turbulent. A review of penetrative
convection with many references to previous work in the ,eld can be found in the monograph of
Straughan (1993).

There are several well-known physical examples of penetrative convection. A laboratory exper-
iment can be realized using an insulated container of water with a bottom ice surface ,xed at
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temperature 0◦C and a top air surface at temperature 25◦C, say (Townsend, 1964). The maximum
density of water at 4◦C makes the bottom layer gravitationally unstable and convective motion gen-
erated there will penetrate into the stable layer above. Penetrative convection is also common in
the environment. On a sunny morning, the nocturnal inversion is replaced by a growing unstable
layer adjacent to the warming ground. Surface cooling of sea water by evaporation can result in a
gravitationally unstable surface layer which is transported downwards into the lower stably strati,ed
layers. Penetrative convection also occurs in stars (Canuto and Christensen-Dalsgaard, 1998). Stars
with mass less than approximately one solar mass have a radiative core and a convective envelope;
more massive stars have a convective core and a radiative envelope. Turbulent motion in the con-
vective zone may penetrate into the stably strati,ed radiative zones. The amount of materials being
mixed due to penetrative convection is a crucial ingredient in stellar evolution theories and is an
important topic of interest to astrophysicists.

Due to its geophysical and astrophysical importance, there have been many studies of penetra-
tive convection, both in the laboratory and using mathematical models with varying degrees of
complexity. Our interest here is in turbulent penetrative convection, and to perform relatively high
Reynolds number simulations we adopt a simple mathematical model proposed by Matthews (1988).
This model of penetrative convection within the Boussinesq approximation uses a cubic temperature
pro,le, maintained by internal heating. Matthews studied the linear stability of such a temperature
pro,le, computed the critical Rayleigh number Rc, and showed that the low Rayleigh number bi-
furcation to convective motion is supercritical with rolls preferred to squares. Here we consider the
corresponding high Rayleigh number problem, corresponding to high Reynolds numbers, for which
the convective motion is turbulent. Our methods of enquiry will be three-dimensional direct numer-
ical simulation (DNS) of the -ow ,eld up to Rayleigh numbers of about 102Rc and large eddy
simulation (LES) up to Rayleigh numbers of 104Rc. A simpli,ed second-moment closure turbulence
model will be used to predict the asymptotic scaling of the statistics with Rayleigh number.

Although we adopt the mathematical model of Matthews, our work is closer in spirit to that of
Zahn et al. (1982). The Zahn et al. mathematical model is also of simple form, and is equivalent
to replacing the Matthews cubic temperature pro,le by a piecewise linear pro,le, with an unstable
temperature gradient bounded above and below by stable temperature gradients. We note that the
linear stability of such a pro,le was considered much earlier by Gribov and Gurevich (1957). Zahn
et al. considered numerical solutions of their equations up to 105 times critical. However, solutions
were obtained using one or two mode planform functions to represent the horizontal motion, and so
contain some arbitrariness based on the choice of planform functions. Nevertheless, much interesting
physics was uncovered by their work.

2. Formulation of the problem

Herein, the vertical coordinate is denoted by x2. Let T (x; t) be the temperature of a -uid at position
x and time t. We decompose T as

T (x; t) = T0(x2) + �(x; t); (1)

where T0(x2) is the vertical variation of the temperature ,eld in the absence of -uid motion, and
�(x; t) is the change in T induced by the -uid motion. The variation T0(x2) satis,es the heat
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conduction equation

�
d2

dx22
T0 =−Q; (2)

where � is the thermal conductivity and Q(x2) represents a steady internal heat source assumed herein
to be unaAected by the -uid motion. With this de,nition, the governing equations for the velocity
and temperature ,eld of the -uid may be written within the well-known Boussinesq approximation
as (Spiegel and Veronis, 1960)

@
@t
u + u · ∇u =−∇p+ x2g�+ �∇2u; (3)

@
@t

�+ u · ∇�= u2�0 + �∇2�; (4)

∇ · u = 0; (5)

where u is the -uid velocity, p a pressure-like term which serves to enforce continuity, g¿ 0 the
gravitational acceleration with x2 the unit vector in the vertical direction,  the coe>cient of thermal
expansion and � the kinematic viscosity. Finally,

�0(x2) =−
(
dT0

dx2
+

g
Cp

)
(6)

is the vertical superadiabatic gradient of the temperature in the quiescent -uid, where Cp is the
speci,c heat at constant pressure. The problem of penetrative convection in an in,nite domain in
the present formulation, for which the turbulent motion in horizontal planes may be considered
homogeneous, requires only speci,cation of �0(x2). If it is desired to have an unstable layer of -uid
bounded above and below by stable layers, then �0 must be positive in some central region, and
negative in regions above and below this central core. Matthews (1988) chooses the simple form

�0(x2) = B− 3Ax22 (7)

with A and B positive constants. Zahn et al. (1982), following Gribov and Gurevich (1957), choose
the piecewise constant form

�0(x2) =
{
�u if |x2|¡d=2;
�s if |x2|¿d=2; (8)

where �u ¿ 0 and �s ¡ 0 are ,xed constants. The ratio |�s|=�u introduces an additional nondimen-
sional group in their formulation.

