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7.1 Introduction

Over twenty years have passed since the first large eddy simulation (LES) results
by Deardorff (1970) were published. During this period, this technique has ma-
tured considerably: the underlying theory has been advanced, new models have
been developed and tested, more efficient numerical schemes have been used. The
progress in computer power and memory has made possible the application of
LES to a variety of flows, compressible and incompressible, including heat trans-
fer, stratification, passive scalars and chemical reactions.

Turbulence is a phenomenon that occurs frequently in nature; it has, there-
fore, been the subject of study for over one hundred years. In present days, the
prediction and control of turbulent flows has become increasingly important, due
to their frequent occurrence in technological applications involving transportation
systems (cars, aircraft and ships), energy conversion systems (engines, turbines,
compressors) and geophysical applications (weather prediction, pollutant disper-
sion). The need for accurate models of turbulent flows is presently the pacing item
for the development of more accurate design and analysis tools for the applications
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mentioned above. For these reasons, added stress has been placed in recent years
on the development of accurate numerical tools for the prediction of turbulent
flows.

Analytical or numerical solution of turbulent flow problems can be accom-
plished using various levels of approximation, yielding more or less detailed de-
scriptions of the state of the flow. The simplest approach is to use semi-empirical
correlations. Moody’s diagram, which gives the skin friction factor for cylindrical
pipes as a function of Reynolds number and relative roughness, is an example of
this approach, which is especially useful for global, control-volume analyses, but
that yields no information on local quantities and relies heavily on the availability
of experimental data in configurations similar to the one under study.

A more sophisticated method involves the application of Reynolds’ averaging
to the equations of motion to obtain the well-known Reynolds-averaged Navier-
Stokes equations, that describe the evolution of the mean quantities. The effect
of turbulent fluctuations appears in a Reynolds stress term (uju’) that must be
modeled to close the system. The most commonly used models for the Reynolds-
averaged Navier-Stokes (RANS) equations, however, lack generality: the model
constants are usually set using a few simple flows, for which theoretical solutions
are known or well-documented experiments are available. When the models are
applied to flows that are very different from the ones used for calibration, however,
the constants often have to be adjusted to yield accurate predictions. Furthermore,
laminar-turbulent transition is exceedingly difficult to predict using the RANS
approach, and requires the addition of significant semi-empirical data, usually in
the form of intermittency functions. The principal reason for the lack of generality
of turbulence models lies in the fact that the model must represent a very wide
range of scales. While the small scales tend to depend only on viscosity, and may
be somewhat universal, the large ones are affected very strongly by the boundary
conditions (see, for instance, the difference between the spanwise rollers present
in mixing layers and wakes and the elongated streamwise vortices that are found
in the near-wall region of a turbulent boundary layer). Thus, it does not seem
possible to model the effect of the large scales of turbulence in the same way in
flows that are very different.

The most straightforward approach to the solution of turbulent flows is the
direct numerical simulation (DNS) of turbulence, in which the governing equations
are discretized and solved numerically. If the mesh is fine enough to resolve even
the smallest scales of motion, and the scheme is designed to minimize the numerical
dispersion and dissipation errors, one can obtain an accurate three-dimensional,
time-dependent solution of the governing equations completely free of modeling
assumptions, and in which the only errors are those introduced by the numerical
approximation. DNS has been a very useful tool, over the past ten years, for
the study of transitional and turbulent flow physics, but it also has some serious
limitations. First, the use of highly accurate, high-order schemes is desirable
to limit dispersion and dissipation errors; these schemes (spectral methods, for
example) tend to have little flexibility in handling complex geometries and general
boundary conditions. Secondly, to resolve all scales of motion, one requires a
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number of grid points N ~ L/n, where L is the dimension of the computational
domain (the largest scale in the system) and 7 is the smallest scale of motion, the
Kolmogorov length scale. Since this ratio is proportional to Re3/, the number of
grid points required by a DNS goes like N% ~ Re?/*; furthermore, the number of
timesteps required to advance the computation for a given period scales like Re3/%.
Assuming that the cost of a computation per time step scales at least with the
number of grid points, then the total cost of a direct simulation is proportional to
Re3. Thus, to increase the Reynolds number by a factor of two, the computational
effort must increase by at least a factor of 8. For these reasons, DNS has largely
been limited to simple geometries (flat plate, homogeneous flows) at low Reynolds
numbers, and its application to engineering-type problems within the next decade
appears unlikely.

Large-eddy simulation (LES) is a technique intermediate between the direct
simulation of turbulent flows and the solution of the Reynolds-averaged equations.
In LES the contribution of the large, energy-carrying structures to momentum and
energy transfer is computed exactly, and only the effect of the smallest scales of
turbulence is modeled. Since the small scales tend to be more homogeneous and
universal, and less affected by the boundary conditions than the large ones, there is
hope that their models can be simpler and require fewer adjustments when applied
to different flows than similar models for the RANS equations. LES is similar to
DNS in that it provides a three-dimensional, time dependent solution of the Navier-
Stokes equations. Thus, it still requires fairly fine meshes. However, it can be used
at much higher Reynolds numbers than DNS; ideally, in fact, if the small scales
obey inertial range dynamics, the cost of a computation is independent of Re (not,
however, if a solid boundary is present). In the following sections various aspects
of the theory of LES will be discussed and some applications will be presented.

7.2 Governing equations and filters

7.2.1 The filtering operation

LES is based on the definition of a filtering operation: a filtered (or resolved, or
large-scale) variable, denoted by an overbar, is defined as

7@ = /D f@)G(@, 2)de, (7.1)

where D is the entire domain and G is the filter function. The filter function
determines the size and structure of the small scales. It is easy to show that, if
G is a function of x — 2’ only, differentiation and the filtering operation commute
(Leonard 1974).

The most commonly-used filter functions are the sharp Fourier cutoff filter,
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best defined in wave space! as
S 1 ifkE<w/A
G(k) = { 0 otherwise, (7.2)
the Gaussian filter,
6 62
G(z) = A2 &P (_F) ) (7.3)
and the tophat filter in real space:
[ 1/A if x| < A/2
G(z) = { 0 otherwise, (7.4)

these three filters and their Fourier transforms are shown in Figure 7.1. It should
be noticed that the Gaussian filter is used in conjunction with a sharp Fourier
cutoff. The truncation of the Gaussian at a non-negligible value is the cause for
the ringing observed in the figure. For uniform filter width? A the filters above
are mean-preserving and commute with differentiation.

To illustrate the difference between the filters defined above they are applied to
a test function; the spectra of the filtered variables are shown in Figure 7.2. The
Tophat and Gaussian filters give similar results; in particular, they both smooth
the large-scale fluctuations as well as the small-scale ones, unlike the Fourier cutoff,
that only affects the scales below the cutoff wavenumber.

1'Unless otherwise noted, a quantity denoted by a caret - is the complex Fourier coefficient of
the original quantity.
2For a discussion of filtering with non-uniform filters see Ghosal and Moin (1995).
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Figure 7.2: Filtering of a test function.
Fourier cutoff; ¢ : Gaussian; A : tophat.

7.2.2 Filtered Navier-Stokes equations

If the filtering operation (7.1) is applied to the governing equations, one obtains
the filtered equations of motion. For an incompressible flow of a Newtonian fluid,
they take the following form:

ou; _
. = O (7.5)
ou; o . _ . 1 6ﬁ 6Ti]' 62ﬂi
ot T8z, W) = 50 T G, TV my0m, (7.6)
(7.7)

The filtered Navier-Stokes equations govern the evolution of the large, energy-
carrying, scales of motion. The effect of the small scales appears through a subgrid-
scale (SGS) stress term,

Tij = Wity — Uillj, (7.8)

that must be modeled.
If the subgrid scale velocity u} = u; — @; is defined, the SGS stresses can be
decomposed into three parts (Leonard 1974):

Tij = Will; — Wil; = Lij + Cij + Rij, (7.9)

where L;; = u;u; — u;u; are the Leonard stresses, C;; = ﬂiu;- + u;ﬂi are the cross

terms, and R;; = u;u; are the SGS Reynolds stresses. The Leonard stresses repre-
sent interactions between resolved scales that result in subgrid-scale contributions.
They can be computed explicitly, and, when the sharp cutoff filter is used they
are the aliasing errors. The cross terms represent interactions between resolved
and unresolved scales, whereas the SGS Reynolds stresses represent interactions
between small, unresolved, scales. While the SGS stresses 7;; are invariant with
respect to a Galilean transformation, neither L;; nor C;; are (Speziale 1985). For



this and other reasons (see Germano 1986), the decomposition (7.9) has largely
been abandoned.

For later use the Fourier transform of the filtered Navier-Stokes equations will
be introduced. Assuming turbulence in a periodic box of length 27, the velocity
field may be transformed as

-

wi(#,t) = (K, t) exp (ik - &), (7.10)
3

where @; (k) is the Fourier transform of u;(%), k = (n1,n2,n3), and the summation
is over all integer values of ni, ny, and nz. Using the sharp Fourier cutoff filter
(7.2) and defining k,,, = 7/A, one obtains the Fourier transform of the filtered
Navier-Stokes equations, applicable for wavenumbers k& < k,,:

o, (k, t o o
% + vk*u;(k,t) =
— kPR | Y B@5@+ Y @@H@| (11
p+a=F F+a=Fk
P,9<km porg>km
The pressure has been eliminated from (7.11) using the Fourier transform of (7.5).
The influence of the subgrid scales appears in the last summation of (7.11) . This
summmation includes contributions from both the cross-term (only one of 5 or ¢
greater than k,,) and the SGS Reynolds stresses (both 7 and ¢ greater than k,,).
The Leonard stresses vanish identically when using the Fourier cutoff filter.

7.2.3 Energy equations

It is useful, in order to develop SGS models, to understand the physical phe-
nomena that the models should represent. Arguably, the most important effect
of the subgrid scales on the large ones, and the one that the model must repre-
sent accurately, is the energy exchange that results from the interaction between
resolved and unresolved scales. To understand this interaction better, consider
the transport equations for g2 = w;u;, twice the total resolved energy (mean and
fluctuating), and ngs = Tkk, twice the subgrid-scale kinetic energy:

o 9 ,, 0 0 o
4 2 @Pu) =-2 2 (pu N B I
8t + 61’j (q U]) 61']' (pu]) + 83’}]' (Va.l'j)
H,—/ \ ~- / ~ ~ J
Advection of g2 Press. Diff. of g> Visc. Diff. of g2
0 ou; Ou; —
—2 = (13;1;) —2 2 75,5 12
6:cj (T]u ) U@.’L‘j 6$j + T\Jf_]/ (7 )
T SGS Diss.

—_——
SGS Diff. Visc. Diss. of g2
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Visc. Diss. of g3,

The equations above show that the resolved scales in a control volume (a grid
cell, for example), exchange energy with the unresolved scales and the surroundings
through several mechanisms. The advection and diffusion terms do not create or
destroy resolved energy but only redistribute it between adjoining volumes. The
last two terms in (7.12) represent respectively the resolved energy lost by viscous
dissipation at the resolved-scale level, and the net energy exchange between the
resolved and unresolved scales. Although the subgrid-scale dissipation €55, =
7;;9i; can be positive or negative, on the average energy flows from the large
to the small scales, and €55, < 0 (forward scatter); backscatter occurs when the
energy flow is reversed (€54s > 0). The total transfer of energy between large and
subgrid scales is the SGS transfer, sum of SGS diffusion and dissipation.

The energy exchange mechanisms for the subgrid scales are similar; the ad-
vection and diffusion ters are again redistribution terms. The energy lost by the
resolved scales to the subgrid ones appears as a source term in the transport equa-
tion for ngs: the SGS diffusion and dissipation have opposite signs in (7.12) and
(7.13). It is important to point out the difference between the viscous and SGS
dissipation of SGS energy. The SGS dissipation €,45 represents an energy inter-
change between resolved and unresolved scales, and is generally a dissipative term
in the equation for g2, a production term in the equation for qus. The viscous
dissipation, &,, on the other hand, represents the SGS energy dissipated by the
viscous forces.

A spectral energy equation may also be developed from (7.11). Multiplying
(7.11) by the complex conjugate of 5‘(12, t), and adding the resulting equation to
the complex conjugate of (7.11) multiplied by E’(E, t), one obtains, after integrating
over the angles of E,

OE(k,t)

ot
The resolved scale transfer spectrum Tes(k,t) arises from the first summation in
(7.11) and the subgrid scale transfer spectrum Tg,p(k,t) from the second summa-

tion. Tres(k,t) is responsible for the nonlinear transfer of energy among wavenum-
bers with magnitude less than k,,, whereas Ty,,(k,t) transfers energy between

+ 20k E(k) = Tres(k,t) + Toun(k, 1) . (7.14)



wavenumbers with magnitude less than k,, and those greater than k,,. A negative
value of Tgup (K, t) signifies a transfer of energy from the resolved scales to the sub-
grid scales, and positive values signify a backscatter of energy from subgrid scales
to resolved scales.

7.3 Principles of small scale modeling

7.3.1 Universality of small scales

Kolmogorov’s theory of the inertial subrange stands as one of the most important
and influential results in turbulence physics. The essence of the Kolmogorov the-
ory is quite simple: turbulence generation occurs mainly at the largest scales of a
flow and viscous dissipation occurs mainly at the smallest scales, leaving a range
of scale sizes at high Reynolds numbers — the so-called inertial subrange — over
which external influences (frictional boundaries, body forces, initial conditions)
and viscosity are negligible. These scale sizes obtain turbulent kinetic energy only
by nonlinear transfer of energy from larger scale sizes, and lose energy by subse-
quent transfer to smaller scale sizes. The only dimensional quantity of importance
for these intermediate wave numbers is the flux of energy from large-to-small scale
sizes, or equivalently, from small-to-large wavenumbers. Since all energy is even-
tually dissipated in the flow by molecular viscosity, this flux of energy must be
equal to the rate of energy dissipation, commonly denoted by £. Dimensionally,
[e] = I2/t3, where [ is a length and ¢t is a time, and since the three-dimensional
energy spectrum E(k) has dimensions [E] = [3/t?, one determines

E(k) =Koedk § (7.15)

where Ko is the Kolmogorov constant. The published values of Ko, determined by
experiment and numerical simulation, lie mainly between 1.4 and 2.1, the scatter
being primarily due to the difficulty in measuring e, and of obtaining sufficiently
high Reynolds numbers in both laboratory experiments and simulations.

