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Evolution of decaying two-dimensional turbulence
and self-similarity

J. R. Herring, Y. Kimura, J. Chasnov

Abstract

We examine the consequences of self-similarity of the energy spectrum of
two-dimensional decaying turbulence, and conclude that traditional closures
(such as EDQNM and TFM) are consistent with this principle only if the
regions of space contributing significantly to energy and enstrophy transfer
comprise an ever diminishing region of space as time proceeds from the
initial time of Gaussian chaos. Results of modifying the TFM according to
this assumption are compared to the recent high resolution DNS of Chasnov.

1 Two-dimensional turbulence:
Its scaling and self-similarity

Chasnov’s (1996) 4096-resolution DNS suggests that decaying two-dimensional
turbulence evolves via an approximate self-similar state. This surmise includes
large scales, (for which the energy spectrum E(k,t) ~ k?*), the inertial range,
(E(k,t) ~ k=3), and a considerable portion of the dissipation range. We argue
here that the constraint of high Reynolds number energy constancy and com-
plete self-similarity implies that the energy (and enstrophy) transfer process must
have an explicit time-dependence. We associate such time-dependence with the
progressive spottiness of the energy transfer process: the turbulence lives on an
ever-diminishing subset of the space available to it. The proposed modified trans-
fer function, T'(k,t), (T 3 (E + 2vk®*E) = T'), implied by complete self similarity
together with energy constancy, is Tinoq = (to/t)Y/2T'(k,t), as t — oo. This implies
that the length scale increases as t'/2 instead of ¢, a la Batchelor (1969). If the
form of molecular dissipation changes, so must the power of the (¢p/t) factor in
Tmod'

We write the spectral equations in a representation that is an adaptation of
that of Linn (1961) to two-dimensions:

U (k,t) = T (k,t)— 20k2U (k, t) with E(k,t) = 2nkU (k,t), T(k) = 27kT (k) (1)

Now put
Ulk,t) = udA(t)F(kA(t),t), K = EA(t) (2)

We search for functions A(t) and A(¢) for which F(K,t) has no explicit dependence
on t. Introducing (2) into (1) gives,

AF + (AANNKOF/OK + AQF = T/(u3) — 2v(K/\)*AF (3)
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If (3) is to be satisfied with ;F(K,t) = 0, the remaining terms must balance.
Accordingly, we put _ .
AJA=CIMr= A=) (4)

Note that the dimensions of T — [UvVk4U], so that if T has the same time-
dependence as the LHS of (3),

CAMA=~AY2 N2 M) = (7/C)AC/? (5)
If [ dkE(k,t) is constant ( as t — 00), (3) implies C = 2. Then
A1) = ugt + ho, A =22, A =2 ug, AJA = 2up/\ (6)
If (6) is used, (3) becomes,
F+ (1/2)KFx + (M (2uo)Fy = (1/(20d))T — vK2F/(A)) (7

However, without assuming any form for A, we may use (4) to write (3) in a more
convenient form for advancing F(K,t) in time;

Fy = A/N{=(1/K)A(K?F) [dK + (1/ (@A) T (k) = 20K°F/(AN)} - (8)

Equation (8) cannot as yet be used to infer scaling of its various terms, because
the argument of 7 is k, not K = Ak. We make this conversion in the next section.

2 TFM analysis of 7 and its ingredients

For the sake of brevity, we state this conversion without any derivation:
T(k) = M3T (K), T(K) = / BrpqOkroF(Q)(F(P) - F(K))  (9)
N

d{[Mwol®kpe}/dt = 1 — {A(K) +7(P) +7(Q)}Oxpo (10)
and
f](K) =AdeQCKPQéKpQF(Q)+I/K2/(UQ)\) (].].)
So that (8) may be rewritten as,
Fr = A/MN{~(1/K)d(K?F)/dK + (uo/NT(K) — 2vK*F/(AN)}  (12)

In order for ;F(K,t) = 0 at small K, the viscous term may be neglected, and
where we may use a K — 0 expansion to T'(K) (Lesieur (1990)), we must have