Although the mathematical problem of penetrative convection de,ned above is well-posed after
choosing �0, its physical interpretation may diAer. Matthews considers the adiabatic temperature
gradient g=Cp to be negligible and the temperature gradient dT0=dx2 to be due to a steady internal
heat source Q(x2) =−6�Ax2. Zahn et al. consider a constant radiative temperature gradient dT0=dx2
and an adiabatic gradient g=Cp which varies piecewise constant to yield their desired form of �0,
given by Eq. (8). Herein for convenience, we will adopt both the Matthews form for �0 as well as
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his physical point of view. The temperature variation in the absence of motion then takes the cubic
form

T0(x2) = Ax32 − Bx2; (9)

where we have adjusted the temperature scale to be zero at x2 = 0.
Nondimensionalization of our variables requires a length, time and temperature scale. The length

scale may be chosen as d =
√

B=A and the temperature scale as Bd. Both Matthews and Zahn et
al. choose d2=� as the time scale. However, another possible choice is 1=

√
gB, and this may be

more natural at high Rayleigh numbers when thermal mixing is mainly due to turbulent rather than
molecular conductivity. With this latter choice of time scale, the nondimensional form of Eqs. (3)–
(5) is

@
@t
u + u · ∇u =−∇p+ x2�+

√
�
R
∇2u; (10)

@
@t

�+ u · ∇�= u2�0 +
1√
�R

∇2�; (11)

∇ · u = 0; (12)

where the nondimensional superadiabatic temperature gradient is given by

�0(x2) = 1− 3x22 (13)

and the two nondimensional groups of our problem, the Rayleigh number R and the Prandtl number
�, are given by

R=
gBd4

��
; � =

�
�
: (14)

For later comparison with the results of Zahn et al., we note that the above equations may be
transformed into a normalization using the diAusion time scale in place of the buoyancy time scale
by the following replacements:

u → u=
√
�R; t → t

√
�R (15)

the normalization of p is arbitrary because of the incompressibility condition (12).
The main goal of our work is to determine the turbulent statistically steady-state solutions of

Eqs. (10)–(12) as a function of the nondimensional groups of our problem. For simplicity, we
consider only the region of parameter space for which both the turbulent viscosity and turbulent
conductivity are much larger than their molecular counterparts; i.e., both �R and R=� are large. The
interesting physics associated with this problem may be explored by considering � = 1 and R�1.
Direct numerical simulations (DNS) and large eddy simulations (LES) can be performed over several
orders of magnitude of R above its critical value, determined by Matthews (1988) to be Rc = 88:0.

Our main interest is in the ,rst- and second-moments of the velocity and temperature ,elds. In
particular, we are interested in elucidating the asymptotic behavior of these statistics at large R.
Statistical averages denoted by 〈: : :〉 may be performed over independent realizations of the ,elds,
or equivalently by spatial averages in horizontal planes together with time averages taken in the
statistically steady state. All resulting statistics will be functions only of the vertical coordinate x2.
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The only nonzero ,rst-moments are the average temperature and pressure, the mean velocity
being zero, and we decompose the temperature �(x; t) and pressure p(x; t) into mean and -uctuating
components:

�= 〈�〉+ �′; p= 〈p〉+ p′: (16)

The only independent second-moments are 〈u22〉, 〈u21+u23〉, 〈u2�′〉, and 〈�′2〉, all other second-moments
being zero or trivially related due to the statistical isotropy in horizontal planes.

At this point, it is worthwhile to note the up-down symmetry of governing equations (10)–(12).
Since our choice of superadiabatic temperature gradient �0 is symmetric in x2, i.e., �0(−x2)=�0(x2),
the governing equations are seen to be invariant under the transformation

x2 → −x2; u2 → −u2; � → −�:

It is expected that the moments will also obey this same symmetry, so that the second-moments
〈u22〉; 〈u21+u23〉; 〈�′2〉 and 〈u2�′〉 will be symmetric about the origin, whereas 〈�〉 will be antisymmetric.
Our interest is in turbulent -ow, which usually implies large Reynolds numbers Re=UL=�, where

U and L are characteristic velocity and length scales of the -ow ,eld, respectively. We can take
U equal to the velocity variance at x2 = 0, and L = d, where d is the length scale used in the
nondimensionalization of our equations. With U and L made nondimensional, the Reynolds number
Re is related to the Raleigh number R by

Re = U

√
R
�
; (17)

where the nondimensional velocity U is as yet an unknown function of R, although it is expected
that Re will increase with R.

3. Equations for the statistics

To gain some preliminary insight into our problem, it is worthwhile to ,rst construct equations for
the ,rst- and second-moments. We work from the nondimensional governing equations (10)–(12).

3.1. First-moments

We begin by considering the statistical average of the velocity and temperature equations. First,
taking the statistical average of the temperature equation (11) and integrating from −∞ to x2 with
boundary condition u2 and d〈�〉=dx2 vanishing at in,nity, we obtain

d
dx2

〈�〉=
√
�R〈u2�′〉: (18)

The heat -ux 〈u2�′〉 is thus simply related to the change in the mean temperature gradient induced
by the -uid motion. Integrating (18) over the vertical domain, and using the antisymmetry of 〈�〉,
we see that as a consequence of convection the temperature of the -uid is raised far above the
convectively unstable layer (or lowered far below) by a constant given by

�∞ =
1
2

√
�R
∫ ∞

−∞
〈u2�′〉 dx2: (19)
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We will see later by means of the second-moment equations that this constant is directly related to
the dissipation of kinetic energy by the turbulence.

Now, taking the statistical average of the velocity equation (10), we obtain

d
dx2

(〈u22〉+ 〈p〉) = 〈�〉; (20)

which can be used to eliminate 〈p〉 from the equations for the second-moments.

