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The inertial-conductive subrange spectrum of a passive temperature field of a fluid of small 
Prandtl number is determined by large-eddy simulation. Results for simulations of both freely 
decaying and forced turbulence are presented. In the simulations of freely decaying turbulence, 
a subgrid model is used to simulate a decaying turbulent velocity field with a k - 5’3 inertial 
subrange energy spectrum convecting eight different decaying temperature fields with well- 
resolved conductive subranges. In the simulations of forced turbulence, a subgrid model is 
again used to simulate an inertial subrange velocity field; however, the velocity field is now 
forced at the lowest wave numbers of the simulation, and an external uniform mean 
temperature gradient is imposed. Statistically stationary velocity and temperature fluctuations 
are generated. The results of the decaying and forced simulations are in excellent agreement 
with the Batchelor, Howells, and Townsend (BHT) [J. Fluid Mech. 5, 134 ( 1959) ] k - ‘7’3 
spectrum in the far inertial-conductive subrange, whereas significant departures from the BHT 
spectrum are observed in the near inertial-conductive subrange. 

I. INTRODUCTION 
if the kinematic viscosity Y of a fluid is much less than its 

thermometric conductivity x, then velocity tluctuations in 
the fluid will persist at much smaller scales than temperature 
fluctuations. The scale sizes characterized by the range of 
wave numbers k over which the velocity fluctuations are 
highly turbulent, but the temperature fluctuations are 
strongly damped by the effects of conduction, is called the 
inertial-conductive subrange. The determination of the cor- 
rect inertial-conductive subrange spectrum of a temperature 
field in a fluid of small Prandtl number u = V/X has been a 
controversial problem for over 30 years. Physical experi- 
ments to investigate this subrange are difficult to perform, so 
that experimental data are limited, while analytical argu- 
ments abound as a result of too many dimensional quanti- 
ties. 

frozen Gaussian velocity field with an energy spectrum 
E(k) cck -‘13. When the temperature fluctuat&s~become 
conductive, the inertial-conductive subrange spectrum 

G(k) = fKo ,y - %,E2i3k - 1713, (2) 
originally proposed by Batchelor, Howells, and Townsend* 
(henceforth referred to as BHT), was recovered. The spec- 
trum G(k) is defined to yield the volume average of 8 2, 

(6’) = lm G(k)dk, (3) 

and gs is the constant flux of 19~ through wave number k 
when conductive effects are negligible: it is also equal to the 
conductive dissipation rate, 

m 
EC? - 2x s 

k’G(k)dk. (4) 
0 

Nevertheless, the equation satisfied by a temperature When the velocity field is prescribed, Ko E2/3 is the propor- 
field 0(x,t), convected by a velocity field u( x,t), is well tionality constant in front of the k - s13 power law of the 
known: inertial range energy spectrum 

-g f WV8 = XV’& (1) 

and, in the absence of definitive theoretical or experimental 
results, the remaining possibility is to solve Eq. ( 1) numeri- 
cally for scale sizes lying in the inertial-conductive sub- 
range. 

Such numerical simulations of Eq. ( 1) have been re- 
cently performed by Chasnov, Canuto, and Rogallo’ 
(henceforth referred to as CCR). If the temperature fluctu- 
ations do not dynamically interact with the convecting ve- 
locity field (as is typically the case when the temperature 
fluctuations are sufficiently small so that buoyancy effects 
may be ignored), the equation satisfied by u( x,t> is indepen- 
dent of B(x,t) and the temperature fluctuations are called 
passive. It is then reasonable to solve Eq. ( 1) using a pre- 
scribed velocity field. CCR performed such a numerical sim- 
ulation of the convection of a passive temperature field by a 

E(k) = Ko fi3k -. s’3, (5) 

whereas, in the physical case when the velocity field is a time- 
evolving solution of the Navier-Stokes equation, E is the con- 
stant flux of turbulent kinetic energy through wave number 
k when viscous effects are negligible. 

It should be noted that the BHT analysis does not re- 
quire an inertial range energy spectrum but rather one that 
decays much more slowly with increasing k than the tem- 
perature spectrum. In particular, the BHT result, Eq. (2), 
can be written in the form 

G(k) =I& .3esk -‘E(k), (6) 
so that a normalization of simulation results for G(k) by 
E(k) can prevent small deviations of E( k) from an inertial 
range spectrum from being of consequence. 