(1/K)K*F(K)JOK = T(K) — [ T aPeuspFA (PP (13)

This imposes an overall constraint on F(K) if self-similar decay is to prevail over
all K.
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3 Scaling of transfer needed for self-similarity

Consider (8) which steps F(K,t) forward in time, and let us take (6) for A(¢).
The first factor on the rhs simply changes dependent variable [t] to something else
[In(ugt + Ao)], and this is of no real consequence. But within the {-}, the effect
of v is progressively discounted (as compared to the first two terms) as t — oco.
Hence, the impossibility, according to TFM, for a completely self-similar evolution
of E(k) = 2rkU(k,1).

On the other hand, we may ask what is necessary for E(k,t) to be completely
self-similar. According to (3), in order for the dissipation term (the last term on
the rhs) to be ~ the kinematic terms (the first two lhs terms) is:

AMA~T, = A~ 2 (14)

where we use C = 2, which follows if at large Ry, E(t) is constant. If we also insist
that 7 scales similarly with the kinematic and viscous terms, the non-dimensional
factor, <, in (5) must be some power of t, say,

Y(t) ~ (t/t0)? (15)
Here, tg is a value of ¢ less than which universal self-similarity is not obtained.
Equation (5), with C = 2, A ~ t1/2 imply

p=—-1/2 (16)

Note that A ~ t!/2 assumes viscous losses = L ~ k?E(k). For L ~ k"E(k), we
would obtain A ~ ¢!/ with —p=1-—1/n.

To summarize, the requirement that the evolving energy spectrum be com-
pletely self-similar (as found by Chasnov (1996)), and that the energy transfer
function, 7", have the functional form as given by TFM ((9)—(11)), requires 7 (k,t)
to be re-scaled as:

T (k,t) =~ (Ao/ AT (k,1) (17)

A(t) = y/ A3 + 2upAot (18)

With this re-scaling, each term within {} in (8) has no explicit dependence on
time. Hence, we may expect that as ¢ — oo, this term will be driven to zero. If the
molecular dissipation law is changed from vk? to a hyper-viscosity (i.e.: viscous
dissipation ~ vpyperk?), the re-scaling to give self-similarity must be changed.

There remains the question of why such re-scaling is a plausible expectation
for two-dimensional turbulence. The basic point is that (17) implies a continuous
decrease of the relative importance of the inertial transfer with time'. We suggest
that such may be expected if the turbulence is progressively confined to smaller
regions of available space, as time proceeds. A model of how this may happen
is sketched in Sec. 5. Before that, we show some numerical results for the TFM,
integrated according to the formulas of Sec. 2 and 3.

with

IMcWilliams (1990) demonstrated through an analysis of his DNS that the presence of intense
vortices suppresses transfer.
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Fig. 1 Ry(t) for TFM (left panel) and TFM' (right panel) and various values of v
solid line, v = .228; short-dashed v = .5000; dot-dashed, v = 1.142; long-dashed,
v =2.28.

4 Numerical results

We present next some numerical results illustrating the issues discussed in the
previous sections. First we explore how TFM and TFM’ behave for small R,

where
Ry = VE@)/v
here o ~
E(t):w/ dKKF(K,t) E/ dKE(K,t)
0 0
and

2 =Et)/ /Ooo dKK?E(K,t)

We note that Chasnov (1997) found from his DNS that, below a critical value of
initial Ry, the flow reverted to a final period of decay in which T'(k,t) played no
role. For E(k,t = 0) ~ k%, k — 0, this condition implies E(t) ~ t~2, and Ry (t) ~
t=1. The issue is explored in Fig. 1 (a,b) for an initial E(K) ~ K3/(1 + K9). Fig.
(1a) shows results for TFM, while (1b) pertains to TFM'.