The largest wavenumber for which the inertial subrange spectrum holds may
also be determined by dimensional arguments. Dissipation becomes important at
the smallest scales, and an additional dimensional quantity, the kinematic viscosity
v, thus enters the scaling. Viscous effects become important at a wavenumber
proportional to that which can be formed from e and v, with [v] = I?/t. Setting
the proportionality constant to unity, this wavenumber is called the dissipation
wavenumber, and is denoted by

ko= (e/v%)" . (7.16)

The associated length scale is usually denoted as 7 = kgl. Direct numerical
simulations of isotropic turbulence typically show that the energy spectrum starts
to deviate substantially from the inertial range law at a wavenumber equal to
about one-tenth the dissipation wavenumber k .
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A self-similar (time-independent) energy spectrum E(E) in the inertial and
dissipative subranges may now be constructed on dimensional grounds using ¢ =
e(t) and kq = kq(2):

E(k,t) = (/) BE®);  k=k/kq. (7.17)

The three dimensional energy spectrum considered here can be computed by nu-
merical simulation but is difficult to measure directly in physical experiments,
where it is more common to present results for the one-dimensional energy spec-
trum. A self-similar one-dimensional energy spectrum may also be constructed
as above, and a compilation of experimental data for the one-dimensional self-
similar spectra scaled according to (7.17), Fig. 7.3, shows an excellent collapse at
high wavenumbers for a wide range of Reynolds numbers and experimental con-
ditions. The original data for this figure was compiled by Chapman (1979), and
has been recently augmented with more recent experimental results by Saddoughi
and Veeravalli (1994).

Figure 7.3 demonstrates a universality of small-scale statistics at large Reynolds
numbers. Such a universality holds promise for large-eddy simulations, since it
implies that the ideas used to develop a subgrid-scale model may have general
validity for all turbulent flows, provided of course that the subgrid scales being
modeled lie within the universal range of scale sizes made evident in Fig. 7.3.

The concept of local isotropy, which is a part of the Kolomogorov phenomenol-
ogy, is also an important one. It is based on the idea that, although the largest
scales of the flow may be anisotropic due to the presence of boundaries, directional
forces, or mean gradients, the smallest scales more closely approach isotropy due
to the mixing properties of the nonlinear transfer. The memory of preferred di-
rections in the flow is slowly erased as the energy of the turbulence cascades from
large to small scales. The implication of this concept to large-eddy simulation is
that one can reasonably develop turbulence models that assume isotropy of the
small scales. In a statistical model of the small scales, this will significantly reduce
the number of undetermined parameters in the model.

7.3.2 Dissipation set by the large scales

There is another fundamental aspect of turbulence that is also of central im-
portance to the potential success of large-eddy simulations. Arguably the most
important formula in all of turbulence modeling is the relation made famous by
Batchelor (1953)

e=u?/l, (7.18)

where v and [ are a velocity and length scale characteristic of the energy-containing
scales of a high Reynolds number, fully turbulent flow. The physical meaning of
(7.18) is clear: the energy-containing scales determine the rate of energy dissipa-
tion, not the viscous scales. The general validity of (7.18) is of enormous impor-
tance for the success of large-eddy simulations: it implies that, if one can capture
the largest energy-containing scales of motion with the numerical method, then a
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Figure 7.3: Rescaled one-dimensional spectra (from Chapman 1979, with addi-
tions from Saddoughi and Veeravalli 1994). The data points represent several
experiments in different configurations (grid turbulence, wakes, boundary layers,
channels, shear flows, jets) with 23 < Re) < 3180.
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sophisticated model of the unresolved dissipative scales may be unnecessary, pro-
vided that the model for these scales can adjust to the dissipation rate € set by
the largest scales. In other words, relatively crude models of the subgrid scales
may work provided they can adapt to the dissipation rate set by the largest scales.
This relaxed approach to subgrid scale modelling has found some support among
a group of researchers (Oran and Boris 1993) who advocate the use of no explicit
subgrid-scale model; rather they let the numerical method itself be dissipative.
Dissipative numerical methods, however, have been avoided in the most success-
ful direct numerical simulations of turbulence, where energy-conserving spectral
methods have been implemented. Adaptation of these existing codes to large-
eddy simulations require explicit subgrid-scale models to dissipate energy at the
grid scales.

Related to (7.18) is the idea that the dissipation rate & approaches a non-zero
constant in the limit of zero viscosity (or equivalently, infinite Reynolds numbers).
The dissipation rate € thus must be independent of viscosity at large Reynolds
numbers, implying a dependence on large-scale statistics. In a statistically sta-
tionary flow, the rate of energy production is equal to the energy flux through the
inertial subrange, which is again equal to the dissipation rate. Equation (7.18)
implies that it is the rate of energy production that determines the other three.

The fact that the energy spectrum follows a power-law £~ in the inertial
subrange, with n < 3, is of some importance. The energy dissipation rate for
isotropic turbulence is given by

€=2v / k> E(k)dk; (7.19)
0

for an inertial subrange extending to infinite wavenumber, the integral diverges
when n < 3 so that € need not necessarily vanish with v.

In fact, using the inertial subrange form for E(k), it is easy to show that (7.19)
is not an equation for € at all, but rather an equation for the Kolmogorov constant
Ko. First, one replaces the upper limit of integration by the wavenumber at
which dissipation effects become so dominant that the spectrum decays sharply.
This wavenumber must be proportional to the dissipation wavenumber kg, and
the proportionality constant is a. It has already been mentioned that dissipation
effects are first observed to occur at 0.1k4, so that a should be a constant somewhat
larger that 0.1. Using the inertial subrange form for E(k) from wavenumber 0 to
akg, appropriate for very large Reynolds numbers, one finds that the dissipation
rate £ and kinematic viscosity v cancel out of (7.19) after integration, resulting in

2

< -
3as

Ko = (7.20)

For values of the Kolmogorov constant 1.4 < Ko < 2.1, Eq. (7.20) yields the
reasonable values of 0.42 < a < 0.57. A corollary of this result is that a relatively

high Reynolds number DNS need only contain wavenumbers slightly larger than
kq4/2 to resolve the dissipation range adequately.
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7.3.3 Basic requirements of subgrid models

Large-eddy simulations resolve the dissipative scales of turbulence inadequately. In
fact, simulations of homogeneous turbulence are often performed with the molec-
ular transport coefficients identically set to zero. In energy-conserving codes, the
only way for the turbulence kinetic energy to leave the resolved modes is by the
dissipation provided by the subgrid-scale model. Even in large-eddy simulations
of bounded flows, which may choose to resolve the wall layer and have non-zero
values of the viscosity, the dissipative effects of the molecular viscosity in the inte-
rior of the flow may be insufficient, and additional dissipation by the subgrid-scale
model is required. Thus, the most important feature of a subgrid-scale model
is to provide adequate dissipation. Here, dissipation actually means transport of
energy from the resolved grid scales to the unresolved subgrid scales, and the rate
of dissipation € in this context is actually the flux of energy through the inertial
subrange.

The subgrid-scale model must not only provide a means of energy dissipation,
but the dissipation rate must depend on the large scales of the flow rather than be-
ing imposed by the model. Hence, the model must depend on large-scale statistics,
and must be sufficiently flexible to adjust to changes in these statistics.

It was once thought by some researchers that the subgrid-scale model should be
able to represent explicitely the unknown subgrid-scale stresses (Clark et al. 1979).
Comparison of modeled subgrid-scale stresses to those calculated from DNS data
yielded discouragingly low correlation coefficients. Now, however, it is more widely
thought that exact (or even close) representation of the explicit subgrid-scale
stresses is an unrealistic goal. The authors’ view is that large-eddy simulations are
a statistical model of turbulence, and their primary goal is to obtain the correct
statistics of the energy-containing scales of motion. This is in contrast to direct
numerical simulations, that try to obtain a deterministic solution of the Navier-
Stokes equations. Here too, however, the issue of deterministic chaos must be
confronted: the sensitive dependence of the evolution of the flow field from its ini-
tial conditions makes it meaningless to speak of “following a particular realization
of the flow”.

If one views large-eddy simulations as statistical models, then one can argue
that the subgrid-scale model should also be statistical. This could result in some
major simplifications of the model. For statistically steady flows, the subgrid-scale
model can be independent of time, or at least a random function of time; for flows
with one or more statistically homogeneous directions, the subgrid-scale model
can be independent of those spatial directions (or a random function of those
directions). In practice, this means that some type of averaging can be performed
over time and/or homogeneous directions to determine the free parameters that
may appear in the subgrid-scale model. This point will be discussed further when
the dynamic subgrid-scale model is presented. It should be pointed out that for
flows that are neither statistically steady nor homogeneous, the only averaging
available is the ensemble average, that is, an average over multiple individual
realizations of the flow.
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7.3.4 Eddy viscosity and eddy noise

It is possible to obtain an exact analytical result at high Reynolds numbers for
the energy transfer to the subgrid scales defined above in (7.14) from the Navier-
Stokes equations, that, although of limited practical use, illuminates the main
physics of subgrid-scale modeling. Consider decaying isotropic turbulence. In
numerical simulations of this flow, generally, some initial energy spectrum of the
turbulence is specified. A velocity field that satisfies continuity, and has the given
energy spectrum, is constructed. The Fourier components of this velocity field are
typically chosen to have random phases subject to complex conjugate symmetry,
as required by the reality of the physical velocity. It is possible to derive exact
statistical results for the small-time evolution of this initial field. This is possible
because of the following two properties satisfied by the Fourier components with
random phases. First, at the initial instant all ensemble-averaged third-order
statistics of the velocity field vanish. In particular, the following product of Fourier
components is zero at the initial instant:

(u (k) (B)un (@) = 0 (7.21)

where E, P, and ¢ are arbitrary wavenumbers, [, m, and n denote arbitrary compo-
nents of the velocity field, and {-) denotes an ensemble average. Equation (7.21)
further implies that the transfer T'(k) is identically zero at the initial instant. Sec-
ond, the velocity field at the initial instant has zero-fourth-order cumulants, so
that

(w (R um B un(@us(P) = (w(R)um (D)) (un (@ us (7))
+ (i (R)un (@) (7)us (7))

-,

+ (w(k)us (7)) (um (D)un (@) - (7.22)

With zero fourth-order cumulants the usual closure problem of turbulence, in which
the equation for an n**-order moment contains unknown terms of (n + 1)%t-order,
is avoided. For isotropic turbulence, the second-order moments may be directly
related to the three-dimensional energy spectrum E(k) by

(us(Ryuy (K1) = S5 E(k)o(F + K), (7.23)

where

(7.24)

di; is the Kronecker-delta, and § (k + k') is the Dirac-delta function. For analytical
simplicity, here and for the remainder of this Section the limit of infinite periodicity
length is assumed, although the numerical simulations commonly choose units in
such a way that the periodicity length is 2.

An exact result to order ¢ may be obtained either by expanding the velocity field
as a power series in ¢, or by forming and integrating the time-evolution equation
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for the third-order moments. Both methods involve some tedious algebra, and
only the pertinent results are presented here.

The largest wavenumber resolved by the simulation is defined as k,,; the total
transfer is then divided into two parts:

T(k) = Tres (klkm) + Tsub(k|km)a (7.25)

where the subscript “res” denotes the resolved part of the transfer, and the sub-
script “sub” the unresolved subgrid part. The transfer consists _gf an integral over
wavenumbers § and ¢ restricted so that the triangle relation &k = p'+ ¢ is satis-
fied. The resolved part of the transfer is such that all wavenumber § and ¢ in the
integral also satisfy p,q < k,,,. The unresolved transfer consists of the remaining
interactions where one or both of p and q is greater than k,,. This part of the
transfer is absent from the LES and its effects on scales of wavenumber k must be
modeled.

The physical significance of the analytical results is most easily explained under
a nonlocal approximation that assumes k << k,,. An expansion of the integrands
in powers of k/k,, may then be performed that allows a further reduction in
the final expression. The result for the subgrid-scale transfer thus obtained is
(Lesieur 1990):

14 * E(p)?
Toun (klkm) = 1—5k4/k t ;’2’) dp
2 o [ dE(p)
- —k°FE E — 2
A e A 20

where the energy spectrum in (7.26) is evaluated at the initial instant.
The second integral on the right-hand side of (7.26) has the form

—2n(t)k2E(k) (7.27)

where 7)(t) can be called the asymptotic (k/k,, — 0) subgrid-scale eddy-viscosity.
For an inertial subrange energy spectrum, 7 is positive and increases the net vis-
cosity in the large-eddy simulation. The modeling of this term thus provides the
means for energy to be dissipated from the resolved scales of the turbulence.

The first integral on the right-hand side of (7.26) is of another form entirely.
It is positive, which signifies energy transfer from subgrid to resolved scales. In
this nonlocal approximation, it is much smaller in magnitude than the second
integral for k,, lying in the inertial subrange. Situations in which this term could
be appreciable will be described below.

Equation (7.26) is the leading-order term in an expansion of the subgrid-scale
transfer in powers of ¢. It is thus of limited validity. The more complete, but also
approximate, two-point closure theories of turbulence extend the above analytic
result to long-time evolutions. For example, in a systematic development of the rel-
atively popular two-point closure model, the so-called eddy-damped quasi-normal
Markovian (EDQNM) approximation (Orszag 1970, Lesieur 1990), ¢ is replaced
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by a correlation time-scale of the nonlinear interactions among the wavenumber
triad k, 7, and ¢, and the energy spectra are evaluated at time t rather than at
the initial instant.

The physics of the first integral on the right-hand side of (7.26) may be fur-
ther elucidated by considering a problem associated with the unpredictability of
turbulent flow (Lorenz 1969, Leith 1971, Leith and Kraichnan 1972, Metais and
Lesieur 1986, Lesieur 1990). Suppose one performs simultaneously two direct nu-
merical simulations. Both simulations are initialized with the same energy spec-
trum E(k) for all k. However, in assigning random phases to the initial Fourier
components of the velocity field, the same random phases are assigned to Fourier
components of wavenumber k < k,, in both simulations, whereas random uncor-
related phases are assigned to the Fourier components with & > k,,,. An LES with
maximum wavenumber k,, corresponding to these two direct numerical simula-
tions would have identical initial velocity fields since the diffgrence between the
DNS fields lie in the subgrid scales of the LES. Now, let u;(k,t) and v;(k,t) be
these two distinct velocity fields, identical at ¢ = 0 for k < k,,, but uncorrelated
for k > ky,. The difference field w;(k,t) can be defined by

wi( 1) = % (s, t) — wi(F.0)] (7.28)

and the corresponding error spectrum Ea (k,t) by

(w; (k)w; (k) = ZW g? Ea(k)o(k + k). (7.29)

At the initial instant, Ea (k) = 0 for k < k., and Ea (k) = E(k) for k > k,,. Again,
one can tackle this problem analytically as an expansion in ¢. For k << k,,, one
finds for the transfer spectrum associated with Ea(k,t),

OFa(k,t) 14, /°‘°tE(1D)2
ot 15 J,. p?

dp. (7.30)

The first term of the subgrid-scale transfer in (7.30) thus also appears in this
calculation of the error energy transfer. This term has been called eddy noise
(Rose 1977), or stochastic backscatter (Leith 1990). A correct model for this term
in the filtered Navier-Stokes equations must have a random component since it is
responsible for the divergence of two initially identical large-eddy velocity fields
with unknown (and hence uncorrelated) realizations of subgrid-scale fields. An
analogous eddy noise term is also present in the Navier-Stokes equations themselves
(Landau and Lifshitz 1959) due to thermal fluctuations, but is safely neglected due
to the wide separation of scales between the molecular and macroscopic motions of
the fluid. There is no such large scale separation between the resolved and subgrid
fluid elements.