In an attempt to determine the physical inertial-con- 
ductive subrange, CCR also performed a large-eddy simula- 
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tion of this subrange. To simulate an inertial velocity field, 
they artificially forced the turbulence and employed an eddy 
viscosity subgrid model. An approximate inertial-conduc- 
tive subrange of the form given by Eq. (6) was observed by 
CCR for wave numbers much greater than the Corrsin- 
Obukhov wave number 

k CO = wyY4, (7) 
but with a proportionality constant slightly larger than f. 
This slightly larger value was attributed to the development 
of higher-order correlations in the velocity field. 

il. LARGE-EDDY SIMULATION 

In this paper, we improve upon the CCR large-eddy 
simulation by performing freely decaying and forced large- 
eddy simulations of passive temperature fields over a wider 
range of dimensionless wave numbers k/k,,. We use the 
Rogallo code3 for homogeneous turbulence, modified to in- 
clude a subgrid model consisting of an eddy-damping term 
and stochastic force, described in detail elsewhere.” In the 
simulations, the kinematic viscosity of the fluid is assumed 
to be negligible, i.e., the viscous subrange is not resolved. 
However, the thermometric conductivities of the simulated 
temperature fields are chosen so that the conductive scales of 
the temperature fluctuations are well resolved. An obvious 
advantage of this type of simulation is that the temperature 
fluctuations are not directly affected by a subgrid scale mod- 
el; however, the temperature fluctuations must be indirectly 
affected by the subgrid model through the nonlinear cou- 
pling of 8 to u. Furthermore, any physics that requires a 
resolved viscous subrange will be absent. In particular, the 
exponential tail of the viscous-conductive subrange does not 
appear in our simulation. This subrange, however, has been 
observed in a direct numerical simulation of the velocity and 
temperature fields, where both the viscous and conductive 
scales were resolved.5 

A. Freely decaying turbulence 
The numerical simulation of freely decaying velocity 

and temperature fluctuations closely models the decay of 
turbulent fluctuations created by passing a uniform stream 
of fluid past a heated grid, and thus has a firm physical basis. 
We begin the computation by performing a 643 numerical 
simulation of four different passive temperature fields con- 
vected by the same velocity field. The initial energy spectrum 
of the velocity fluctuations is chosen to be 

E(k,O) = (256/35)(2/a)“*k,‘(k/k,)” 

XU~ exp[ - 2(k/k,)*], (8) 
whereas the initial temperature spectra are all chosen to be 
G(k,O) = 28:/u: E(k,O), where no = 1, @, = 1, and 
kp - 5. The conductivities of the four temperature fields are 
chosen to be x = 0.03, 0.07, 0.20, and 0.50. The Prandtl 
numbers associated with each value of x cannot be deter- 
mined since the viscous scales are unresolved, but they are in 
any case, much less than one. The time evolution of the ener- 
gy spectrum is presented in Fig. 1, while the time evolutions 
of the four temperature spectra are presented in Fig. 2. An 
inertial subrange energy spectrum is observed to develop. 
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FIG. 1. Time evolution of the energy spectrum for freely decaying turbu- 
lence. 

After completing the simulation presented in Figs. 1 and 
2, we increased the conductivities of the four temperature 
fields to,? = 1.3,3.,, ’ 8.0,20.0, and further time-evolved the 
flow with a smaller time step [so that the time step is less 
than the smallest conductive time scale (xm k i ) - ‘, where 
xrn is the maximum thermometric conductivity, and k, is 
the maximum wave number in the simulation]. In Fig. 3 (a), 
we plot the eight resulting functions ,y3k 4G( k)/ [c,E( k) ] 
vs k /kc-, , at the latest time of the flow evolutions. If the 
BHT result, Eq. (6), is correct, then these plots should, for 
k>k,,, asymptotically approach the horizontal line drawn 
at 4. For greater clarity, an enlargement of Fig. 3 [a) is pre- 
sented in Fig. 3 (b) . 

From our simulation data, the BHT result is observed to 
be approached asymptotically in the far inertial-conductive 
subrange. The convergence of our results to 4 occurs at a 
rather large value of k /kc-, , so that the value 0.39 instead of 
f previously observed by CCR is due to their simulation of a 
temperature field with insufficiently large values of k /kc,. 

6. Forced turbulence 
A more precise determination of the temperature spec- 

trum in the near and far inertial-conductive subrange is pos- 
sible if the velocity and temperature fluctuations are forced 
so as to obtain a statistically stationary state. A time average 
over the steady state can then be performed yielding a better 
statistical sample. The velocity fluctuations are forced by 
keeping the amplitudes of the lowest wave-number Fourier 
components of the velocity field fixed,4 whereas the tem- 
perature fluctuations are forced by imposing a uniform mean 
temperature gradient. The simulation is begun with a fully 
developed velocity field, and an absence of temperature fluc- 
tuations. The velocity fluctuations then create temperature 
fluctuations from the mean temperature gradient. The veloc- 
ity and temperature fields are time-advanced until the tem- 
perature fluctuations reach a statistically stationary state, 
after which statistics of the fields are time-averaged until 
they converge. 
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FIG. 2. Time evolution of the temperature spectrum for freely decaying turbulence. (a) ,y = 0.03; (b) ,y = 0.07; (c) x = 0.20: (d) ,r = 0.50. 