The amplitude of E is such that (13) is satisfied at small K. The value of
R, (0) is controlled by assigning various values of v. We note that for TFM if
R, (0) > 20, R(t) ~ t (in accord with Batchelor), whereas for initial values below
this the final period of decay is recovered (Ry(t) ~ 1/t). The TFM' results appear
to have a critical Ry somewhat larger (~ 30), with the same time-dependence in
the final period of decay. Above this value, Ry ~ t'/2, as expected. The short-time
behavior of Ry shown here differs from that of Chasnov in that our R (t) do not
have an initial decrease. This is explained by the fact that Chasnov’s simulations
have a peak energy at much higher wave numbers than ours, so that viscous effects
— which act immediately after the initial time, as contrasted to the more slowly
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Fig. 2 E(k,t) for TFM (left panel) and TFM’ (right panel) for v = .010 and for
t= 51,5 10, 20, 30, 40, 50.

developing energy transfer - are much more effective (near ¢t = 0) in his case than
ours.

We next discuss high Ry spectra. For this purpose, it is convenient to have
a measure of the extent of the inertial range. We do this by introducing another
Reynolds number, p, which remains constant during the decay process. We first
note that an integral measure of the extent of an inertial range that is ~ k=3 would
be indicated by:

p(t) ={ / E(K)dK / E(K)K*dK}Y?/ / E(K)K?dK (22)
In terms of the variable k, this is

p=u(k/ky)/v (23)

where

k2 = /k“dkE(k)//deE(k), and k, = (1)"/%/\/v.

and 7 is the enstrophy dissipation rate, 2v [ dkE(k)k*. An interesting formula
relating Ry and p is

dRx /dt = ~27/E(1 ~ p*) (24)

Here, € = fooo k?E(k)dk. We note that Chasnov’s highest Ry DNS have p ~ 8.5,
and we may match this value by the choice v = 0.0100, and an initial spectrum
centered at K = 1.

Evolution of TFM and TFM’ spectra, as evolved from (9) and (12), are
shown in Fig. 2. The corresponding evolution of Ry (t) is shown in Fig. (3a), while
p(t) from Chasnov’s DNS is depicted in Fig. (3b). The TFM spectrum shows a
modest F(K) ~ K~ range just beyond the energy peak, as suggested by Lesieur
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Fig. 3 Left panel: p(t) for TFM’ (solid line) and TFM (dashed line) for the run
described in Fig. 2. Right panel: p(t) for Chasnov’s simulation.

and Herring (1987). Note that the evolution of TFM is not self-similar at high K,
where the viscous effects continue to weaken with time, according to the remarks
of Sec. 3. The TFM' spectrum, on the other hand, quickly becomes self-similar
in the variable K over the full range of K. Here, the energy transfer is much
weaker. The evolution of Ry (Fig. 3) shows late time behavior Ry ~ t for TFM,
and Ry ~ vt for TFM'. The former is the classic Batchelor result, where the
latter is that needed for complete self-similarity. The course of E(t) for TFM’ is
~ C —In(t), as predicted by Chasnov, and as it must be if €(t) ~ 1/t.

The comparison of TFM’' with Chasnov’s high Ry case (Fig. (2b)) seems
satisfactory for scales larger than the wave-number peak, but TFM” and the DNS
differ for scales larger than the energy peak. The DNS seems a much more rounded
spectrum at very large scales. Some of the difference may be attributable to a lack
of large-scale resolution in the DNS.

If self-similarity is an approximate characterization of decay, it is of interest to
explore the consequences of assuming p(t) = po, during the entire time of decay. In
fact, this ansatz implies an equation for E(t) through the use of p(t) = p(0) = po,
(1), (2) and the fact that [ k2dkT(k,t) = 0 for two-dimensional turbulence. Thus
we have,

d(u®)/dt = —2v(w?) and d(w?)/dt = —2v{(Vw)?) (25a,b)
Using (22) for p(t), and

(Vw)?) =2 /0 " Wk, t)dk (26)

we find
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whose solution is:
fu— 2_
(u?) = ud [1+2(p8 — )Ry wot] /Y (28)
An equivalent equation may be found for (w?):

(w?) = wd [1+ 2058 — )Ry 'wot] 7/ | (29)

with Rg = u2/wov. The asymptotic solution for enstrophy (¢ — oo, Rg, pg > 1) is

Rowo
<‘U2> = 202
Po

t! (30)