Thus, the two main physical influences of the subgrid-scale motions have been
highlighted: eddy viscosity and eddy noise. The former removes energy from the
resolved scales of motion in analogy to molecular viscosity, whereas the latter
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supplies energy to the resolved scales by some random process. There are two
further points worthy of mention. First, so far only the subgrid-scale transfer
for k << k,, has been considered. For k ~ k,, the physics of the subgrid-scale
transfer are somewhat more complicated. It was shown that the subgrid transfer
still divides into an energy input and output term (Kraichnan 1976, Leslie and
Quarini 1979). However, both terms are large in magnitude at k = k,, and a
cancellation occurs. This cancellation is a consequence of rapid phase changes in
the Fourier components near the maximum wavenumber due to the sweeping of
small-scale eddies by the largest scales. Random sweeping does not alter energy
transfer. The consequences of modeling this random sweeping will be discussed
further in Section 7.4.2. Second, it was noted above that for k << k,, and k,,
lying in the inertial subrange, the energy input term (eddy noise) is much less
than the energy output term (eddy viscosity). However, for k,, lying in the energy-
containing scales of motion, or even larger scales, the situation reverses. Although,
an ideal LES always has k,, lying in an inertial subrange, this may be impossible
for the very important but difficult problems in geophysical turbulence, such as
occur in an atmospheric boundary layer (Mason and Thomson 1992). In this work
it was claimed that a proper modeling of the energy input term in the subgrid-scale
model can significantly improve the LES results.

7.4 Subgrid-scale modeling

7.4.1 Eddy viscosity models
Most subgrid scale models in use presently are eddy-viscosity models of the form

5

Tij — %Tkk = _2VT§z'j7 (731)

that relate the subgrid-scale stresses 7;; to the large-scale strain-rate tensor

= 1 (0w, 6ﬂj
Sij - 5 (6.Z'J + 6.’E,> ) (7‘32)

In most cases, the eddy viscosity v is obtained algebraically to avoid solving ad-
ditional equations that could increase the cost of an already expensive calculation.
Moreover, since the small scales tend to be more homogeneous and isotropic than
the large ones, it is hoped that even simple, algebraic models can describe their
physics accurately. Finally, since the SGS stresses only account for a fraction of
the total stresses, modeling errors should not affect the overall accuracy of the
results as much as in the standard turbulence modeling approach.

There are at least two ways to obtain the eddy viscosity: for homogeneous flows
it is convenient to derive it from the Fourier-transformed Navier-Stokes equations
(7.11). Another approach is to derive it starting from the SGS energy equa-
tion (7.13) in real space. These methods will be discussed in the following.
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Figure 7.4: Non-dimensional eddy viscosity as parametrized by Chollet (1994).

7.4.2 Modeling in Fourier space

Spectral large-eddy simulations of homogeneous turbulence typically use a subgrid-
scale model defined in Fourier space. These models are of limited use in engineering
and geophysical applications because of the one or more inhomogeneous directions
in these flows. Nevertheless, it is instructive to construct simple models in Fourier
space first; they may also be used with great success in studying fundamental
problems in turbulence physics without boundaries. The pioneering work in ana-
lytically defining and developing a subgrid-scale model in Fourier space was done
by Kraichnan (1976). Kraichnan, using a two-point closure model for isotropic
turbulence, computed the subgrid-scale transfer Tgup, (k|ky,) for &, lying in an in-
finite inertial subrange. He then defined the following net eddy-viscosity from the
calculated subgrid-scale transfer:

_Tsub(klkm)

Ve (k|km) = 2Bk

(7.33)
Both the contributions from the eddy viscosity and eddy noise (Section 7.3.4)
are included in this net eddy viscosity. For k,, lying in the inertial subrange,
the net eddy viscosity approaches the k-independent eddy viscosity for k << k.
However, both the eddy viscosity and eddy noise contribute near k,, and the
net eddy viscosity increases with increasing k/k,, to a finite cusp at k/k,, =
1. Using inertial subrange dimensional arguments, Kraichnan scaled the eddy
viscosity using the cascade rate €, and k,,. The eddy viscosity then becomes
proportional to (g/k2,)1/3.

Chollet and Lesieur (1981) soon after proposed a scaling of the eddy viscosity
based on the energy spectrum at k,,, and this definition has subsequently found
the most use in large-eddy simulations of homogeneous turbulence. The Chollet
and Lesieur scaling is

E(kp,t)

ve(klkm,t) = Vj(k/kM) L )

(7.34)

so that the eddy viscosity vanishes, as it should, if the subgrid scales contain no
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energy (E(k) = 0 for k > k,,). For easy implementation in numerical simula-
tion codes, Chollet (1984) further parametrized the dimensionless eddy viscosity
obtained from the EDQNM as

v (k/km) = Ko™ % [0.441 + 15.2 exp (—3.03kp /k)] , (7.35)

where he chose the Kolmogorov constant to be Ko = 1.4. The Chollet parametriza-
tion of the dimensionless eddy viscosity is shown in Fig. 7.4. Note that the eddy
viscosity goes to a k-independent constant for k/k,, << 1, and rises to a finite
cusp at k/k, = 1.

With the eddy viscosity so defined, the LES equations written in Fourier space
become

ok, t . _ . o
ua(vt )+[V+Ve(k|km,t)]k2ui(k,t):—zknPi]-(k) S @@ @, (7.36)
+a=Fk
P,a<km

and it can be observed that this subgrid-scale model is deterministic and strictly
dissipative. It is also a statistical model, in the sense that the eddy viscosity
depends only on wavenumber magnitude, which is appropriate for isotropic tur-
bulence, and on the energy spectrum E(ky,, t).

The Kraichnan/Chollet-Lesieur eddy viscosity is an easily-implementable k-
space subgrid-scale model. It accounts for the missing subgrid-scale transfer by
including a parametrized k-dependent eddy viscosity in the equations of motion.
Although this eddy viscosity was originally computed using two-point closure the-
ories, it has also been computed directly in a DNS (Domaradzki et al. 1987) and
in an LES (Lesieur and Rogallo 1989). The DNS results are at too low Reynolds
numbers to be directly applicable here, but the LES results demonstrate a rea-
sonable quatitative agreement with the closure theories provided the Kolmogorov
constant in (7.35) is taken to be approximately 2.1. The appropriate value of Ko
in (7.35) has also been observed to decrease to values in better agreement with
experimental data with increasing resolution of the simulations.

It is worthwile to digress a moment to discuss Lesieur and Rogallo’s (1989)
computation of the subgrid-scale eddy viscosity in an LES. Conceivably, the com-
putation of the subgrid-scale eddy viscosity can be done at each time step in the
LES, providing a procedure for the LES to compute its own eddy viscosity. This
technique is in the same spirit as the recently-developed dynamic subgrid-scale
model, that is beginning to find widespread use in simulations of inhomogeneous
turbulence, and which will be discussed in great detail later.

The eddy viscosity can be computed in an LES by introducing another wavenum-
ber k. such that k. < kp,. A reasonable choice would be k. = k,,/2. The contri-
bution to the transfer T'(k) for k < k. by scales with at least one of p or ¢ in the
wavenumber range lying between k. and k,,, may be computed in the LES using
fast Fourier transforms (Domaradzki, et al. 1987). Denoting this transfer spec-
trum as Teub(k|ke, km), the eddy viscosity computed from this restricted transfer
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is defined as
Tsub(k|kC7 km)
2k2E(k)

It is desired to make use of this computed eddy viscosity to determine the nondi-
mensional eddy viscosity v} (k/ky) to be used in the simulation at the next time
step. The eddy viscosity due to scales with wavenumbers greater than k. is evi-
dently the sum of the eddy viscosity due to scales with wavenumbers lying between
k. and k,, plus the eddy viscosity due to scales with wavenumber greater than &, .
Hence the relationship between the three eddy viscosities computed with different
cutoff wavenumbers is

Ve(k|kcakm) = - (737)

Ve(k|kc) = Ve(k|kcakm) + Ve(k|km)- (7.38)

This is exactly the Germano identity (Germano 1992) on which the dynamic
subgrid-scale model (Germano et al. 1991), which will be discussed in Section
7.4.3, is based. Scaling the first and third eddy viscosities as suggested by Chol-
let and Lesieur, and approximating v} (k/ky,) by v} (0) (for k < k., we assume
k << k,, so that the eddy viscosity is sufficiently close to its asymptotic value as
k/km — 0, see Fig. 7.4), one obtains

@l

k k
/) = v by [ s + 70 () (7.39)
where the last factor in (7.39) comes from assuming inertial subrange forms for
the energy spectrum at k. and k,,. Now it only remains to determine v} (0). By
considering (7.39) for k << k. so that v} (k/k.) can be approximated by v} (0),

and ve(k|kc, km) by ve(0|kc, km ), one obtains
kN
1- (== . 4
(i) ] (740

This provides the correction to the restricted eddy viscosity that can be computed
directly in the LES.

The theoretical idea upon which this whole procedure rests is that the nondi-
mensional eddy viscosity has a universal functional form. This is strictly valid (at
least within the closure theories) only if k., (and k.) lie in the middle of a lengthy
inertial subrange. Of course, if this were true in practice, then one may just as
well use directly Chollet’s parametrization of the eddy viscosity. Nevertheless,
here and in the dynamic subgrid scale model discussed later, it is hoped that the
internally-determined eddy viscosity may not be too inaccurate even for k., close
to the energetic scales of motion.

Kraichnan’s net eddy viscosity sums the contributions from the eddy viscos-
ity and the eddy noise. A k-space subgrid-scale model has been developed that
includes both of these effects separately (Bertoglio 1985, Chasnov 1991a), as sug-
gested by the work of Leslie and Quarini (1979). It was shown that the subgrid-
scale transfer may be written as two separate terms:

Toun (klkm) = —20(klkin) k> E(k) + F (k|knm) - (7.41)

ke
E(k.)

V:_(O) = Ve(0|kc;km)
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Figure 7.5: Partition of the net eddy viscosity into an eddy-damping term and a
stochastic force (from Chasnov 1991a).

This transfer is defined at the statistical level of the turbulence energy equation,
and must be de-averaged in order to be modeled at the level of the momentum
equations (i.e., the Navier-Stokes equations). The stochastic model form of the
EDQNM approximation provides a procedure to accomplish this (Kraichnan 1970):
n(k|km) renormalizes the molecular viscosity, and F' is modeled as a random force
with zero time correlation. The LES equations thus become

W + [+ 0k, )] K ui(E, 1) =
iknPii(F) D un(@ui(@ + (A2 fi(k,1),  (7.42)

where At is the simulation time step, and fi(E, t) is constructed independently at
each time-step in the same manner in which one constructs an initial velocity field:
fi satisfies continuity, has a spectrum equal to F'(k|k.,), and has random phases
subject to complex conjugate symmetry. Multiplication by (At)~'/2 is the proper
discretization of the white noise process. It allows the stochastic force to provide
energy to the turbulence despite having zero correlation with the random velocity
field.

Figure 7.5 shows the partition of the net eddy viscosity into an eddy-damping
term and a stochastic force. The largest effects of this splitting occur near scale
sizes on the order of the grid spacing, i.e., for k ~ k,,. Here the effect of the
eddy noise is large, and the subgrid model essentially puts energy into these scales
by the stochastic force, and takes energy out by the eddy-damping. The net
effect is an energy removal represented by the finite cusp of the eddy viscosity.
Figure 7.6 shows the results of two simulations of statistically stationary isotropic
turbulence. A time average of the normalized energy spectrum k5/3E(k)/e2/? is
plotted versus k/k,, using either an eddy viscosity model (Fig. 7.6a), or an eddy
damping/stochastic force model (Fig. 7.6b). It appears that the inertial subrange
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Figure 7.6: Compensated energy spectrum obtained from the large-eddy simula-
tion of a statistically stationary isotropic turbulence (from Chasnov 1991a). (a)
eddy viscosity subgrid scale model; (b) eddy damping/stochastic force subgrid
scale model.

law is better respected near k = k,, with the second model. This may simply be
a consequence of the EDQNM inertial range solution being recovered for k ~ k,y,,
since the individual subgrid-scale terms near the maximum wavenumber are much
larger in magnitude than the resolved nonlinear term.

In Section 7.6.1 the results of several large-eddy simulations of homogeneous
turbulence will be discusssed further. For most applications, the Kraichnan/Chollet-
Lesieur eddy viscosity as parametrized by Chollet (with perhaps some minor tun-
ing) is sufficient to obtain reliable results.

7.4.3 Modeling in real space
The equilibrium assumption

The eddy viscosity is, by dimensional analysis, the product of a length scale, ¢,
and a velocity scale, gy45. Since the most active of the unresolved scales are those
closest to the cutoff, the natural length scale in LES modeling is the filter width,
which is the size of the smallest structure in the flow, and is proportional to the
grid size. The velocity scale is usually taken to be the square-root of the trace of
the SGS stress tensor, qggs = Tgr- Although in some cases a transport equation
is solved to determine qus, in most cases the equilibrium assumption is made to
simplify the problem further and obtain an algebraic model for the eddy viscosity.

The equilibrium assumption is based on the consideration that the small scales
of motion have shorter time scales than the large, energy-carrying eddies; thus, it
can be hypothesized that they adjust more rapidly than the large scales to pertur-
bations, and recover equilibrium nearly instantaneously. Under this assumption,
the transport equation for qggs, (7.13) simplifies significantly, since all terms drop
out, except the production term, €545 = 7:;5;;, and the viscous dissipation of SGS
energy, &,, to yield:

- Tz'jSij =E&y. (7.43)
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The equilibrium assumption implies inertial range dynamics: energy is generated
at the large-scale level, and transmitted to smaller and smaller scales, where the
viscous dissipation takes place.

Very little testing of the applicability of this assumption to the small scales of
turbulence is available. It is well known that in most flows of interest, the large
scales are not in equilibrium: Smith and Yakhot (1993) studied the short-time
behavior of the eddy viscosity in the Reynolds-averaged framework, and found
that K — ¢ models do not predict the correct response of the eddy viscosity if
equilibrium turbulence is suddenly subjected to a perturbation (system rotation,
for instance). The fact that a SGS model (the Smagorinsky model), applied to
the same problem, gave results in good agreement with their theory (Bardina
et al. 1985), however, indicates that the small scales may tend to equilibrium
faster than the large ones, and thus satisfy the equilibrium assumption better
than the large scales, or that, as long as the correct non-equilibrium response of
the small scales is captured, the overall development of a turbulent flow may be
predicted accurately. In more complex flows, in which extra strains, backscatter,
intermittency and other phenomena play a role, it is not known whether the small
scales would still be represented adequately by equilibrium-based models.