3.2. Second-moments

The budget equations for the second-moments are well known (Launder, 1989). Although the
time-derivative terms are identically zero in a statistically steady state, we include them for clarity.
The budget equations for the vertical and horizontal velocity variances 〈u22〉 and 〈u21 + u33〉 are given
by

@
@t
〈u22〉= I〈u22〉 + II〈u22〉 + III〈u22〉 + IV〈u22〉; (21)

where

I〈u22〉 =−2
√

�
R

〈
@u2
@xj

@u2
@xj

〉
;

II〈u22〉 =
@
@x2

(√
�
R

@
@x2

〈u22〉 − 〈u32〉 − 2〈u2p′〉
)
;

III〈u22〉 = 2
〈
p′ @u2

@x2

〉
;

IV〈u22〉 = 2〈u2�′〉
and

@
@t
〈u21 + u23〉= I〈u21+u23〉 + II〈u21+u23〉 + III〈u21+u23〉; (22)

where

I〈u21+u23〉 =−2
√

�
R

〈
@u1
@xj

@u1
@xj

+
@u3
@xj

@u3
@xj

〉
;

II〈u21+u23〉 =
@
@x2

(√
�
R

@
@x2

〈u21 + u23〉 − 〈u2(u21 + u23)〉
)
;

III〈u21+u23〉 = 2
〈
p′ @u1

@x1
+ p′ @u3

@x3

〉
:

For later use, we also write the equation for the total velocity variance q2=〈u22〉+〈u21+u23〉, determined
by summing the two equations above. The pressure-strain terms denoted by III cancel because of the
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continuity equation (12), serving only the purpose of moving energy among the velocity components,
and we ,nd

@
@t

q2 = Iq2 + IIq2 + IVq2 ; (23)

where

Iq2 =−2
√

�
R

〈
@ui

@xj

@ui

@xj

〉
;

IIq2 =
@
@x2

(√
�
R

@
@x2

q2 − 〈u2q2〉 − 2〈u2p′〉
)
;

IVq2 = 2〈u2�′〉:
The budget equations for the temperature variance and the heat -ux are given by

@
@t
〈�′2〉= I〈�′2〉 + II〈�′2〉 + IV〈�′2〉; (24)

where

I〈�′2〉 =− 2√
�R

〈
@�′

@xj

@�′

@xj

〉
;

II〈�′2〉 =
@
@x2

(
1√
�R

@
@x2

〈�′2〉 − 〈u2�′2〉
)
;

IV〈�′2〉 =−2〈u2�′〉@〈T 〉@x2
and

@
@t
〈u2�′〉= I〈u2�′〉 + II〈u2�′〉 + III〈u2�′〉 + IV〈u2�′〉; (25)

where

I〈u2�′〉 =−
(√

�
R
+

1√
�R

)〈
@�′

@xj

@u2
@xj

〉
;

II〈u2�′〉 =
@
@x2

(√
�
R

〈
�′
@u2
@x2

〉
+

1√
�R

〈
u2

@�′

@x2

〉
− 〈u22�′〉

)
;

III〈u2�′〉 =−
〈
@p′

@x2
�′
〉
;

IV〈u2�′〉 = 〈�′2〉 − 〈u22〉
@〈T 〉
@x2

:

The mean temperature gradient @〈T 〉=@x2 is given in terms of the heat -ux 〈u2�′〉 using Eqs. (1),
(6) (with Cp → ∞), and Eq. (18) by

@〈T 〉
@x2

=
√
�R〈u2�′〉 − �0: (26)
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The description of the terms in the budget equations are standard: terms denoted by I represent
viscous and=or conductive dissipation; by II transport along the inhomogeneous vertical direction;
by III pressure redistribution, and; by IV source or sink terms due to buoyancy and=or strati,cation.

An important relation can be derived from the budget equation for q2 after integrating over the
vertical direction so that the contribution from the transport term IIq2 vanishes. If we de,ne the
(nondimensional) vertically integrated horizontally averaged energy (q2=2) dissipation per unit mass
as

�=
√

�
R

∫ ∞

−∞

〈
@ui

@xj

@ui

@xj

〉
dx2 (27)

then using Eq. (19), we derive

�∞ =
1
2
(�R)1=2�: (28)

The rise in the temperature of the -uid (given by �∞) far above the unstable layer (or the decrease
in temperature far below) is thus seen to be directly proportional to the vertically integrated energy
dissipation �.

An additional relation may be obtained upon vertical integration of the temperature variance budget
equation (24). If we de,ne the vertically integrated horizontally averaged (one-half) temperature
variance dissipation per unit mass as

�� =
1√
�R

∫ ∞

−∞

〈(
@�′

@xj

)2〉
dx2 (29)

then we derive the relation

�� =−
∫ ∞

−∞
〈u2�′〉@〈T 〉@x2

dx2 (30)

which by the use of Eq. (26) relates the temperature variance dissipation rate to an integral over
the heat -ux. The heat -ux thus determines both the integrated velocity and temperature variance
dissipation rates.

4. Numerical simulation methodology

Periodic boundary conditions are used in the two horizontal directions for which the turbulence
is homogeneous. A pseudospectral method was implemented on a parallel computer. In the periodic
directions complex exponentials are used as basis functions; in the inhomogeneous direction, either
Hermite basis functions (Tse and Chasnov, 1998) or Chebychev polynomials with an algebraic map
which transforms the in,nite vertical domain to a ,nite interval (Tse, 2000) are used. Although both
methods yield essentially the same results, the Chebychev approach proved to be more e>cient.
Details of these numerical methods may be found in the above citations.