5 Dynamics of decay in terms of spectra

The underlying idea emerging from our discussion is that small scales of two-
dimensional turbulence are parts of large scale structures. Hence, large and small
scales decay together, with both length scales growing as ~ v/t. (Such a growth
is characteristic of pure viscous dissipation.) That large and small scales may be
glued together is reasonable for two-dimensional flow, since the eddy turnover
time for an enstrophy inertial-range eddy (~ \/k3E(k)) is roughly independent
of scale (except for possible logarithmic corrections). Hence large and small scales
may become coherent with impunity. In three dimensions, on the other hand, the
inertial range eddy turn over time decreases with decreasing scale size, so that
small scales may achieve a much higher degree of statistical independence from
the large, energy-containing scales.

We first recall that the overall flow pattern revealed by DNS is a system
of isolated vortices, surrounded by strain regions in which transfer is substantial
(McWilliams, (1984), Benzi et al., (1987), and Siegel and Weiss (1997)). Since the
regions of strong strain are circumferential with respect to the isolated vortices,
we would expect their number to be equal to the number of vortices. If we suppose
the turbulence exist on independent patches, on each of which a statistical theory
such as TFM holds, then the decay properties of the total system are the same as
for each individual patch. If, however some of the patches — those corresponding to
isolated vortices — have very little strain, and hence little transfer to small scales,
the net transfer for the overall system is reduced. In this way, the net transfer,
averaged across patches, decreases with time. The question of whether this simple
picture is sensible may be answered by scanning a DNS to see if there are regions
where some measure of enstrophy transfer is unusually small. A convenient measure
would be the rate of production of mean-square vorticity gradients,

1d(Vw)?
2 dt

where w is the vorticity, and S the strain matrix,

— _wzy _wyy
= < Ve ey > (32)

= (Vw)T8(Vw) (31)
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Note that the normalized average value of the right hand side of (28) is, for isotropic
turbulence, the two-dimensional skewness

S = —2((0u/0z)(9w/0x))/{(Du/92)*) /2 (9w /0x)*)"/*}

6 Summary and concluding comments

Classical closures such as TFM applied to high Reynolds number two-dimensional
turbulence do not yield self-similar decay. The reason is traceable to (near) energy
conservation at high Reynolds numbers. The two-dimensional DNS of Chasnov,
on the other hand, exhibit a high degree of self-similarity, with a near constancy
of total energy at the largest Ry reported. The earlier DNS of McWilliams (1984),
and the comparison of that DNS with TFM by Herring and McWilliams (1985) — if
examined carefully — would have indicated the same result, although the resolution
there was too limited to be conclusive. In three dimensions, self-similar decay is
possible, and indeed was proposed many years ago as the universal mode of decay
for high Reynolds number flows (see i.e. Batchelor, (1959)). But in that case energy
decays as t 1. The DNS and closure may be partially reconciled by the assumption
that the energy (and enstrophy) transfer takes place in progressively smaller sub-
regions of high strain, surrounding intense vortices. Such physics is indicated by a
number of DNS (McWilliams (1984), Benzi et al. (1987)). If complete self-similarity
is assumed to rule the decay process, the length scale grows as Vt, and the energy
transfer decreases as 1/v/f. The growth in length scale differs from Chasnov’s
(1996) numerical finding of ¢4 at the highest Ry simulated.

Our discussion here has focused on the idea that progressive diminution of
transfer is associated with a corresponding decrease of the space on which the
turbulence lives. An alternate approach is to posit a Reynolds number dependence
of the transfer process. This is explored elsewhere (Chasnov and Herring (1998)).

We have noted (in Sec. 3) that if the functional form of dissipation is modified,
completely self-similar decay would dictate a modification in the equation that
determines the length scale, A(t). Thus, if vhyperk™ represents dissipation, A ~
1/ if the statistics of second moments are self-similar. Whether the slower A-
growth rates for hyper-viscosity DNS examined by Carnavale et al. (1991) would
be explained this way remains to be seen.
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