Smagorinsky model

The Smagorinsky model (1963) is, from an historical point of view, the progenitor
of all subgrid-scale stress models. It is based on the equilibrium hypothesis, (7.43).
If the viscous dissipation is modeled as & ~ ¢3,,/¢, and (7.31) is substituted into
(7.43) with vp ~ gy, One obtains gy, ~ £|S|, where |S| = (25;;S:;)'/? is the
magnitude of the strain-rate tensor. Letting £ ~ A, the eddy viscosity can be
written

vr = (CsA)?|S]. (7.44)

Since the constant C (the Smagorinsky constant) is real, the model is absolutely
dissipative: e555 = —(C5A)%|S]? < 0.

To evaluate Cy, Lilly (1967) assumed the existence of an inertial range spectrum
E(k) = ag?/3k=>/3. Then |S| can be evaluated approximately by integrating the
dissipation spectrum over all resolved wavenumbers

_ /A /A 4/3
S? =~ 2/0 k2 E(k)dk = 20462/3/0 kK3 dk = ga62/3 (%) . (745)

With a = 1.41, this gives

17 9\34
s~ — [ — =0.18. 4
C - (3a) 0.18 (7.46)

Dynamic models

In dynamic models for the subgrid-scale stresses, the model coefficients are com-
puted dynamically as the calculation progresses (rather than imposed a priori)
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based on the energy content of the smallest resolved scale. The dynamic eddy vis-
cosity model of Germano et al. (1991) is based on the introduction of two filters; in
addition to the grid filter (denoted by an overbar), which defines the resolved and
subgrid scales, a test filter (denoted by a caret)® is used, whose width Ais larger
than the grid filter width A. The stress terms that appear when the grid filter is
applied to the Navier-Stokes equations are the subgrid-scale (SGS) stresses 7;;; in
an analogous manner, the test filter defines a new set of stresses, the subtest-scale
stresses T;;. The resolved turbulent stresses, L;; = H,/H\J — Witij, which represent
the contribution of the smallest resolved scales to the Reynolds stresses, can be
computed from the large-scale velocity; they are related to the SGS stresses, 7;;,
by the identity (Germano 1992)

Eij = T,'j — :I'\Z'j, (747)

where T;; = u,:uj - ﬁ,ﬂ/\] are the subtest-scale stresses.
The subgrid- and subtest-scale stresses are then parameterized by eddy viscos-
ity models of the form (7.31):

TU_%W = —20R°[5|5,; = —2CB;;, (7.48)
Tn‘%Tkk = 208755, = ~2Cw;. (7.49)

Substituting (7.48) and (7.49) into (7.47) yields

o 9ij

j = 5 Lrk = —2Cay; + 2CB;;. (7.50)

This is a set of five independent equations; to obtain a single coefficient from the
five independent equations, Lilly (1992), proposed to minimize the sum of the
squares of the residual,

Ejj = L% + 2Ca;; — 2CByj, (7.51)
by contracting both sides of (7.50) with a;; — B; to yield:
1 L3 (aij — Bij)
2 (amn - /an)(amn - /an)

This procedure yields a coefficient that is function of space and time, and whose
value is determined by the energy content of the smallest resolved scales, rather
than input a priori as in the standard Smagorinsky (1963) model. The proce-
dure described above, however, is not mathematically self-consistent since it re-
quires that a spatially-dependent coefficient be extracted from a filtering operation

(7.52)

3Within the framework of dynamic modeling, a caret does not denote a Fourier coefficient
but a test-filtered quantity.
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(Cabot and Moin 1993). To overcome this problem, C is usually assumed to be
only a function of time and of the spatial coordinates in inhomogeneous directions,
and ensemble-averages of the numerator and denominator of (7.52) are taken to
yield, for a flow that is statistically-homogeneous in z and z,

1 {£3(ai = By)
Cly,t) =—= e —.
(y ) 2 <(amn - ﬁmn)(amn - ﬁmn))

Various methods have been developed to implement a fully localized formula-
tion of the dynamic model that removes the mathematical inconsistency (Ghosal
et al. 1995, Piomelli and Liu 1995). A one-equation dynamic model including a
stochastic backscatter term has also been developed (Ghosal et al. 1995, Carati et
al. 1995).

(7.53)

7.5 Numerical methods

7.5.1 Spatial discretization

The analytical derivative of a complex exponential f(z) = e¥** is f'(x) = ike®*?;
if f is differentiated numerically, however,the result is

g—i =ik’ (7.54)
where k' is the modified wavenumber. A modified wavenumber corresponds to
each differencing scheme; the real part of k' represents the attenuation of the
computed derivative compared to the actual one, whereas a non-zero imaginary
part of k' indicates that phase errors are introduced by the numerical differentia-
tion. For a second-order centered scheme, for instance, k' = ksin kAz/kAz. For
small wavenumbers k the numerical derivative is quite accurate; high wavenumber
fluctuations, however, are resolved increasingly poorly. No phase errors are intro-
duced. Figure 7.7 shows a sketch of the real part of the modified wavenumbers for
various numerical schemes.

The need to resolve accurately high wavenumber turbulent fluctuations im-
plies that either low-order schemes must be used on very fine meshes, or that
higher-order schemes are required on coarser meshes. High-order schemes are
more expensive, in terms of computational resources, than low-order ones, but the
increase in accuracy they afford, for a given mesh, often justifies their use.

Most LES (and DNS) calculations, to date, have been performed using spectral
schemes (Fourier expansions in homogeneous directions, Chebychev polynomials
in inhomogeneous ones, for instance). These methods are very accurate, but tend
to be more expensive than finite-difference schemes, and also give little flexibility
in the application of the boundary conditions.

Finite difference schemes, second-order or higher, are also being used with in-
creasing frequency. As the application of LES is shifting from basic, building-block
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flows in simple geometries towards more realistic applications, however, the addi-
tional flexibility that finite differences enjoy in the treatment of complex geometries
and boundary conditions is resulting in their more widespread application.

7.5.2 Time advancement

The choice of time advancement method is usually determined by the requirements
that numerical stability be assured and that the turbulent motions be accurately
resolved in time. Two stability limits apply to LES calculations. The first is the
viscous condition, that requires that the timestep At be less than At, = cAy?/v
(where o depends on the actual time advancement chosen; for implicit schemes,
o = o). The CFL condition requires that At be less than At, = CFLAz/u,
where the maximum allowable Courant number CFL also depends on the numerical
scheme used. Finally, the physical constraint requires At to be less than the time
scale of the smallest resolved scale of motion, 7 ~ Az /U, (where U, is a convective
velocity).

In most flows, the viscous condition demands a much smaller timestep than the
other two; for this reason, the diffusive terms of the governing equations are usu-
ally advanced using implicit schemes (typically, the second-order Crank-Nicolson
scheme). Since, however, At. ~ 7 (usually, they differ by a factor of 3 to 6),
the convective term can be advanced by explicit schemes such as the second-order
Adams-Bashforth method, or third- or fourth-order Runge-Kutta schemes. In
compressible flow calculations, or in unbounded flows in which the mesh must not
be very fine near a solid surface, fully explicit schemes are often employed.

7.5.3 Boundary conditions

Associated with the widespread use of Fourier methods in LES is the adoption
of periodic boundary conditions. Periodic boundary conditions imply that the
computational domain repeats itself an infinite number of times, or that the flow
is fully developed and statistically steady in space. Periodic boundary conditions
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Figure 7.8: Evolution of perturbations in a channel: spatial vs. temporal develop-
ment.

are convenient, since they eliminate the need to specify inflow conditions, easy to
implement (in fact they are applied implicitly by Fourier methods) and efficient,
since they allow use of small computational domains.

The use of periodic boundary conditions is similar to studying the time devel-
opment, rather than the spatial development, of a flow; if one looks at the spatial
evolution of a perturbation in plane channel (Fig. 7.8), for instance, the use of
periodic boundary conditions is equivalent to studying the flow in a convecting
frame of reference. Each flow realization (i.e., each timestep) is then equivalent to
one location in the spatially-developing framework.

When periodic boundary conditions are used, the computational domain must
be at least as long as the wavelength of the longest structure present in the flow.
If such wavelength is not known a priori, the two-point correlations must be ex-
amined to determine whether the domain length is sufficient.

If the flow is spatially developing, it is necessary to specify inflow and outflow
conditions. The specification of inflow conditions is straightforward for transitional
flows, not so for turbulent flows. In all cases an entire plane of data (all velocity
components) must be assigned at each instant. In transitional flows it is suffi-
cient to specify the mean flow and the desired perturbations. For fully-developed
turbulent flows one can use the same technique, but the length required for the
disturbance to develop and for the flow to reach the desired turbulent state may be
very significant, even if large-amplitude perturbations or random noise are given
at the inflow. Alternately, one can superpose a turbulent mean flow and random
noise with assigned second (or higher) moments. This approach is more physi-
cal, and requires shortened adjustment lengths, but semi-empirical information is
needed to specify the inflow profiles desired. Finally, one can use the results of a
periodic simulation as inflow for a non-periodic one. For instance, one can com-
pute a turbulent channel flow and store, at each timestep, one plane, which is then
used as inflow condition for the calculation of a backward facing step. Outflow
boundary conditions are usually implemented through a buffer region in which the
equations are parabolized (see, for example, Street and Macaraeg 1989).

An alternative approach, developed to allow the application of periodic bound-
ary conditions in spatially-developing flows is the “fringe method” (Spalart and
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Figure 7.9: Stress at the wall.

Watmuff 1993), in which sink terms are added to the governing equations in a
buffer region at the end of the domain. The purpose of these additional terms is
to decrease the boundary layer thickness and, if necessary, to accelerate the decay
of particular fluctuating components. These terms are active only in a small region
(usually, about one quarter of the length of the computational domain), and the
Navier-Stokes equations are solved everywhere else.

At solid boundaries, the momentum flux through the boundary must be known.
Since the wall velocity is assigned, the no-slip condition allows the determination
of the convective part u;u,, (where a subscript n indicates the direction normal to
the boundary) of the momentum flux at the wall. Differentiation of the velocity
profile to determine the viscous part, however, is accurate only if the wall-layer is
well-resolved. To represent accurately the structures in the near-wall region, the
first grid point must be located at y*+ < 2,* Fig. 7.9, and the grid spacing must
be of order Az ~ 50 — 150, Azt ~ 15 — 40. As Re — 0o, an increasing number
of grid points must be used to resolve a layer of decreasing thickness. This may
also result in high aspect-ratio cells, with further degradation of the numerical
accuracy.

When the grid is not fine enough to resolve the near-wall gradients, the mo-
mentum flux through the wall cannot be evaluated directly by numerical differenti-
ation; the wall layer must then be modeled by specifying a correlation between the
velocity in the outer flow and the stress at the wall. This approach allows the first
grid point to be located at yT ~ 30— 150, and, since the energy-producing vortical
structures in the wall-layer do not have to be resolved, it permits the use of coarser
meshes in the other directions as well: Az ~ 100 — 600, AzT ~ 100 — 300. Since
modeling of the wall-layer physics is required, further empiricisms are introduced
in the calculations

4A superscript + indicates quantities normalized by the viscosity v and the friction velocity
ur = (1w /p)'/>.
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7.5.4 Initial conditions

For flows that are statistically steady, the initial conditions are relatively unim-
portant. Usually, they may consist of large-amplitude perturbations superposed
on a realistic mean flow, or of a fully-developed flow in a similar configuration.
Typically, the flow is allowed to develop in time until a steady state is reached,
and then statistics are accumulated.

For flows in which the transient is important (temporal transition, for instance,
or the decay of homogeneous isotropic turbulence), more care must be used when
assigning the initial conditions. In problems involving laminar-turbulent transi-
tion, controlled or random perturbations can be used. For turbulent flow problems,
on the other hand, assigning random noise with a given spectrum requires some
adjustment time before the nonlinear interactions become realistic.

7.5.5 Implementation on parallel computers

More and more institutions are acquiring parallel computers for high performance
scientific computation. The cost of these machines per megaflop may be as little
as one-tenth the cost of the more traditional supercomputers, so that small to
mid-range versions of these new machines can be directly purchased by individual
Universities and corporations. High-end versions of these parallel machines, by
definition, are still expensive but can achieve levels of performance unattainable
by the more traditional serial machines.

The main challenge confronting the turbulence simulator with these new ma-
chines consists in developing a numerical procedure for time-integrating the Navier-
Stokes equatins in parallel. The main ideas involved in the implementation of a
periodic, spectral turbulence simulation on a parallel machine (Wray and Ro-
gallo 1992) will be discussed here. Developments along similar lines may also be
found in Karniadakis and Orszag (1993).

The periodic spectral code time-advances the velocity field in three-dimensional
Fourier space. In the original and simplest version of the code, the data structure of
the Fourier-transformed velocity field is such that z-y planes of data are distributed
uniformly among the P processors. In other words, for a given value of k,, all the
data for k, and k, resides locally on each processor. If one is performing a 2563
simulation, for instance, on 128 processors, then each processor will have data
corresponding to two distinct values of k,. This is what Rogallo has called the
planes code. The main computational burden in the so-called pseudo-spectral
method for solving the Navier-Stokes equations (Orszag and Patterson 1972) is
in the fast Fourier transforms between wave-space and physical space used to
compute the nonlinear terms as local products rather than as convolutions. Wray
and Rogallo (1992) chose to implement these Fourier transforms locally on each
processor. With the k. data spread among processors, only transforms in  and
y can be performed locally. The transform in z can be done only after the data
has been transposed, that is, the k. data is swapped with the k, data, say, so
that k, — k. planes are local to each processor. The data flow of the code used to
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compute the non-linear products is the following: the simulation is initialized in
wavespace with k, — k, planes local to each processor. First, the velocity field is
Fourier-transformed to physical y space. The field is then transposed so that &k, —k,
planes are processor-local. The remaining two transforms are then performed so
that the field resides entirely in physical space, the nonlinear terms are formed,
and the field is transformed back to wave x and z space. The field is transposed
again, transformed to wave y space, and time-advanced. The data management
in the planes code is relatively simple and efficient. However, mainly looking
ahead to massively parallel machines with a large number of processors (some
current machines now contain thousands of relatively slow processors), Rogallo
has implemented a more sophisticated version of parallel code that he calls the
pencil code. The problem with the planes code on massively parallel machines
(more than 1000 processors) is that reasonably-sized simulations cannot make
use of all the processors. With the pencil code, N? modes are mapped onto P
processors. Hence, only data in one direction is local to a processor, while data in
the other two directions is distributed among the P processors. The data flow is
slightly more complicated with the requirement of several transposes. Execution
of the pencil code is also somewhat slower than that of the planes code.