The computations are performed in nondimensional units (see Section 2) and in these units the
periodicity length in the horizontal direction is 20:944; this approximates well an in,nite horizontal
extent. In the vertical direction, the outermost collocation points are separated by a distance of 6
using Hermite functions, and 35:8 using Chebychev polynomials, though the internal spacing of the
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points are diAerent with these methods so that these numbers cannot be compared. A grid resolution
of 64 points in each direction enabled us to perform direct numerical simulations (DNS) up to a
Rayleigh number of 104. For Rayleigh numbers 105 and 106, the resolution was increased to 128
points in each direction and subgrid scale stress terms in standard form were added to the right-hand
sides of the momentum and temperature equations, (10) and (11), respectively

−@ ij
@xj

; −@ �j
@xj

;

where  ij and  �j are modelled as (Smagorinsky, 1963)

 ij =−(C!)2√
2

SSij +
1
3
 kk$ij; (31)

 �j =−(C!)2√
2�e

S
@�
@xj

(32)

with Sij = (@ui=@xj + @uj=@xi), S =
√

SijSij; ! the horizontal grid spacing, �e an eddy Prandtl number
taken to be unity, and C the Smagorinsky constant. The diagonal term of  ij can be absorbed
by a rede,nition of the pressure. The resulting simulations are then technically called large eddy
simulations (LES), though clearly the subgrid scale model terms become more prominent as the
Rayleigh number increases. Even with inclusion of the extra subgrid scale terms, the numerical
resolution available to us was unable to provide an accurate solution for R = 107. To test the
sensitivity of our large eddy simulation results, computations were performed with C=0:15 or 0:30.
The horizontal velocity variance exhibited the largest variation, its value being approximately 40%
larger for C = 0:15 than for C = 0:3 when R = 106. At this same Rayleigh number, the vertical
velocity and scalar variance had a smaller variation of approximately 20% whereas the heat -ux
statistic showed almost no variation. The results we present will be for C = 0:15.

5. Numerical simulation results

The results from the DNS=LES computations for the mean temperature gradient and the second-
moments for R = 103, 104, 105, 106 are shown in Figs. 1–6: the mean temperature gradient is
presented in Fig. 1, the vertical and horizontal velocity variances and their sum are shown in Figs.
2–4, the temperature variance is shown in Fig. 5, and the heat -ux is shown in Fig. 6.

The dashed line in Fig. 1 represents the temperature gradient – �0 in the absence of -uid motion
(R¡Rc – the laminar solution) whereas the solid lines represent the gradient at higher Rayleigh
numbers. The mean temperature gradient converges towards zero with increasing Rayleigh number
within a central well-mixed layer. The well-mixed layer is approximately the same length as the
unstable layer |x2|¡ 1=

√
3 of the laminar solution. Above and below the well-mixed layer are layers

of partial mixing in which the temperature gradient converges at large Rayleigh numbers to a positive
(stable) value less than the laminar value. Above and below these partially mixed layers, the mean
temperature gradient eventually attains its laminar value. We thus distinguish three diAerent layers
in our turbulent -ow as R → ∞: a well-mixed layer with zero mean temperature gradient, partially



406 J.R. Chasnov, K.L. Tse / Fluid Dynamics Research 28 (2001) 397–421

Fig. 1. The mean temperature gradient d〈T 〉=dx2 versus vertical height x2. The dashed line represents the laminar state
(R¡Rc) and the solid lines show the numerical simulation results for R= 103; 104; 105; 106.

Fig. 2. The vertical velocity variance 〈u22〉 versus vertical height x2 from the numerical simulations for R = 103, 104,
105, 106.
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Fig. 3. The horizontal velocity variance 〈u21 + u23〉 versus vertical height x2 from the numerical simulations for
R= 103; 104; 105; 106.

Fig. 4. The total velocity variance q2 versus vertical height x2 from the numerical simulations for R=103; 104; 105; 106.
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Fig. 5. The temperature variance 〈�′2〉 versus vertical height x2 from the numerical simulations for R=103; 104; 105; 106.

Fig. 6. The heat -ux 〈u2�′〉 versus vertical height x2 from the numerical simulations for R= 103; 104; 105; 106.
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mixed layers above and below the well-mixed layer, and unmixed layers far above and below the
partially mixed layers.

In Fig. 2, the vertical velocity variance is observed to attain its maximum in the center of the
well-mixed layer whereas in Fig. 3, the horizontal velocity variance is observed to be maximum
within the partially mixed layers. Both (nondimensional) velocity variances decrease with increasing
Rayleigh numbers. The outer maxima of the horizontal velocity variances signi,es a turning of the
-uid velocity from a primarily vertical to a horizontal direction, similar to that which occurs when
a -uid encounters a solid wall. The total velocity variance is shown in Fig. 4. At large Rayleigh
numbers, there is only a single maximum in the center of the well-mixed layer; however the region
over which the total velocity variance is appreciable is noticeably broader than that for the vertical
variance alone.

The temperature variance, shown in Fig. 5, has local maxima both in the center of the well-mixed
layer and within the upper and lower partially mixed layers. Both maxima decrease with increasing
Rayleigh number. Although the maximum is largest in the well-mixed layer at the lowest Rayleigh
number, the maxima within the partially mixed layers become largest at higher Rayleigh numbers.
The experimental observation of a large temperature variance within the stable -uid layers in pen-
etrative convection was ,rst reported by Townsend (1964) based on his ice-water experiments and
was attributed to the excitation of internal gravity waves.