1 -...tt 1.1 
IO 102 5X10” 

k/kc-o, 

0.1 . . ..-cc~ I 1 I I I I I Lm I.I.-J-J..- 
IO IO” 5x 

k/k,-, 

FIG.3.Spe~%rumof,~k~G(k)/[~~E(k)] vsk/k ca for eight different temperature fields for freely decaying turbulence. The horizontal line is the BHT 
result. (a) Full spectrum; (b) inertial-conductive subrange. 
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The externally imposed uniform mean temperature gra- 
dient contributes directly to the tlux of 8’ through wave 
number h-, and consequently, must be included when com- 
puting E*. By equating the constant flux of 0 * through wave 
number k when conductive effects are negligible to the total 
conductive dissipation rate, we find that es is now equal to 

$-j =2,y 
( I 
D2+- - k’G(k)dk , 

> 
(9) 

0 
where G(k) is the spectrum of the fluctuating ,temperature 
field (excluding the mean), and 

(10) 

is the uniform mean temperature gradient that we impose in 
the z direction. For convenience, we’have taken fi = 1, al- 
though any nonzero value will suffice since B only sets the 
relative scale of the temperature fluctuations. 

In Fig. 4, we plot the time average of the energy spec- 
trum E(k) vs k in computational units obtained from a 643 
numerical simulation of the forced velocity field, A reasona- 
ble k - 5’3 spectrum is observed over most of the computa- 
tional domain. In Fig. 5, we plot the time average of 
yk4G(k)/[ .+2(k) ] vs k/k,, for 11 temperature fields 
of different conductivities generated by the simulated veloc- 
ity field acting on a uniform mean temperature gradient. The 
results agree qualitatively with those from the freely decay- 
ing simulations, with the statistical scatter greatly reduced 
because of the time averaging. 

Figure 5 determines the temperature spectrum in both 
thenear and far inertial-conductive subrange. The behavior 
of the spectrum in the far subrange (k/k, 2 SO) is well 
predicted by the BHT value off whereas there are significant 
departures from this value in the near subrange 
[3Sk/k c-O S 80). This deviation is to be expected since the 
BHT analysis depends on k/k- being much greater than 
unity. What we have done is extended the BHT analytical 
result numerically to values of k /kc, of order unity. 
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FIG. 4. Time average oF the energy spectrum E(k) for forced turbulence. 
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FIG. 5. Time average of the inerti&conductive subrange spectrum of 
,y%‘+G(k)/[ +E(k)] vs k/k,, for 11 different temperature fields for 
forced turbulence. 

However, there is another important difference between 
the results of Fig. 5 and those of BHT. If one assumes (as is 
imphed by the BHT analysis) that the only statistical quanti- 
ties that characterize the temperature spectrum in the iner- 
tial subrange are the cascade rates E and eB, and the Corrsin- 
Obukhov length scale k,$, then dimensional analysis re- 
quires the simulation results displayed in Fig. 5 to collapse to 
a single universal curve. However, small but significant de- 
partures from this universal scaling in the near inertial-con- 
ductive subrange can be observed. We expect these devia- 
tions to be of two kinds: real physical ones, and those that are 
purely numerical. Numerical errors are clearly evident at the 
largest computational wave numbers of each simulation and 
may be attributed to a finite truncation of the Fourier series 
representing the velocity and temperature fields. In addi- 
tion, some of the scatter at the smallest computational wave 
numbers can be attributed to poor statistical sample at these 
wave numbers. The forcing and subgrid modeling of the ve- 
locity field may result in other unknown numerical errors, 
primarily affecting the spectra at the smallest and largest 
computational wave numbers, respectively. Yet the system- 
atic deviations of the temperature spectra from a universal 
curve at intermediate computational wave numbers, where 
the simulation statistics are the most reliable, suggest that a 
real physical mechanism may be responsible. An intriguing 
possibility for this mechanism that has been widely dis- 
cussed in the literature is intermittency. An analysis of an 
intermittency correction to the inertial-conductive sub- 
range has been performed by Van Atta6 using a bivariate 
lognormal distribution for the local temperature and veloc- 
ity dissipation rates. His results indicate a small correction to 
the k - 4 power law appearing in Eq. (6) due to a cross corre- 
lation between these dissipation rates. 

In conclusion, the BHT analytical result for the far iner- 
tial-conductive subrange has been extended by means of a 
numerical simulation to the near part of this subrange. In 
addition, small but significant deviations from a universal 
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scaling law based on Corrsin-Obukhov units have been ob- 
served. A determination of the precise causes of these devia- 
tions will require careful future analysis. 
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