Another obvious approach to turbulence simulation on parallel machines is to
replace the one large simulation by an ensemble of smaller sized simulations. This
has been done using a version of Rogallo’s planes code in order to obtain good
statistics of the largest scales of isotropic turbulence (Chasnov 1993). In this work,
sixty-four 64° independent simulations were run in parallel on 128 processors of
a parallel machine. Each 643 simulation required the memory of two processors
to run. When each simulation can fit on one processor, such simulations are
called embarrassingly parallel, since little or no communication is required among
different processors. The simultaneous running of a large ensemble of flows is
an entirely plausible route for the future of LES on parallel machines since the
resolution requirements tend to be lower than for DNS, whereas convergence of
the large-scale statistics typically require either long time averages (if the flow is
statistically steady) or an average over a large ensemble of statistically independent
flows.

7.6 Applications

7.6.1 Homogeneous turbulence

A turbulent flow is homogeneous if the statistics of the flow are invariant under
translation. It is isotropic if the statistics are also invariant under rotation. There
are no special positions in homogeneous turbulence, and there are no special di-
rections in isotropic turbulence. Isotropic turbulence is necessarily homogeneous
(two distinguishable points form a line, and hence specify a direction), but homo-
geneous turbulence need not be isotropic. The study of homogeneous turbulence
excludes all wall bounded flows, since the distance from the wall naturally dis-
tinguishes one point in space from another. Some limited physics can be studied
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within the framework of isotropic turbulence, including the transport of isotropic
passive scalar and magnetic vector fields. However, more interesting physics can
be studied within the larger framework of homogeneous turbulence, including the
effects of buoyancy, stratification, rotation, external magnetic fields and shear. All
these flows are anisotropic in that preferred directions exist (e.g., gravity defines
the vertical direction).

This Section will mainly concentrate on two issues concerning homogeneous
turbulence. First, the feasibility of LES will be directly tested; that is, an LES of
decaying isotropic turbulence will be performed in an attempt to judge the accu-
racy of the numerical results. Then, following this necessary preliminary discussion
which hopefully will serve the purpose of “field testing” LES, the emphasis will
switch to the physics of the homogeneous turbulence decay. In particular, some
recent LES results will be reviewed that demonstrate precisely the development of
asymptotic similarity states in a variety of homogeneous turbulence flows.

One use of homogeneous turbulence simulations has been to test the perfor-
mance of newly-developed subgrid-scale models. It is reasonable to insist that
newly-developed models perform well for simulations of homogeneous turbulence
if one is to have any confidence in their use in more complicated geometries. How
does one judge the accuracy of an LES? One approach is to simulate decaying grid
turbulence, and to compare the results of the LES to physical experiments (Lund et
al. 1993). The main technical difficulty in this approach is in exactly matching the
initial conditions of the simulation to that of the experiment. Another “difficulty”
is the observed insensitivity of the large-scale statistics of decaying isotropic tur-
bulence to changes in the subgrid-scale model. However, this perceived difficulty
is actually a positive feature, since the robustness of the large-scale statistics of
homogeneous turbulence to changes in the subgrid scale model provides evidence
that the large-eddy simulations are producing the correct results. Intuitively, one
expects incorrect results to be sensitive to changes in the subgrid-scale model
which is after all the cause of these incorrect results.

Here, the performance of the k-dependent eddy viscosity subgrid scale model,
discussed in Section 7.4.2, will be studied for the fundamental problem of decaying
isotropic turbulence at high Reynolds numbers (the molecular transport coefficient
will be set to zero in the simulations). Rather than comparing the numerical results
to physical grid turbulence experiments, the robustness of the large-eddy statisti-
cal results to substantial changes in the subgrid-scale model will be tested directly.
The simulations are initialized with a given energy spectrum, and the initial ve-
locity field corresponding to this energy spectrum is constructed using random
phases as described earlier. Results of two separate tests of the k-dependent eddy
viscosity subgrid-scale model will be presented. First, the results of two large-
eddy simulations with identical initial energy spectra but different resolutions of
the smallest scales will be compared. In other words, with a fixed initial spec-
trum the results of two simulations at resolutions 128> and 256%, with maximum
resolved wavenumber magnitudes 60 and 120, respectively, will be compared. The
minimum wavenumber magnitude is unity. The initial energy spectrum is chosen
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to be
B(k,0) = =ik, " (6/ky)* exp [~ (6/ky)?] (7.55)

with a maximum value at k, = 50. The value of uy is unimportant and it is
taken to be ug = 1. The time-evolution of the large-scale statistics of the mean-
square velocity of the turbulence, the integral scale, and the energy spectrum
itself will be considered. The choice of E(k,0) ~ k? as k — 0 necessarily results in
energy spectra that are the same for all times at small wavenumbers. The physical
consequences of this will be discussed in greater detail later.

In decaying turbulence, the integral scale is growing in time so that the dissipa-
tion provided by the subgrid-scale eddy viscosity at a fixed resolved wavenumber
k is decreasing relative to the resolved scale nonlinear transfer at k. Accordingly,
one expects more accurate results after long time evolutions. However, the errors
in the results at short times can conceivably pollute the results at later times.
Also, in the 2563 simulations the dissipation provided by the eddy viscosity at k is
less than that provided in the 128 simulation so that one expects the 2563 calcu-
lation to be more accurate. The dissipation integrated over all k, however, needs
to be the same for the two simulations to yield identical results. The integrated
dissipation is just the cascade rate e:

e(t) = /0 o 2, (k| ) K2 Bk, t)dk . (7.56)

The results of the 1283 and 256 simulations are shown in Fig. 7.10. In Fig. 7.10,
the time-evolution of the mean-square velocity (u?) is displayed. Time is in units
of the initial large-eddy turnover time 79 = Lg/ug, where Ly, the initial integral
scale, is given by Lo = /7/k,. At the initial instant, (u?) = u3 where uy = 1.
Note that the mean-square velocity statistic is not completely resolved at the
initial instant in the 128 resolution simulation. Nevertheless, the mean-square
velocity statistic from the two simulations converge at the latest times, indicating
the successful long-time calculation of this statistic. The time-evolution of the
spherically-averaged integral scale is plotted in Fig.. 7.10b. Again, this statistic is
not entirely resolved at the initial instant in the 128 simulation, but the results
from the two simulations converge at the latest times. The initial energy spectrum
of the 256° simulation, and the final energy spectra from the 1282 and 256° sim-
ulations at the nondimensional time of t/79 = 300 are shown in Fig. 7.10c. The
agreement of the energy-containing scales of motion at this late time is remark-
able. The small-scale spectra do not agree as well, but their disagreement yields
the same integrated value for the mean-square velocity.

As a second test of the LES, the evolution of decaying isotropic turbulence
at 1283 resolution, but with significantly modified subgrid-scale models is further
considered. The perturbation to the subgrid-scale eddy viscosity is accomplished
by assuming the Chollet form for the subgrid-scale model (7.35) with Ko = 2.1,
and multiplying it by an extra factor a:

v (k k) = @ [0.145 + 5.01 exp (—3.03kn /k)] - (7.57)
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Figure 7.10: The results of 1282 and 2563 simulations using a k-dependent eddy
viscosity. (a) (u?) vs. t/70; (b) L(t) vs. t/70; (c) Energy spectra at t/79 = 300.
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Figure 7.11: The results of 128% simulations with perturbed k-dependent eddy
viscosity (o = 1/2, 1, and 2 in (7.57). (a) (u?) ws. t/70; (b) L(t) vs. t/70; (c)
Energy spectra at t/79 = 300.

Consider the evolution of the turbulence with @ = 1/2, 1, and 2 (in the computa-
tions just discussed, @ had been taken to be unity). Note that the initial energy
dissipation rate of the turbulence varies over a factor of 4 as a varies from 1/2 to
2.

The statistical results are shown in Fig. 7.11. Mean-square velocities and in-
tegral scales agree exactly at the initial instant of time, disagree somewhat at
intermediate times, and then reconverge at the latest times. The energy spectra
at the initial and latest time (¢/79 = 300) are displayed in Fig. 7.11. The max-
imum value attained by the energy spectrum agrees in these three simulations,
but significant differences exist for the spectrum of the small scales: the spectrum
with a = 1 appears to be the most natural with respect to the development of a
Kolomogorov inertial subrange (see Section 7.3.1). The main point these results
highlight is that, although the spectral distribution of the energy is sensitive to
the precise form of the subgrid-scale model, the integral of the spectrum, which
yields one-half the mean-square velocity, is not. The turbulent flow apparently
self-adjusts to errors in the subgrid-scale model in order to yield the correct en-
ergy dissipation rate. This has been picturesquely called “a convenient conspiracy”
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(Oran and Boris 1993). One may further attempt to develop subgrid-scale models
(or even tune the parameters in the Chollet parametrization) to yield results in
better agreement with the Kolmogorov inertial subrange. One method to do this,
discussed in Section 7.4.2, requires the addition of a stochastic force. However,
results that are sensitive to the subgrid-scale model must be viewed somewhat
warily.

Having thus demonstrated the reliability of large-eddy simulations for com-
puting the mean-square velocity and integral scale, some recent results obtained
by LES for the development of high Reynolds number similarity states in decay-
ing homogeneous turbulence will be reviewed. The establishment of similarity
states in homogeneous turbulence is certainly of theoretical interest: a substan-
tial reduction in the number of independent variables is possible if turbulence is
found to decay self-similarly. In fact, it will be shown that the evolution of some
non-trivial homogeneous turbulent flows may be predicted by simple dimensional
arguments, and that these predictions have been verified to high precision by large-
eddy simulations. One can even argue that the “turbulence problem” is solved for
these flows in that one can predict exactly their asymptotic statistical evolution.
Unfortunately, these types of similarity states may be peculiar to homogeneous
turbulence decay in an infinite fluid; nevertheless, the insight gained in studying
homogeneous turbulence subject to additional physics such as stable-stratification
and rotation may eventually find use in the development of better turbulence mod-
els for wider application in engineering and the physical sciences. At least, it will
be demonstrated that real progress is possible in turbulence prediction, even if
only for idealized situations.

Large-eddy simulations — used to discover new similarity states in homogeneous
turbulence and to test theoretical predictions — appears to be uniquely suited to
this problem: the long-time evolution of the energy and integral scales charac-
teristic of the asymptotic similarity states is insensitive to the exact form of the
subgrid-scale model (as demonstrated above for decaying isotropic turbulence),
and alternative approaches such as physical experiments and direct numerical sim-
ulations are too severely restricted in Reynolds numbers and total flow evolution
time to definitively attain the asymptotic state. Closure calculations of turbu-
lence can attain the high Reynolds numbers and long-time evolutions required
(Lesieur 1990), but contain unknown errors that cannot be easily quantified. Fur-
thermore, closure calculations are much more difficult to develop and apply to
anisotropic flows than LES. For most problems, an isotropic LES code is easily
modified to include additional physics (buoyancy, stratification, rotation, magnetic
fields) that may induce anisotropy in the flow field. Closure theories (and the non-
trivial numerical codes to solve them) typically require major new developments
(Cambon et al 1981, Cambon and Jacquin 1989) to include the effects of various
anisotropy-producing physics.

Some early applications of LES to homogeneous turbulence will now be briefly
reviewed. One of the first LES of forced isotropic turbulence used an empirically-
determined eddy-viscosity subgrid-scale model (Siggia and Patterson 1978). De-
caying turbulence simulations (Chollet and Lesieur 1981) using an eddy viscosity
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subgrid-scale model derived from two-point closure studies (Kraichnan 1976) were
later performed with the same spectral code. These early simulations were at the
relatively low resolution of 323. Tt is in fact not possible to obtain similarity states
for the decaying turbulence at these resolutions since the integral scale grows to a
length comparable to the periodic box before a similarity state is attained.

Simulations at the higher resolution of 1282 that included transport of passive
scalars (Lesieur and Rogallo 1989) were undertaken using an isotropic turbulence
code developed earlier by Rogallo (1981). Although the decay exponent of the
kinetic energy was in qualitative agreement with the theoretical predictions, these
simulations yielded some puzzling results for the passive scalar evolution, including
a much more rapid decay of scalar variance than was predicted by two-point closure
studies (Larcheveque et al. 1980). These two-point closure studies were motivated
by experimental results obtained from measurements of decaying passive scalar
fluctuations in grid-generated turbulence (Warhaft and Lumley 1978). In these
experiments, it was determined that the decay exponent of the passive scalar was
a function of the ratio between the initial integral length scales of the velocity
and scalar fluctuations. Although two-point closure studies seemed to explain this
non-universality of the decay exponent as a transient response of the scalar field,
the LES results of Lesieur and Rogallo (1989) seemed to be in direct contradiction
to the two-point closure results. Further calculations by Metais and Lesieur (1992)
seemed to confirm these new LES results.

However, Chasnov (1994) later demonstrated, by placing the peak of the initial
energy spectrum at larger wavenumbers, that the anomalous results obtained by
Lesieur and Rogallo (1989) for the passive scalar decay were a consequence of
too short a time evolution of the flow field. This had been previously suggested
by Herring (1990) based on additional two-point closure studies. The Lesieur
and Rogallo (1989) results, although certainly accurate, were indeed transient
results. These transients may last up to 500 initial large-eddy turnover times of the
turbulence, which corresponds to approximately 15 intrinsic large-eddy turnover
times of the flow, since the large-eddy turnover time increases as the flow evolves
due to the decaying velocity fluctuations and increasing integral scale. Large-eddy
simulations also demonstrated that these transients depended on the initial ratio
between the velocity and scalar integral scales, as shown earlier by the experiments.

Although it is not the purpose of this article to go into the details of the
theoretical scaling laws, it is worthwhile to discuss briefly these analytic results
for the simplest case of isotropic turbulence decay so that the LES results can
be better appreciated. Theoretical arguments by Batchelor and Proudman (1956)
and later by Saffman (1967a) explicitly determined the following low wavenumber
(k — 0) forms of the energy spectrum in isotropic turbulence:

E(k) ~ 27k?By, or E(k) ~27k'B,, (7.58)

depending on the conditions of turbulence generation. Although the Saffman k2
form appears to be the generic form, grid turbulence experimental results have
mainly supported the Batchelor and Proudman k* form by indirect measurements
of the velocity decay. Large-eddy simulations discussed here can shed no light on
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the experimental large-scale structure of turbulence since it will be shown below
that the form of the low wavenumber spectrum is simply determined by the choice
of initial conditions in the simulation.