The heat -ux, shown in Fig. 6, is positive within the well-mixed layer with maximum in the center,
and negative within the partially mixed layers. The heat -ux is related to the mean temperature
gradient via Eq. (26), and the change in sign of the heat -ux coincides approximately with the
change in sign of �0(x2). The usual physical interpretation is that the turbulent motions act to mix
the mean temperature gradient created by the internal heat source.

Finally, in Fig. 7 we plot the temperature increment �∞, (19), of the -uid in the unmixed layers
versus the Rayleigh number R. It is observed that �∞ slowly increases with R, though it is impossible
to conclude from the data whether this increase continues inde,nitely or whether �∞ eventually
approaches a constant value as R → ∞. In Section 6 we will argue for the latter conclusion using
results from an analytical model.

6. Analytic scaling laws from a turbulence model

6.1. Second-moment closure

In the second-moment equations (21)–(26), only the source=sink terms represented by IV are
in terms of the second-moments. Closure assumptions must be made for the terms I–III if these
equations are to be solved directly. In this section, we show how some widely used and relatively
simple closure models enable us to predict the high Rayleigh number scaling of the simulation
statistics.

Models at the level of the second-moment equations have been developed for strati,ed turbulence
(see, for instance, Mellor and Yamada, 1982; Launder, 1989; Craft et al., 1996). We consider directly
the second-moment equations for q2, 〈�′2〉 and 〈u2�′〉. We assume a statistically steady state so that
the second-moments are functions only of the vertical coordinate x2. Modelling the moment equation
for q2 instead of separately modelling the equations for the vertical and horizontal velocity variances
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Fig. 7. Computation of �∞, de,ned in Eq. (19), versus R from the numerical simulation data.

alleviates the need for treatment of the di>cult to model pressure-strain term. The pressure-strain
term is responsible for the generation of the horizontal velocity variance – there being no other
source term in this equation – and is usually modelled with a return-to-isotropy assumption (Launder,
1989). However, within the partially mixed -uid layers the numerical simulation results show that
the horizontal variance becomes larger than the vertical variance so that a return-to-isotropy type of
model would not be able to reproduce this wall-like eAect.

The dissipation terms I are modelled using a Kolmogorov-like argument and local isotropy
assumption as

Iq2 =−2q3

%1
; I〈�′2〉 =−2q

%2
〈�′2〉; I〈u2�′〉 = 0; (33)

where %1 and %2 are nondimensional length scales. The transport terms are modelled as

IIq2 =
d
dx2

(
L1q

d
dx2

q2
)
; II〈�′2〉 =

d
dx2

(
L2q

d
dx2

〈�′2〉
)
;

II〈u2�′〉 =
d
dx2

(
L3q

d
dx2

〈u2�′〉
)
; (34)

where L1; L2, and L3 are additional nondimensional length scales. Finally, the temperature–pressure
gradient term is modelled as

III〈u2�′〉 =−q
&
〈u2�′〉+ ('− 1)〈�′2〉; (35)
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where & is another nondimensional length scale and ' is a constant between zero and unity. The
,rst term in the model of the temperature–pressure gradient plays a role analogous to the dissipation
terms I. The second term is omitted by Mellor and Yamada (1982), but is included by Launder
(1989). It serves to modify the coe>cient of the term 〈�′2〉 in the source IV〈u2�′〉 from unity to '.
Finally, since 〈u22〉 appears explicitly in IV〈u2�′〉, this term must now be modelled and we make the
convenient (though erroneous) assumption that

〈u22〉= (q2 (36)

with ( a constant between zero and unity.
In general, the nondimensional length scales %1; %2; L1; L2; L3 and & depend on the vertical

coordinate x2. Mellor and Yamada (1982) set them all proportional and formulate an additional
length scale equation. Launder (1989) eliminates these length scales (again all proportional) in favor
of the energy dissipation rate �=−Iq2=2 and formulates an additional evolution equation for �. Since
the characteristic energy containing length scale of our problem is set by the internal heat source
by way of �0, it is plausible that this master length scale will be independent of Rayleigh number
at asymptotically large values. Furthermore, an analytical solution of the above model (with some
additional simpli,cations) is possible if we assume that all the length scales are independent of x2.
Although this may result in a quantitatively inaccurate model, we hope that the solution will be
qualitatively correct. Also, we then have the distinct advantage of explicitly obtaining the analytical
high Rayleigh number scaling of the moments.

6.2. An analytical model without penetration

We begin by considering a simpler set of model equations obtained by neglecting transport, i.e.,
taking L1 =L2 =L3 =0. The physical role of the transport terms is to move the turbulent -uctuations
generated in the unstable middle layer to the stable upper and lower layers, and without these terms
it is expected that the solution will have zero variances within the stable layers. With the above
simpli,cation, the closed model equations for the statistics q2; 〈�′2〉; 〈u2�′〉 and d〈T 〉=dx2 become

q3

%1
= 〈u2�′〉; (37)

q
%2

〈�′2〉=−〈u2�′〉d〈T 〉dx2
; (38)

q
&
〈u2�′〉= '〈�′2〉 − (q2

d〈T 〉
dx2

; (39)

d〈T 〉
dx2

= (�R)1=2〈u2�′〉 − �0: (40)

After some algebraic manipulation, we ,nd that the solution of Eqs. (37)–(40) for the mean tem-
perature gradient is either explicitly given by

d〈T 〉
dx2

=−�0 (41)
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or implicitly given by

d〈T 〉
dx2

=−
(
(+

'%2

%1

)−1

%−1=3
1 &−1�2=3

0 (�R)−1=3
(
1 +

1
�0

d〈T 〉
dx2

)2=3
(42)

the former solution applicable to the upper and lower unmixed layers and the latter to the central
well-mixed layer. For high Rayleigh numbers in the well-mixed layer∣∣∣∣ 1�0

d〈T 〉
dx2

∣∣∣∣�1 (43)

so that to leading-order in �R,

d〈T 〉
dx2

=−
(
(+

'%2

%1

)−1

%−1=3
1 &−1�2=3

0 (�R)−1=3; (44)

q2 = %2=3
1 �2=3

0 (�R)−1=3; (45)