Saffman showed analytically that the low wavenumber coefficient By is an
invariant of the flow. If it is initially non-zero, he further postulated a similarity
state of the turbulence decay based on By (Saffman 1967b). This similarity state
results in the following predictions for the decay of the mean-square velocity and
growth of the turbulence integral scale, obtained by simple dimensional analysis:

(u?) o« B/®t76/5 | L o« BLP#2/5 . (7.59)

Using these laws, the asymptotic similarity state of the energy spectrum is thus
given by
E(k,t) = Bt 4°E(k), &= B)/*t*/°k. (7.60)

Note the reduction of the two independent variables in the spectrum E(k,t) to the
one indendendent variable of the similarity spectrum E’(E)

If the initial turbulence spectrum has By equal to 0, then a non-zero value of
Bs is necessarily generated by nonlinear transfer processes (Batchelor and Proud-
man 1956). Hence, simulations initialized with a k? energy spectral form at low
wavenumbers maintain this k2 form for all times, whereas simulations initialized
with energy spectral forms steeper than or equal to k* at low wavenumbers subse-
quently develop a k* form. Apparently, a similarity state can also be based on the
coefficient B, even though it is a function of time. This similarity state was first
postulated by Kolmogorov (Kolmogorov 1941) based on the assumption that B
was invariant (Loitsianskii 1939). The development of the mean-square velocity
and integral scale in this similarity state is given by

(u?) o Bgﬁt_m/7 , L B;/7t2/7 ; (7.61)
and the corresponding asymptotic similarity spectrum by
E(k,t) = BY"+3"E(k), k=BY"tk. (7.62)

Further details of the large-eddy simulations of decaying isotropic turbulence
and passive scalar field (Chasnov 1994) will now be discussed. The Chollet parametriza-
tion of the eddy-viscosity, [Egs. (7.34) and (7.35) with Ko = 2.1] is assumed for
the subgrid-scale model, and an eddy-diffusivity for the scalar field is defined as

De(klkm, t) = ve (klkm, t) /00, (7.63)

where o, is an eddy Schmidt (or Prandtl) number, assumed constant and equal
to 0.6. Equation (7.63) is a crude but adequate approximation of results obtained
from two-point closure models for passive scalar transport. The time-evolution of
the energy spectrum for both k2 and k* initial conditions is shown in Fig. 7.12.
The peak of the initial spectrum is placed at a wavenumber k£ = 100, where the
maximum wavenumber of the simulation is approximately 120 and the minimum
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Figure 7.12: Time evolution of the energy spectrum of decaying isotropic turbu-
lence (from Chasnov 1994). (a) k2 low wavenumber spectrum; (b) k* low wavenum-
ber spectrum.
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Figure 7.13: Time evolution of the power-law exponent of the mean-square velocity
and integral scale of decaying isotropic turbulence. The solid lines are the results
of the large-eddy simulations, and the dashed lines are the exact and approxi-
mate theoretical results discussed in the text (from Chasnov 1994). (a) Power-law
exponent of (u?); (b) Power-law exponent of L(t).

wavenumber is unity. These simulations use 256° grid points and were performed
using a parallel version of the Rogallo code (Wray and Rogallo 1992). The initial
flow field is truly a large-eddy field, with even the energy containing scales of
motion marginally resolved. As already observed in the first half of this Section,
the initial evolution of the large-scale statistics of the flow is in error, but accuracy
is recovered after a sufficiently long time evolution. Placing the peak of the initial
spectra at such a large wavenumber allows a sufficiently long time evolution of the
flow so that the sought-after asymptotic similarity state can be attained before
the integral scales of the flow become comparable to the periodicity length of the
calculation.

Figure 7.13 displays the time-evolution of the power-law exponent of the mean
square velocity and integral scale of the turbulence. Excellent agreement with the
theoretical results discussed previously is obtained after a sufficiently long time.
Indeed, the Saffman —6/5 theoretical result for the time exponent of the mean-
square velocity is confirmed to within 2%. A collapse of the energy spectra in
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self-similar variables was also explicitly demonstrated by the LES results. Com-
paratively precise results were also obtained for the passive scalar decay in this
work.

It is quite amazing that this type of precision is currently obtainable from large-
eddy simulations. To demonstrate this point further, the additional simulations
performed by Chasnov (1993) to compute the time-variation of the Loitsianskii
integral By in order to provide a correction to the original Kolmogorov —10/7
decay exponent should be mentioned. Chasnov (1993) obtained an estimate for
the correction to the Kolmogorov decay exponent on the order of 5%; that is, the
Kolomogorov —10/7 =~ —1.43 time exponent was shown to become approximately
—1.36 if the time dependence of B, (found to increase as t°-2°) was accounted
for. This should be compared to previous EDQNM results of —1.38 (Lesieur
and Schertzer 1980). These simulations, however, were fairly expensive at the
time, requiring the computation of an ensemble of 1024 realizations of 643 flows.
However, with the rapid increase in the projected speed and memory of parallel
computers, these computations may appear inexpensive to the present reader.

How does LES perform for anisotropic turbulence? The decay of an initially-
axisymmetric turbulence was recently investigated using LES (Chasnov 1995a).
Following the theoretical work of Saffman (1967a), initial conditions corresponding
to impulsive forces along and perpendicular to the axis of symmetry were investi-
gated. When the form of the low wavenumber energy spectrum was the Batchelor
and Proudman k* type, it was determined by LES that the flow asymptotically
approached isotropy on all scales. However, when the low wavenumber spectrum
took the Saffman k2 form, the largest scales of the flow remained anisotropic for
all times, with the ratio of the mean-square velocity along the axis of symmetry
over that perpendicular to the axis approaching 1.5 for impulsive forces directed
along the symmetry axis, and 0.8 for impulsive forces directed perpendicular to
the symmetry axis. Isotropic turbulence corresponds to a value of unity for this
ratio. However, even though the energy-containing scales of motion remained
anisotropic, the smallest scales of the flow approached isotropy, consistent with
the concept of local isotropy of the small-scale turbulence discussed earlier. Use of
an isotropic subgrid-scale model to represent these small scales was thus justified
a posteriori. Note that the subgrid-scale model itself is incapable of isotropizing
the small scales of the flow since an isotropic eddy viscosity transport coefficient
can not transport energy from one velocity component to another. Rather, the
approach to isotropy of the smallest scales of the large-eddy simulation was due
to the resolved-scale pressure forces.

A remarkable feature of the simulation results for the decay of axisymmetric
turbulence with a Saffman k? low wavenumber coefficient was the development of
an asymptotic similarity state with the same power-law exponents of the isotropic
turbulence decay despite the evident anisotropy of the energetic scales of motion.
The existence of the same Saffman invariant and no other relevant dimensional
quantities apparently forced the same similarity scaling on the axisymmetric tur-
bulence decay as occurs for the isotropic turbulence decay.

In considering the decay of isotropic turbulence, Chasnov (1994) also intro-
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duced a uniform mean passive scalar gradient across the flow and studied the gen-
eration of passive scalar fluctuations from the mean scalar gradient by turbulent
motion along the direction of the gradient. Such a uniform gradient satisfies the
requirement of statistical homogeneity, but not isotropy. The scalar fluctuations
that are subsequently generated are necessarily axisymmetric in their two-point
correlations in physical space. Using the isotropic eddy-viscosity and diffusivity
subgrid-scale model discussed above, Chasnov (1994) demonstrated the establish-
ment of a new asymptotic similarity state for this passive scalar field. Excellent
agreement was found between the simulation results and a simple scaling argu-
ment based on the low wavenumber energy spectrum invariant. Furthermore, the
results of this LES were in good qualitative agreement with earlier experimental
grid-turbulence results of Sirivat and Warhaft (1983), but were of higher preci-
sion due to the length of the time integrations. Wind tunnels are simply not long
enough to compete with the precision obtainable by LES.

Asymptotic similarity states of homogeneous turbulence with buoyancy forces
have also been successfully simulated by LES. In the work of Batchelor et al. (1992),
initially-isotropic density fluctuations are introduced in a fluid at rest, and sub-
sequent (anisotropic) velocity fluctuations are generated by the buoyancy force.
LES was used for two purposes in this work. First, a complete study of the
maximum mean-square velocity generated by the initial density distribution as a
function of an initial pseudo-Reynolds number of the flow was undertaken. This
Reynolds number is constructed using a characteristic length scale of the initial
density distribution and a characteristic magnitude of the initial buoyancy force.
Direct numerical simulations were adaquate for relatively low Reynolds numbers
but were unable to be extended into the regime where it was suspected that the
maximum mean-square velocity became Reynolds-number independent. In fact,
this Reynolds-number independence only occurs after the Reynolds number is suf-
ficiently large that an inertial subrange begins to develop before the mean-square
velocity reaches its maximum value; direct numerical simulations are presently
incapable of reaching such large Reynolds numbers. The introduction of a k-
dependent eddy viscosity provided the solution of this numerical difficulty. As the
initial Reynolds number of the flow is increased, the molecular viscosity becomes
less and less important with respect to the subgrid-scale eddy viscosity (v << ve),
and the maximum value attained by the mean-square velocity necessarily becomes
Reynolds-number independent. However, there was in fact no guarantee that such
a maximum value of the mean-square velocity existed, since it was not found by
a linear analysis of the flow evolution (given some generic initial density fluctua-
tions).

The long-time high Reynolds number asymptotic state of homogeneous buoyancy-
generated turbulence was also studied. Large-eddy simulations demonstrated that
the mean-square velocity, density variance and integral scales follow approximate
power-laws in time asymptotically. Furthermore, the Reynolds number of the flow
at time ¢, defined in the usual way, is an increasing function of time, providing this
flow a rather unique character. These numerical results then motivated very simple
and appealing dimensional arguments that predict all of the exponents discovered
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numerically.

Further work on buoyancy-generated turbulence appears in a more recent pub-
lication (Chasnov 1995b). Here, the previous large-eddy simulations of buoyancy-
generated turbulence were extended to include the transport of additional passive
scalar fields by the turbulence. Accordingly, eddy viscosity and diffusivity subgrid-
scale models were employed for each of the velocity, density and passive scalar
fields. Asymptotic similarity states were computed by LES for the passive scalar
fields with and without uniform mean scalar gradient, giving results in excellent
agreement with corresponding generalizations of earlier dimensional arguments.

Finally, some continuing work involving the large-eddy simulations of rotating
and stably-stratified homogeneous turbulence (Squires et al. 1994, Chasnov 1995¢)
should be briefly mentioned. These flows are distinguished from the ones dis-
cussed above in that an additional time scale enters the problem, namely the
period of the internal wave motion, be it inertial waves for the rotating turbulence
or gravity waves for the stably-stratified turbulence. Dimensional arguments to
determine the asymptotic similarity states in these flows are accordingly incom-
plete in that a dimensionless ratio formed from the period of the internal waves
to the turbulence time scale exists. This additional freedom also results in a
very interesting phenomenon that has sometimes been referred to in the past as a
“two-dimensionalization” of these flows. Namely, the vertical integral scale of the
turbulence may behave asymptotically quite different than the horizontal integral
scale. (Vertical here is defined as the direction either along the rotation axis or
parallel to the gravitational force). Figure 7.14 presents results from large-eddy
simulations for the time-evolution of the horizontal and vertical integral scales
in rotating and stably-stratified decaying homogeneous turbulence. The integral
scales are defined for the different velocity components in the rotating flow, and
as an integral scale of the “energy” (kinetic and potential) in the stably-stratified
flow. In the rotating flow, the vertical integral scale of the horizontal velocity
correlation grows much faster than all other integral scales. This effect has also
been observed in experiments (Jacquin et al. 1990). In the stably-stratified flow,
the vertical integral scale apparently approaches a constant, whereas the horizon-
tal integral scale increases indefinitely. These are very interesting effects and the
asymptotic similarity states which are being developed in these flows are still under
investigation.

7.6.2 Wall-bounded flows

The presence of a solid boundary affects the physics of the subgrid scales in several
ways. First, the growth of the small scales is inhibited by the presence of the wall.
Secondly, the exchange mechanisms between the resolved and unresolved scales
are altered; finally, in the near-wall region the subgrid scales may contain some
significant Reynolds-stress producing events, and the SGS model must account for
them.

Consider, for instance, a turbulent “event” (for instance, an ejection of low-
speed fluid from the near-wall layer) occurring near a solid boundary (the shaded



42

(@)

L()/L,

L L L
0 500 1000 1500 2000 2500 3000

t/t,

Figure 7.14: Time evolution of the horizontal and vertical integral scales in rotating
and stably-stratified homogeneous turbulence. (a) Rotating turbulence. Plotted
are the horizontal and vertical integral scales for the various velocity components
and correlations. The rapidly growing integral scale corresponds to the vertical
correlation of the horizontal velocity components. The lowest straight line is the
theoretical result for isotropic turbulence (from Squires et al. 1994). (b) Stably-
stratified turbulence. The solid and dashed lines correspond to simulations with
different initial Froude numbers (from Chasnov 1995¢).
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area in Fig. 7.15); if the mesh is very fine, the effect of this event will appear exclu-
sively through the resolved velocity. If the grid is coarsened or, equivalently, the
Reynolds number increased for constant mesh spacing, part of the event becomes
due to the unresolved scales, and the SGS model must account for part of the
energy produced by it. If the mesh is coarsened further (or the Reynolds number
increased), all the energy production may occur at the subgrid-scale level, and
must be taken into account either through approximate boundary conditions, or
through modifications to the eddy viscosity.

In simulations in which the wall layer is resolved, the most common way to ac-
count for these phenomena is by decresasing the length scale in the eddy viscosity.
Moin et al. (1978) and Moin and Kim (1982), for example, used a two-part model
similar to that introduced by Schumann (1975):

Tij = —2VT (gz] - (gw)) - 2V%<§ij), (7.64)

where (-) represents averaging over planes parallel to the wall. The first term in
(7.64) is a Smagorinsky term modified to eliminate the effect of the mean shear,
and to model the SGS stresses as if the flow were isotropic:

2 — — — \\q1/2
vr = {C,A[L - exp(~y*/25)]}” [2 (515 — (1)) (55 — G))]'*, (7.65)
(where A% = AzAyAz and C; = 0.1); the second term, in which
2 _ _
vi = {0.258201 - exp(—y**/257)]} [2(5:) ()], (7.66)

is designed to account for the inhomogeneity due to the non-zero mean shear, and
for the production of subgrid-scale energy in the near-wall region. Wall effects
were included by the introduction of Van Driest (1956) damping to represent the
reduced growth of the small scales near the wall.

Their results were in excellent agreement with experimental data. The wall-
layer dynamics were also captured well; the low-speed streaks, for instance, had
the correct length (A} ~ 1,200), although their spacing was high (A} ~ 200).