〈�′2〉= %−2=3
1 %2&−1

(
(+

'%2

%1

)−1

�4=3
0 (�R)−2=3; (46)

〈u2�′〉= �0(�R)−1=2: (47)

These statistics in the central well-mixed layer match (when �0=0 at x2=±1=
√
3) with their laminar

form in the upper and lower unmixed layers,

d〈T 〉
dx2

=−�0; q2 = 0; 〈�′2〉= 0; 〈u2�′〉= 0 (48)

as a result of the lack of transport within this model.
We have thus obtained within our simpli,ed turbulence model the large Rayleigh number scalings

of the moments in the central well-mixed layer. The decrease in the velocity and temperature variance
in the well-mixed layer with increasing Rayleigh number and the approach of the temperature gradient
to zero is in qualitative agreement with our numerical simulation results, and a more quantitative
comparison will be made in Section 7. We note that our obtained scalings for the velocity variance
agree with those found earlier by Zahn et al. (1982) for hexagonal cells and not for those obtained
by them using rolls. (To compare our result (45) to that of Zahn et al., Eq. (15) must be used to
convert units.)

Although the velocity variance decreases with Rayleigh number as R−1=3, the Reynolds number
Re of the -ow ,eld, de,ned in Eq. (17) with the velocity scale U taken to be proportional to q at
x2 = 0, increases with Rayleigh number as Re ∼ R1=3 so that the -uid motion is more turbulent with
increasing Rayleigh number in the usual sense.

Our analytic results also demonstrate the importance of each of the modelled terms through the
nondimensional length scales %1; %2 and &, and the constants ( and '. For instance, the solution
diverges in the absence of viscous dissipation (%1 → ∞) but remains ,nite in the absence of thermal
conduction (%2 → ∞). Also, the ,rst of the temperature–pressure gradient terms (which goes to
zero as & → ∞) is necessary for the creation of nonzero temperature variance within the central
well-mixed layer.
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6.3. An analytical model with penetration

The above simpli,ed model excludes the physics of penetration. To include this eAect we need to
consider nonzero transport. The transport terms in the temperature variance and heat -ux equations
are di>cult to treat analytically; however, the term in the energy equation is simpler to consider
since for constant L1,

IIq2 =
d
dx2

(
L1q

d
dx2

q2
)
=

2
3
L1

d2

dx22
q3: (49)

To consider some aspect of transport analytically, we thus take L2 = L3 = 0, and L1 �= 0. Our model
equations now become

L1

3
d2

dx22
q3 − 1

%1
q3 =−〈u2�′〉; (50)

q
%2

〈�′2〉=−〈u2�′〉d〈T 〉dx2
; (51)

q
&
〈u2�′〉= '〈�′2〉 − (q2

d〈T 〉
dx2

; (52)

d〈T 〉
dx2

= (�R)1=2〈u2�′〉 − �0: (53)

From Eqs. (51)–(53), we can derive a quadratic equation for d〈T 〉=dx2 in terms of q:(
d〈T 〉
dx2

)2
+

(
�0 +

q2

'%2&
+

((�R)1=2

'%2
q3
)(

d〈T 〉
dx2

)
+

q2

'%2&
�0 = 0: (54)

To solve the remaining Eq. (50), we need to determine the heat -ux 〈u2�′〉 using Eqs. (54) and
(53), i.e.,

〈u2�′〉= (�R)−1=2
(
�0 +

d〈T 〉
dx2

)
: (55)

We consider the large Rayleigh number asymptotics. Within the well-mixed layer, the mean tem-
perature gradient approaches zero as R → ∞ so that the �0 term of Eq. (55) dominates over the
mean temperature gradient. Above and below the well-mixed layer the mean temperature gradient
approaches a nonzero value, and since q → 0 as R → ∞, Eq. (54) simpli,es to(

d〈T 〉
dx2

)
+

(
�0 +

((�R)1=2

'%2
q3
)
= 0: (56)

The asymptotic high Rayleigh number solution for the heat -ux is thus given by

〈u2�′〉=
{
(�R)−1=2�0 if |x2|¡s=2;

−(('%2)−1q3 if |x2|¿s=2;
(57)
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where s is the height of the well-mixed layer. The precise value of s is to be determined after a
solution for q is found by requiring the continuity of the heat -ux at ±s=2. We comment that the
heat -ux given by Eq. (57) agrees qualitatively with the simulation results shown in Fig. 6, being
positive in the central well-mixed layer and negative in the upper and lower partially mixed layers.

We are thus left with solving a linear second-order diAerential equation for q3. We de,ne the
parameters

c =
3
L1

; a2 =
c
%1

; b2 = a2
(
1 +

(%1

'%2

)
: (58)

Then the diAerential equation for q3 becomes

d2

dx22
q3 − a2q3 =−c(�R)−1=2�0; |x2|¡s=2; (59)

d2

dx22
q3 − b2q3 = 0; |x2|¿s=2 (60)

with the boundary conditions q3 → 0 at x2=±∞, and continuity of q3 and its derivative at x2=±s=2.
Using �0 = 1− 3x22, the solution is

q3(�R)1=2 =




A exp[b(x2 + s=2)] if x2 ¡− s=2;

B [exp(ax2) + exp(−ax2)] + ca−2(1− 6a−2 − 3x22) if |x2|¡s=2;

A exp[− b(x2 − s=2)] if x2 ¿s=2;

(61)

where the coe>cients A and B are functions of a; b; c and s but are independent of �R. The exact
result for the coe>cients is not particularly illuminating and we omit it here; rather we observe that
q2 ˙ (�R)−1=3, and from Eq. (57), 〈u2�′〉 ˙ (�R)−1=2 over the entire domain. Using Eq. (54), we
also ,nd that in the well-mixed layer d〈T 〉=dx2 ˙ (�R)−1=3 whereas it scales like (�R)0 above and
below this layer.

The scaling of the temperature variance 〈�′2〉 may now be determined from Eq. (51), i.e.

〈�′2〉=−%2〈u2�′〉q−1 d〈T 〉
dx2

: (62)

As a consequence of the diAerent scaling of the mean temperature gradient, in the well-mixed layer
〈�′2〉 ˙ (�R)−2=3 whereas above and below this layer 〈�′2〉 ˙ (�R)−1=3. Hence for large Rayleigh
numbers the temperature variance in the central well-mixed layer is small compared to that in the
partially mixed layers above and below. This is in qualitative agreement with the results of our
numerical simulations, and with the ice-water experiments of Townsend (1964).

It is easily seen that inclusion of the transport terms in the temperature variance and heat -ux
equations will not modify the above scaling laws.

The height of the well-mixed layer s can be determined from continuity of the heat -ux and the
analytical solution for the coe>cient A (which depends on s). This leads to a transcendental equation
for s which depends on all the parameters of the second-moment closure model. Rather than pursue
this further here, it is more illuminating to consider a simpler physical model.
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Fig. 8. The solid line is the height s of the well-mixed layer versus �∞, obtained by solving the cubic equation given in
Eq. (64). The dashed line at s=2=

√
3 corresponds to the height of the (laminar) unstable layer. The symbols on the plot

correspond to values of �∞ obtained from the numerical simulations: (×) R=103; (◦) R=104; (+) R=105; (♦) R=106.

6.4. A model for the penetration length

We consider R → ∞ and assume only mixed and unmixed layers, i.e., we take the mean temper-
ature gradient to be zero over a layer of height s, and to be the same as the laminar temperature
gradient above and below this layer. A similar physical model was also proposed by Zahn et al.
(1982). Now, the mean temperature distribution itself is shifted above and below the mixed layer
by the constant �∞, and from Eq. (19) and the scaling of the heat -ux derived in Section 6.3, �∞
approaches a constant ,nite value as R → ∞. The temperature distribution at high Rayleigh numbers
thus takes the modelled form

T (x2) =




T0(x2)− �∞ if x2 ¡− s=2;

0 if − s=2¡x2 ¡s=2;

T0(x2) + �∞ if x2 ¿s=2:
(63)

Continuity of the modelled temperature distribution at x2 = ±s=2, and use of the nondimensional
Matthews’ form T0 = x32 − x2 results in the following cubic equation for s:(

s
2

)3
−
(
s
2

)
+ �∞ = 0: (64)

A graph of the real positive solutions of Eq. (64) for s as a function of �∞ is given by the solid line
in Fig. 8. The unstable layer of the laminar -uid has height 2=

√
3 (represented by the dashed-line),
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Fig. 9. Comparison of 〈T 〉 from the numerical simulation data with R= 106 (solid line) and the two layer model pro,le
(dashed line) with �∞ = 0:326. Also for comparison we plot T0(x2) (dashed-dot line).

obtained from Eq. (13) by solving �0(x2)=0, and the curve lying above the dashed line corresponds
to complete mixing of part of the stable temperature gradient. The solution curve lying below the
dashed line corresponds to an incomplete mixing of the unstable temperature gradient and is discarded
on physical grounds. Also shown as points on the curve are the results for �∞ from the numerical
simulations, previously presented in Fig. 7.

There are two interesting limits. First, maximum penetration occurs for s = 2 corresponding to
�∞ = 0. From Eq. (28), this solution thus has vanishing turbulent dissipation rate (as R → ∞) and
all of the turbulence energy created in the central layer is eliminated above and below by work
done against the buoyancy forces. Second, no penetration occurs when s= 2=

√
3 ≈ 1:155, and from

Eq. (64) this occurs when �∞=2
√
3=9 ≈ 0:3849. Within the model, this is the largest value attainable

by �∞ (and is in fact the value obtainable in Section 6.2 from the solution of the second-moment
model without penetration). In this second limiting case, all of the turbulence energy generated in
the central layer is dissipated by viscosity within this layer.

The above model is simplistic in that we approximate the true temperature pro,le consisting
of well-mixed, partially mixed, and unmixed layers by two layers. Nevertheless, it is of interest
to compare the model and actual temperature pro,les. The temperature pro,le obtained from the
numerical simulation for R = 106 (solid line) and the approximate two-layer model pro,le (dashed
line) taking �∞=0:326 are shown in Fig. 9. For comparison purposes, the laminar temperature pro,le
T0 is also shown (dashed-dot line). The two-layer model is observed to approximate reasonably the
actual temperature pro,le.