Piomelli et al. (1988) modified the Van Driest damping term to give the correct
near-wall behavior for the SGS stress (112 ~ y+3); they calculated the flow in a
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plane channel at Reynolds numbers in the range Re, = 180 — 640, and found that
the choice of model must be coupled with that of the filter, and that an inconsistent
choice gives inaccurate results. When the Gaussian filter is used and the Leonard
stresses are computed, for instance, inclusion of the scale similar model (Bardina
et al. 1983) gives more accurate results than the Smagorinsky part alone. When
the Fourier cutoff filter is used, on the other hand, the scale-similar part of the
model is identically zero, and the Smagorinsky model alone is consistent and gives
satisfactory results. Mean velocity, turbulence intensities and velocity spectra were
compared, and the agreement between filtered DNS data and LES results was very
good. The mean streak spacing was also predicted accurately, although a coarser
mesh was used than the one employed by Moin and Kim (1982).

One of the most useful characteristics of the dynamic eddy viscosity of Germano
et al. (1991) is the fact that the correct near-wall behavior of the SGS stresses
is ensured without the need for ad hoc adjustments or wall damping functions.
This results in reduced SGS dissipation in the near-wall region compared with the
Smagorinsky model, and more accurate prediction of the turbulence physics there.

Piomelli (1993b) used this model for the calculation of plane channel flow at
Reynolds numbers in the range Re, = 200—2,000. The results of these calculations
were in very good agreement with DNS and experimental data. The rms turbulence
intensities exhibited no loss of accuracy in the near-wall region even at the highest
Reynolds number; the location and magnitude of the peak streamwise turbulence
intensity were predicted correctly even in the low-resolution calculation. Higher
moments, such as the skewness factor of the large-scale velocity, were also in good
agreement with the data.

These calculations also evidenced how the resolution of the energy-producing
events affects the SGS model. Contours of streamwise velocity fluctuation u" =
u; — (u;) in an xz-plane near the wall are shown in Fig. 7.16. The contours of
u" for the Re, = 200 case resemble those obtained from direct simulations. As
the mesh becomes coarser (in wall units), however, the structures tend to become
wider and less elongated in the streamwise direction (an observation confirmed by
the two-point correlations), as a result of the inadequate grid resolution at high
Reynolds number. The two Re, = 1,050 calculations highlight this difference:
the contours of v are significantly more diffused, and fewer large Reynolds stress
events are observed, when the coarse mesh is used; the less frequent occurrence of
high-intensity v fluctuations is also responsible for decreased flatness of v in this
region.

A comparison of the length scales used in the dynamic model, £4 = (CZ2)1/ 2,

and in the Smagorinsky model, £; = 0.1A[1 — exp(—y*/25)] is shown in Fig. 7.17.
The length scale ¢, is almost ten times larger than ¢4 in the near-wall region,
resulting in a subgrid-scale dissipation that is one hundred times larger. Even if
the damping function in the expression for £, is changed to account for the near-
wall behavior of 715 as recommended by Piomelli et al. (1988), where the length
scale used is £, = 0.1A[1 — exp(—y*+>/25%)]}/2, the Smagorinsky model remains
more dissipative than the dynamic model.
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Figure 7.16: Contours of streamwise velocity fluctuations u” in the yT ~ 6 plane
(from Piomelli 1993). Dashed lines indicate positive contours. (a) Re, = 200; (b)
Re, = 1,050, fine mesh; (¢) Re, = 1,050, coarse mesh; (d) Re, = 2,000.
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Figure 7.17: Comparison of dynamic model and Smagorinsky model length scales
(from Piomelli 1993). —— ¢4 (dynamic model); —-- ¢, (Smagorinsky model);

-------- ¢, (Smagorinsky model with correct asymptotic behavior).

The reduced subgrid-scale dissipation is due to the occurrence of local backscat-
ter. Near the wall the length scale remained essentially the same when the mesh
was coarsened. This effect is counter-intuitive: one would expect that, as the grid
becomes coarser, the length scale representative of the subgrid-scales increase. It
can be explained by examining the model behavior in the near-wall region. Locally,
the quantity £;; M;;, which appears in the numerator of (7.52), can be of either
sign; it is negative on the average, resulting in a positive coefficient C, reflecting
the fact that the small scales are dissipative even in the near-wall region. The
effect of localized regions where £;; M;; > 0, however, is to reduce the value of the
coefficient and, therefore, the length scale, thereby accounting for subgrid-scale
backscatter, albeit only in an average sense. To illustrate this point, in Fig. 7.18
are shown the positive and negative contributions to C, defined as

1 (LigMij — |Lig Mg ) L {Li My + |Lii M)

= Mty T TE (M M)

(7.67)

The forward- and backward-scatter contributions to the SGS dissipation, €545 =

75945, are consequently given by
ey =—CsA[SP, & =—CA (S (7.68)

It can be seen from Fig. 7.18a that there is a substantial negative contribution
to C across the channel, due to the fact that £;;M;; > 0 at nearly 50% of the
points. This negative contribution is, effectively, a correction to the eddy viscos-
ity, that is decreased due to local subgrid-scale backscatter. In the coarse-grid
calculation, both positive and negative contributions to C' in the near-wall region
are substantially smaller than when the fine-grid is used, but the positive and
negative contributions to the SGS dissipation are similar (Fig. 7.18b), and the
net SGS dissipation (not shown) is essentially the same for both calculations. In
the near-wall region the percentage of points where £;;M;; > 0 increases; SGS
backscatter occurs at the same locations where the energy production is large, but
the average backscatter predicted by the model is not as high as expected based
on the a priori results (Piomelli et al. 1991) probably due to the less frequent
occurrence of strong u''v"” events.
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Figure 7.18: Backward and forward contributions to the model coefficient and
to the subgrid scale dissipation. Re, = 1,050 (from Piomelli 1993). (a) Model
coefficient. —Cp, fine mesh; -------- —C}, coarse mesh; +—— (', fine mesh;
+oeeee -+ CYy, coarse mesh. (b) SGS dissipation. —¢p, fine mesh; -~ —€p,
coarse mesh; +——— €y, fine mesh; +------ ~+ €y, coarse mesh.

Although adjustments to the eddy viscosity in the near-wall region can yield
more accurate prediction of the turbulent statistics, the number of grid points
required to resolve the near-wall region limits to the Reynolds number attainable
by LES calculations in which the wall layer is resolved. The use of unstructured
or block-structured meshes, in which the grid can be coarsened in all directions
as one moves away from the wall (as opposed to grids that are stretched in one
direction only as is commonly done) can alleviate this limitation, but not remove
it altogether. Chapman (1979) estimated that the resolution required to resolve
the outer layer of a growing boundary layer is proportional to Re®, while for the
viscous sublayer (which, in aeronautical applications, only accounts for approxi-
mately 1% of the boundary layer thickness) the number of points needed increases
like Rel-®.

One way to overcome this problem is to use approximate boundary conditions
similar to the wall functions employed in Reynolds stress models. Approximate
boundary conditions assume that the dynamics of the wall layer are universal, and
that some generalized law-of-the-wall can be imposed. The approximate boundary
conditions imposed so far have been quite simple, usually based on the existence
of an equilibrium layer and a logarithmic velocity profile.

Deardorff (1970), in his channel flow computations, forced the existence of a
logarithmic layer, and made the additional assumption that the turbulent fluctu-
ations be isotropic:

o*u 1 o*u

7 = r(Ag/2? | 922 (7.69)
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v = 0 at the wall, (7.70)
o*w 0*w
8—y2 —_ @- (7-71)

In the same flow, Schumann (1975) used conditions that related the wall stress to
the velocity in the core by

(Tw)  _
_ .72
T12 <ﬂ($,y2,z))U($7y27z) (7 7 )
7 = 0 at the wall (7.73)
1 E(x,yg,z)
= DI .74
e Re, Ay/2 (7.74)

These equations, in which y, refers to the first grid point off the solid wall, impose
that the wall stress is proportional to the velocity at the first point (both in the
streamwise and spanwise directions). The mean stress (r,) can be known for
a given pressure gradient, or can be calculated iteratively by requiring that the
plane-averaged velocity at the first grid point, (@(z,ys, 2)), satisfy the logarithmic
law (Grétzbach 1981).

Piomelli et al. (1989) applied conditions similar to (7.72-7.74); however, they
required the wall stress to be correlated to the instantaneous velocity some distance
downstream of the point where the wall stress is required, to take into account the
inclination of the elongated structures in the near-wall region:

(Tw)

mﬁ(x + As, 92, 2) (7.75)

T12(.’L',0,2!) =

(and a similar one for 733) where A, is a streamwise displacement; its optimum
value can be obtained from DNS or experimental data and is approximately A; =
23 cot, 8 for 30 < yi < 50, and A; = ys cot 13° for larger distances. The plane-
averaged wall stress was obtained solving iteratively a generalized law-of-the-wall
that is also valid for flows with transpiration.

Balaras et al. (1995) applied the shifted model (7.75) in conjunction with the
dynamic SGS model to study the flow in a plane channel at high Reynolds number,
with results in excellent agreement with experimental, DNS and resolved LES data.
Fig. 7.19 shows the comparison of the root-mean-square streamwise fluctuations
for two Reynolds numbers, Re, = 200 and 5,000, with DNS and experimental
data. It is interesting to notice that there is very little difference between the the
Smagorinsky and dynamic model results, except at the first grid point. This is
a reflection of the fact that the model coefficient was nearly constant throughout
most of the channel, and its value (C ~ 0.02) was close to that of the Smagorinsky
constant for isotropic flows, C% ~ 0.03 (Fig. 7.20). This indicates that perhaps
in the core of the flow, and at high Reynolds numbers, the turbulent eddies obey
inertial range dynamics. Under these conditions even a simple model such as the
Smagorinsky model gives acceptable results. Only near the wall the physics of the
small scales require more sophisticated modeling.
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Re, = 1,000, ——— Re, = 5,000, —-— Smagorinsky coefficient C%.
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The models described above are all based on the use of generalized laws-of-the-
wall; they require that the near-wall be nearly in equilibrium. If such is not the
case, models of this type are bound to give incorrect answers. More general approx-
imate boundary conditions are required to predict the flow in complex geometries
(including strong acceleration, secondary mean velocity gradients, separation and
reattachment, for instance) where the logarithmic layer may not exist.

7.6.3 Transitional and relaminarizing flows

Many flows of engineering interest, especially involving aeronautical applications,
include regions of transitional or relaminarizing flow. In transitional regions vari-
ous types of perturbations grow, interact with the mean flow and with each other.
In engineering flows, this growth will frequently result in a turbulent regime.

Subgrid-scale models, which are usually based on high Reynolds number dy-
namics, often have difficulty in calculations of transitional or relaminarizing flows.
The eddy viscosity predicted by the Smagorinsky model, for instance, is non-zero
even in laminar flows. The additional dissipation introduced by the model in lam-
inar flow is non-physical, and has the effect of damping excessively the growth of
the small perturbations.

If the initial perturbations are large enough, even LES calculations that use the
Smagorinsky model will eventually result in a turbulent flow. It is, however, very
important, from a technological point of view, to predict the transition process
correctly (i.e., with the correct temporal or spatial development and properties),
particularly since the peak skin friction and heat transfer usually occur toward the
end of the transition process.

Piomelli and coworkers studied the fundamental transition in a flat-plate bound-
ary layer (Piomelli et al. 1990a) and in a plane channel (Piomelli and Zang 1991),
and found that when the Smagorinsky model is used, the linearly-unstable per-
turbations are damped. They introduced an ad hoc intermittency function that
turned the SGS model off in laminar flow, and obtained good comparison of their
results with theory and DNS.

The dynamic eddy viscosity model has the characteristic that the model coef-
ficient vanishes in laminar flow, where £;; is identically zero; this results in better
prediction of the transition process without requiring the introduction of addi-
tional empirical information. Germano et al. (1991) computed the transitional
and turbulent flow in a plane channel. They obtained very good agreement with
the theory in the linear stages of the growth, where the model gave no contri-
bution and the perturbations were completely resolved, and with the DNS data
during the nonlinear stages of the breakdown, where the eddy viscosity increased
to account for the broadening of the spectrum.

In Fig. 7.21 the time-development of the plane-averaged wall stress is shown.
The dynamic model calculation gives better results than either the Smagorinsky
model with the ad hoc intermittency function, or the model based on the Renor-
malization Group Theory of Yakhot and Orszag (1986). The overshoot in the
skin friction, which is of great interest in engineering applications, was captured
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Figure 7.21: Time evolution of the wall stress (from Zang and Piomelli 1993).
-------- Scaled Smagorinsky model (Piomelli and Zang 1991); --- RNG model (Pi-
omelli et al. 1990b); dynamic eddy viscosity model (Germano et al. 1991);
A fine direct simulation (Zang et al. 1991).

accurately. The time-development of the principal Fourier modes was also in good
agreement with the DNS data throughout the nonlinear stages. The streamwise
turbulent intensities (Fig. 7.22) were also in better agreement with the DNS data
than those obtained with the other models.

An additional difficulty in transitional flows is that, during the nonlinear in-
teraction stages of the breakdown, very small structures (thin shear layers, for
instance) are generated, that must be resolved even in an LES. In the calcula-
tions of fundamental breakdown by Germano et al. (1991), for instance, the mesh
was refined as the calculation progressed, and it was found that the finest grids
(and smallest time step) were required not in the turbulent region, but during the
nonlinear stages (¢ ~ 200). A similar problem occurs if regions of the flow are
inviscidly unstable: Akselvoll et al. (1995), for instance, in their calculation of the
flow in a backward-facing step, found that a very fine grid was required to resolve
the instability of the shear layer emanating from the step.

An important question, especially for the simulation of transitional flows, re-
gards the capability of the LES to resolve the large vortical structures that arise
during the transition process. Given that the resolution of an LES calculation is,
by definition, marginal (in the sense that the smallest resolved structures still con-
tain a substantial amount of energy) one should expect that the A-vortices, shear
layers etc. will not be as sharp and well resolved as they are in DNS calculations.
Fig. 7.23 shows the vertical shear u/dy in an zy-plane from the simulation of
subharmonic transition in a flat-plate boundary layer. The Reynolds number at
the inlet is Re = Uuod}, /v = 600, which increases to 805 in the turbulent region
(z ~ 800), to match the experiment of Kachanov and Levchenko (1984). One can
observe very clearly the development of a shear layer (on the left in the picture)
that is lifted from the wall and develops the kinks characteristic of the multiple-
spike stages. Initially, the shear layer is very well resolved; at later times, however,
as it is convected downstream and the instability grows, one observes some oscil-
lations in the lower-level contours, indicative of marginal resolution. The eddy
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Figure 7.22: Plane-averaged streamwise turbulence intensity (u'*)1/2 (from Zang
and Piomelli 1993). -------- Scaled Smagorinsky model (Piomelli and Zang 1991);
-—— RNG model (Piomelli et al. 1990b); —— dynamic eddy viscosity model
(Germano et al. 1991); A fine direct simulation (Zang et al. 1991). (a) t = 175;
(b) t = 200; (c) t = 220.
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Figure 7.23: Vertical shear Ou/0y in the z = 0 plane. Subharmonic transition in
a flat-plate boundary layer. (a) t,; (b) to +T'/4; (c) to +T/2; (d) t, + 3T/4. T is
the period of the fundamental wave.

viscosity (Fig. 7.24) is essentially zero in the laminar region, begins to rise at
x ~ 700, and becomes significant in a region in which the resolution is marginal.
In the regions between the shear layers, the eddy viscosity is quite small, whereas
sharp peaks can be observed where the shear layers are stronger and small scales
are being generated. The added dissipation provided by the SGS model results in
better resolution of the structures downstream of the points where the flow begins
to break down. In general, even if the resolution is much coarser than in DNS (only
561x65x32 grid points were used for the domain in the figure), the development
of the transitional structures is predicted as well as the statistical quantities shown
before. In the turbulent region, the eddy viscosity settles to values somewhat lower
than in the laminar breakdown zone.

Situations in which the perturbations decay leading to a laminar or quasi-
laminar state, also occur in engineering applications; relaminarization can take
place in flows in which the Reynolds number decreases (for instance, in a duct
that is being gradually enlarged) leading to an increase in the viscous dissipation,
in highly accelerated flows in which the pressure forces dominate the Reynolds
stresses, or in stably stratified and rotating flows (see Narasimha and Sreeni-
vasan 1979).

The interaction of rotation and mean shear normal to the axis of rotation may
also have either a stabilizing or a destabilizing effect on turbulence, depending on
whether the angular velocity and mean shear have the same or opposite signs. In
turbulent channel flow, for example, system rotation acts to both stabilize and
destabilize the flow. On the unstable side Coriolis forces resulting from system ro-
tation enhance turbulence-producing events, leading to an increase in turbulence
levels, while on the stable side Coriolis forces inhibit turbulence production and
decrease turbulence levels. The increase in the component energies, however, is
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Figure 7.24: Eddy viscosity in the z = 0 plane. Subharmonic transition in a flat-
plate boundary layer. (a) to; (b) to +T/4; (¢) to +T/2; (d) to + 3T/4. T is the
period of the fundamental wave.

dependent on the rotation rate: at sufficiently high rotation rates streamwise fluc-
tuations on the unstable channel wall are suppressed relative to the non-rotating
case. The stabilizing/destabilizing effects of rotation on turbulence in channel flow
make this problem particularly challenging, since the SGS model is required to cap-
ture relaminarization with inactive turbulent motions as well as fully-developed
turbulence.

Piomelli and Liu (1995) applied a localized dynamic model to the study of
rotating channel flow for rotation rates in the range Ro, = Q(26) /U, = 0 through
0.21 (where Q is the angular velocity and U, the bulk velocity) and Reynolds
numbers Re, = Upd/v between 5,700 and 23,000. They found that the localized
SGS model gives better prediction of the turbulent fluctuations than the plane-
averaged model, especially on the stable side of the channel (Fig. 7.25).

Full relaminarization on the stable side was observed in experiments (Johnston
et al. 1972) and in the LES calculations of Tafti and Vanka (1992); in the DNS
calculations of Kristoffersen and Andersen (1993) and in the DNS and LES com-
putations of Piomelli and Liu (1995), however, the fluctuations on the stable side
remained significant, and the mean velocity never reached the laminar profile, even
at large rotation rates and at a Reynolds number at which relaminarization is ex-
pected to occur. The friction velocity w, normalized by the friction velocity in the
absence of rotation wu,,, is plotted in Fig. 7.26. The LES, DNS and experimental
data are in good agreement on the unstable side; in the experiment the bulk veloc-
ity was obtained from the volume flow rate, which led to underestimation of the
bulk velocity (and an overestimation of Rop) because of the presence of boundary
layers on the sides of the channel (see also Kristoffersen and Andersen 1993). The
difference on the stable side, where the numerical results tend to lie close to the
extrapolation of the results of experiments in which the flow remained turbulent
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Figure 7.26: Friction velocity on the two sides of the channel (from Piomelli and
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model, Tafti and Vanka (1992); A LES, localized dynamic model, Re, = 5, 700.
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Figure 7.27: Streamwise velocity fluctuation contours in the zz-plane. Re, =
5,700, Ro, = 0.210, y© = 5.4. (a) Unstable wall; (b) stable wall. Contour lines
are at intervals of +1; dashed lines indicate positive contours.

on the stable side (the dashed line), may be due to the relatively small aspect ratio
of the experimental apparatus and the fact that the flow was not fully developed,
which may have added a streamwise pressure gradient that could have increased
the tendency of the flow towards relaminarization. The results obtained with the
dynamic model are in much better agreement with the DNS results than those
obtained by Tafti and Vanka (1992) with the Smagorinsky model, which tended to
overdamp the fluctuations on the stable side, leading to excessively low wall stress
even at the lower rotation rate they examined.

At the high rotation rates, longitudinal roll cells are formed that convect high
momentum fluid in the downwash region between them. Figures 7.27 show con-
tours of the u" velocity fluctuations in two zz-planes near the unstable and stable
walls near a local minimum and maximum of u,. The downwash of the roll cells
appears as an elongated region of increased u" velocity fluctuations at z+ ~ 500
To illustrate the response of the localized model to this phenomenon, contours of
the model coefficient C' are shown in Fig. 7.28, at the same time and locations as
in the previous figure. The coefficient varies very significantly over the plane; on
the stable side, larger values of C' are observed where the velocity fluctuations are
also large (i.e., in the downwash region of the roll cells); regions of backscatter
(indicated by solid lines) can be observed.

7.6.4 Separated or highly three-dimensional flows

It was mentioned before that large-eddy simulations are based on the assump-
tions that the small scales are more isotropic, and less affected by the boundary
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Figure 7.28: Model coeflicient contours in the zz-plane. Re, = 5,700, Rop = 0.210,
yT = 5.4. (a) Unstable wall; (b) stable wall. Contour lines are at intervals of
+5 x 10™%; dashed lines indicate positive contours.

conditions, than the large scales. This assumption justifies the use of simple,
equilibrium-based models, even in flows in which the resolved scales are clearly
not in equilibrium. By the same token, LES should be more suitable than the
Reynolds-averaged approach to study highly three-dimensional or separated flows,
especially flows in which the gradient transport hypothesis, and hence one- and
two-equation models of turbulence, fails. The application of secondary mean shear
(in addition to the primary component oU/dy), for instance, has several impor-
tant effects on the large scales, such as a reduction of the structure parameter,
and also a difference between the angles formed by the velocity vector, the viscous
shear stress vector, and the Reynolds shear stress vector. It is as yet unknown
how significant the effects of mean flow three-dimensionality on the subgrid-scales
are; present evidence, however, seems to indicate that, as long as the large scales
are computed accurately, the application of the gradient-transport assumption to
the small scales does not generate serious errors.

Liu (1994) and Liu et al. (1995) computed the flow in a turbulent boundary
layer on which a pair of strong counter-rotating vortices was superimposed. They
used a localized dynamic model. The vortices generate the extra strain components
oV/dy, OV /0z, OW /[0y and OW/0z. The mean streamwise vorticity development,
shown in Fig. 7.29, is predicted much more accurately than when K — ¢ models
are used, due to the fact that two-equation models cannot predict the gradients
of the normal stress anisotropy, which play an important role in the devlopment
of Q.

Near the wall, under the principal vortices, secondary vorticity of the opposite
sign is generated and lifted by the primary vortices. As the small-scale near-wall
structures are convected towards the outer layer, they lose energy to the larger,
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Figure 7.29: Vortex/boundary layer interaction. Contours of the mean streamwise
vorticity ;. Grey contours indicate positive vorticity.
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Figure 7.30: Vortex/boundary layer interaction. Contours of eddy viscosity ratio
vr /v at the second streamwise station. The black circle indicates the approximate
location of the vortex core. z = 0 is the plane of symmetry.

outer-layer, structures; as a result, the SGS model predicts a region of negative
eddy viscosity immediately outboard (z/§* = 20) of the vortex core. Between
the vortices, where the convection due to the common-flow-down pair results in
thinning of the boundary layer, the eddy viscosity is large, and is maximum im-
mediately inboard of the vortex, where the presence of a stagnation line creates a
region of very strain rate, immediately inboard of which (z/é* = 8) a saddle point
is observed, with lower strain and eddy viscosity.

Akselvoll and Moin (1995) used several SGS models (the Smagorinsky model,
the dynamic model and the dynamic localization model) in the computation of
the flow behind a backward-facing step. All the models examined gave very good,
and nearly identical, results. The mean velocity profiles downstream of the step,
for instance, are shown in Fig. 7.31. Very good agreement is observed with the ex-
periments; the reversed flow in the separted region is predicted very well, as is the
reattachment point location. The eddy viscosity downstream of the step is shown
in Fig. 7.32. The three models predict eddy viscosities that are significantly differ-
ent (the dynamic localization model gives an eddy viscosity that, in the separated
and reattachment regions is two to three times larger than the other models); the
SGS dissipation predicted by the Smagorinsky and dynamic localization models,
however, is essentially the same, less than twice that predicted with the dynamic
model. The subgrid scales account for most of the energy dissipation, €,44, being
generally three to seven times larger than the molecular dissipation.

Beaudan and Moin (1994) used the dynamic and Smagorinsky SGS models
for the LES of the wake of a circular cylinder at Re = 3,900 (based on cylinder
diameter and freestream velocity). The dynamic model gave results in better
agreement with the experiments than the Smagorinsky model, especially in the
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Figure 7.31: Mean velocity profiles downstream of a backward facing step (from
Akselvoll and Moin 1995). —— Dynamic model; --- dynamic localization model;
-------- Smagorinsky model; o experiment (Adams et al. 1984).
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Figure 7.32: Eddy viscosity profiles downstream of a backward facing step (from
Akselvoll and Moin 1995). Re = 28,000. Dynamic model; --- dynamic
localization model; -------- Smagorinsky model.
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Figure 7.33: Eddy viscosity contours (normalized by the maximum v7) in the
wake of a circular cylinder (from Beaudan and Moin 1994). (a) Dynamic model;
(b) Smagorinsky model.

recirculation region behind the cylinder. The length of the separation bubble was
predicted to within 2% of the experimental value when the dynamic model was
used, while it was over-predicted by 29% with the Smagorinsky model (and by
17% if no model was used). Contours of the eddy viscosity for the two models are
shown in Fig. 7.33. At this Reynolds number, the free shear layers are laminar;
one whould, therefore, expect the eddy viscosity to be zero along them. The
dynamic model predicts this behavior correctly, while the Smagorinsky model
gives significant eddy viscosity in the shear layers all the way to the separation
point on the cylinder.

7.7 Conclusions

In the hierarchy of methods for the solution of fluid flow problems, LES occu-
pies an intermediate position between DNS and solution of the Reynolds-averaged
Navier-Stokes equations (RANS). It will be successful as an engineering tool if its
advantages over other techniques are exploited rather than if it is used to replace
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either DNS or RANS modeling.

The principal advantage of LES over DNS is the fact that it allows one to
compute flows at Reynolds numbers much higher than those feasible in DNS, or
at the same Reynolds numbers but at a considerably smaller expense. One should
not expect to be able to extract from LES the same information that can be
extracted from DNS, since modeling the small scales affects high-order statistics
more than the lower-order ones. Thus, LES is expected to be more reliable for
first and second moments, and to reproduce qualitatively the basic structures of
the flows (existence of shear layers, vortical structures and so on).

Large-eddy simulation is considerably more expensive than RANS techniques
for flows that are one- or two-dimensional in the mean and steady. For this reason,
it should be applied to problems in which its cost is comparable to that of the
solution of the RANS equations or to problems in which lower-level turbulence
models fail. Such problems include unsteady or three-dimensional boundary layers,
vortex—boundary layer interactions, separated flows and flows involving geometries
with sharp corners (in square ducts, for example). Although in the near future
LES will still be limited to fairly simple geometries, significantly more complex
flows should be studied than those examined so far. Large eddy simulation of
these flows can also be used to provide data for the development of more accurate
lower-level models (especially pressure statistics, which are difficult to measure
experimentally).

So far, several turbulent and transitional “building block” flows have been
studied by LES: homogeneous turbulence, shear flows, channel flow and boundary
layers. Two types of calculations have been performed: high Re, unbounded flows
or wall-bounded flows with approximate boundary conditions, or low to moderate
Re flows, with fairly good resolution. Well-resolved calculations yield velocity
fields that can be used to obtain information on turbulence structure, and that
can provide information for lower-level models (Bardina et al. 1983; Moin and
Kim 1985; Kim and Moin 1986). Presently, three-dimensional or non-equilibrium
flows are being studied (such as the backward-facing step, vortex/boundary layer
interactions, or three-dimensional boundary layers).

Large-eddy simulation research in engineering continues in many areas, with
a particular focus on the following: the continued effort to devise more accurate
models, especially for the near-wall region, the application to “complex flows”, and,
finally, the application of LES to compressible and reacting flows. The first issue
is particularly important because of the need to extend LES to high Reynolds
number flows, in which resolution of even the large structures in the near-wall
region becomes unaffordable.

The application of LES to non-equilibrium flows is also a subject of great
technological importance. For the time being, although the geometry constraints
are being gradually removed as finite difference schemes supplant the spectral
methods widely in use until now, the application of LES to engineering calculations
in very complex geometries is not yet feasible. It may be perhaps more beneficial
instead to use LES for detailed studies of the turbulence physics at moderate
Reynolds numbers in non-canonical flows, to understand the basic phenomena at
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play in new flow configurations, and to provide data for RANS models. Typical
problems that are within the present capabilities of LES are flows that are three-
dimensional in the mean, in fairly simple geometries, but that include one or more
phenomena (extra strains, separation, pressure gradients, for example) that occur
in more complex engineering flows.

Although the first applications of LES to compressible and reacting flows were
relatively recent, much progress has already been made in this area. All of the
most popular models have been extended to compressible flows, and a number
of test cases have been examined. While many of the concerns that apply to in-
compressible applications (model accuracy, backscatter and so on) extend also to
compressible flows, additional difficulties are due to the fact that the equations are
more complex and shock wave interactions and eddy shocklets may occur; further-
more, finite differences introduce artificial dissipation, the effect of which must be
studied and compared with that of the SGS dissipation. Aliasing errors can also
be more significant, owing to the presence of triple products in the equations of
motion. The simulation and modeling of flows including chemical reactions is still
in its infancy.

Although large eddy simulations in engineering have not enjoyed a rapid devel-
opment similar to that of direct simulations, the renewed activity in LES justifies
an optimistic view of the future of this technique. One would hope that, ten years
from today, LES of engineering problems will be routinely performed on a desktop
workstation. To achieve this end a continued effort is required by the research
community, involving increased interactions among its members. Experiments, di-
rect simulations and numerical analysis are all necessary for further progress. The
interaction between geophysical scientists and engineers, which has not been par-
ticularly noteworthy so far, must also be enhanced to facilitate the development
of LES into a practical tool useful in both fields.
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