Fig. 9 suggests a de,nition for a penetration distance using the two-layer model and Fig. 8. In
Fig. 10, we plot the value of

√
3s=2 versus Rayleigh number obtained using the two-layer model
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Fig. 10. Normalized height
√
3s=2 of the well-mixed layer versus Rayleigh number R, obtained from the two-layer model

and the results of the numerical simulations.

and the values of �∞ from the numerical simulations. Within the two-layer model the ordinate may
range from a maximum of

√
3 (corresponding to an approximate 36:6% extension of the (laminar)

unstable layer on both sides) to a minimum of unity (corresponding to no extension) and we
show this ordinate range in the ,gure. Evidently, the length of the well-mixed layer decreases with
increasing Rayleigh number; however, the in,nite Rayleigh number limit is unclear from the data.
For R = 106, the height of the mixed layer is approximately 30% longer than the height of the
(laminar) unstable layer, corresponding to a 15% extension above and below the unstable layer.

7. Scaling of the numerical simulation results

The Rayleigh number scalings of the statistics obtained in Section 6 are now compared to the
results of the numerical simulations. A rescaling of the temperature variance is shown in Fig. 11a
and b: 〈�′2〉 is multiplied by R2=3 and R1=3, respectively. The former scaling is the theoretical result
for the central well-mixed layer and the latter scaling is for the upper and lower partially mixed
layers. Certainly, the diAerent scaling of the temperature variance in the well-mixed and partially
mixed layers is evident from these plots. Furthermore, the asymptotic analytical results seem to be
reasonably well-obeyed considering the moderate Rayleigh numbers obtainable by the simulations.

In Fig. 12, the total velocity variance q2 from the simulations is multiplied by R1=3 and plotted
versus vertical height x2. This ,gure is to be compared to the unscaled plot given in Fig. 4. Although
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Fig. 11. The Rayleigh number scaled temperature variance Rn〈�′2〉 versus vertical height x2 from the numerical simulations
for R = 103; 104; 105; 106. (a) n = 2

3 scaling appropriate for the central well-mixed layer; (b) n = 1
3 scaling appropriate

for the upper and lower partially mixed layers.
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Fig. 12. The Rayleigh number scaled total velocity variance R1=3q2 versus vertical height x2 from the numerical simulations
for R= 103; 104; 105; 106.

a tendency towards scaling is observed in Fig. 12, it seems that a de,nitive test of the high Rayleigh
number scaling law obtained in Section 6 is unattainable at these moderate Rayleigh numbers.

Finally, in Fig. 13 the heat -ux 〈u2�′〉 is multiplied by R1=2 and plotted versus x2 for the various
Rayleigh numbers simulated. At the highest Rayleigh numbers, the asymptotic analytic scaling laws
seem reasonably well-obeyed. In the well-mixed layer, the mean temperature gradient approaches
zero with Rayleigh number so that from Eq. (55) the heat -ux scales like (�R)−1=2�0. In the center
of the well-mixed layer �0=1 so that the rescaled heat -ux should be near unity and this is observed
from the simulation for R= 106.

8. Summary

High Rayleigh number asymptotics for the velocity and scalar variances, heat -ux, and mean
temperature gradient were obtained from a simpli,ed second-moment closure model and compared
to results from direct and large eddy simulations. The computations attain Rayleigh numbers R
four orders of magnitude above the critical value. Although this may be too low to decisively test
the analytic scaling laws, qualitative agreement between the simulation results and the asymptotics
provide us some con,dence in their validity.

Of course our turbulence modelling is inexact and there remains the possibility that the scaling laws
obtained from the model are incorrect. Nevertheless, the obtained scaling laws are insensitive to the
precise details of the model (i.e., the model coe>cients), but rather arise from the well-established
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Fig. 13. The Rayleigh number scaled heat -ux R1=2〈u2�′〉 versus vertical height x2 from the numerical simulations for
R= 103; 104; 105; 106.

approximations that at high Reynolds numbers dissipation and transport are independent of the
molecular coe>cients of viscosity and diAusivity.

The computational results show three layers of mixing in the -uid: a central well-mixed layer of
approximately the same extent as the (laminar) unstable layer in which the mean temperature gradient
approaches zero as R → ∞, partially mixed layers above and below the well-mixed layer in which the
mean temperature gradient has reduced stability compared to its laminar value, and unmixed layers
far above and below the partially mixed layers. An interesting result of the second-moment closure
model – which ,nds some veri,cation from the numerical simulations – is that the temperature
variance scales diAerently on Rayleigh number in the well-mixed and partially mixed layers. As
R → ∞, the temperature variance in the partially mixed layer dominates by a factor of R1=3. The
second-moment closure model yields a simple explanation for this result: the temperature variance
is proportional to the mean temperature gradient, and although the mean temperature gradient goes
to zero as R−1=3 in the well-mixed layer, it approaches a nonzero value in the partially mixed layers.
Physically, temperature -uctuations are created by vertical -uid motion along a mean temperature
gradient; the turbulent mixing reduces the mean temperature gradient to zero within the central
well-mixed layer thus eliminating the source of temperature -uctuations.

Finally, upon approximating the three layers of mixing by a two-layer model we have been able
to estimate the height of the mixed layer at R= 106 to be about 30% longer than the height of the
(laminar) unstable layer (corresponding to approximately a 15% extension above and below). This
15% is to be compared to a 50% extension on both sides reported by Zahn et al. (1982) using a
piece-wise linear temperature gradient with the unstable gradient of same magnitude as the stable
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gradient. This diAerence in penetration may be due to the increased stability of our upper and lower
layers because of our use of a quadratic temperature gradient. We also comment that our numerical
simulations demonstrate a slow decrease in the penetration length with increasing Rayleigh number,
though this is presumably a ,nite Rayleigh number eAect.
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