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Forced rotating turbulence is simulated within a periodic box of small aspect ratio. Critical para
values are found for the stability of a 2D inverse cascade of energy in the presence of 3D mot
small scales. There is a critical rotation rate below which 2D forcing leads to an equilibrated 3D
while for a slightly larger rotation rate, 3D forcing drives a 2D inverse cascade. It is shown that in
and forward cascades of energy can coexist. This study is relevant to geophysical flows, and c
physics beyond the scope of quasigeostrophic models. [S0031-9007(96)01175-1]
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Random forcing at wave numberkf of an incompress
ible fluid in three space dimensions leads to a forw
cascade of energy fromkf to the dissipation wave num
ber kd . kf [1]. The energy dissipation rateed is equal
to the energy input rateef and all scales are statistical
steady. However, in two space dimensions, an inverse
cade of energy tok , kf develops [2]. In the 2D case
ed , ef and only scales small compared to the largest p
ulated scalel0  2pyk0 are statistically steady. Dimen
sional analysis leads to an energy spectrumEskd ~ k25y3

for the rangek0 ø k ø kf in 2D, and for the rangekf ø
k ø kd in 3D. Geophysical data in which the turbulen
is both three dimensional and high Reynolds number
port an approximatek25y3 scaling of the energy spectru
(e.g., [3]). Recent numerical data using hyperviscositie
2D also exhibitEskd ~ k25y3 for k , kf (see, e.g., [4]).

Here we consider forced turbulence in a thin layer
fluid rotating about thêz axis. The flow is simulated
in a periodic box withLz ø Lx  Ly. This provides a
single system in which one can study the transition
interaction between 2D and 3D behavior by varying
box heightLz or the rotation rateV.

In addition to its fundamental nature, this study h
applications to flows in oceans and atmospheres w
vertical length scales are much smaller than horizo
length scales and the large-scale eddy turnover tim
much larger than the rotation time scale. Mathemat
models of geophysical flows are usually quasi-2D
the sense that the motions are described only by thẑ
component of vorticity [5]. In such models, the effec
of the small aspect ratio, stratification and, rotat
are expressed through a single parameter, such a
Burger number characterizing the rotating shallow wa
equations [6]. Here we would like to separate th
effects, and to establish when a quasi-2D model i
reasonable approximation to the large scales of sm
0031-9007y96y77(12)y2467(4)$10.00
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aspect-ratio 3D (SAR3D) flows. We first seek to establ
conditions for which 2D dynamics are stable to smalle
scale 3D fluctuations. Our ultimate goal is to determi
conditions under which 3D forcing at small scales actua
drives a 2D inverse cascade of energy to large scales.

It is often mistakenly argued on the basis of the Taylo
Proudman theorem that rotation two dimensionaliz
the flow. The Taylor-Proudman theorem [7] states th
≠ts= 3 ud  2V≠zu in the limit of fast rotation and
small viscosity. This implies only that motions slow wit
respect to the rotation rate are independent ofz. However,
if the initial conditions or the forcing contain a significan
z variation, this variation remains and leads to rap
oscillations on the rotation time scale (inertial wave
Rotation does in fact lead to two dimensionalization, b
this is a subtlenonlineareffect that has only begun to b
understood [8,9].

We solve the 3D incompressible Navier-Stokes eq
tions in a frame rotating at constantV  Vẑ, given by

≠u
≠t

1 u ? =u 1 2V 3 u  f 2 =p 1 n=2u , (1)

whereu is the divergence-free velocity, the constant de
sity has been absorbed into the pressurep, and n is the
kinematic viscosity. To obtain a sufficiently large rang
of inertial scales, we have used both an eddy-visco
subgrid model [11] as well as a hyperviscosity opera
nqs21dq11=2q in place ofn=2 in (1). The choice of a sub-
grid model affects the shape of the energy spectrum in
high wave-number range, but does not affect the results
the critical values of the parametersS  LfyLz and Ro
sefk2

fd1y3yV that define the crossover from 2D to 3
behavior, whereLf  2pykf . Here we present mainly
spectra as calculated using the eddy-viscosity model
veloped by Kraichnan and Chollet and Lesieur [11].

The forcef is taken to be Gaussian and white in tim
with forcing spectrumFskhd given by
© 1996 The American Physical Society 2467
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Fskhd  ef
expsss 2 0.5hfkh 2 skf dhgysj2ddd

s2pd1y2s
, (2)

where ef is the energy input rate,kh  sk2
x 1 k2

yd1y2

is the horizontal wave number, andskf dh  fskf d2
x 1

skf d2
yg1y2 is the horizontal component of the peak wa

numberkf of the force. The standard deviation ofFskhd
has been chosen ass  1 ¿ 2pyLx. Here we presen
primarily the results for SAR3D turbulence driven b
a two-dimensional, two-component (2D2C) forcef 
fxx̂ 1 fy ŷ with skf dh  kf . The case of 2D2C forcing
investigates the stability of calculations such as th
reported in [4]. We also briefly discuss 3D3C “conica
forcing for which the vertical component of the forcin
wave number isjskf dzj  2pyLz. The forcing is turned
on at time zero, with initial 3D motions present only at t
level of round-off error. Equations (1) and (2), modifie
to account for the subgrid model, are solved using
pseudospectral code.

The problem as posed is characterized by four non
mensional parameters: the aspect ratioA ; LzyLx , the
Reynolds number Re e

1y3
f k

24y3
f yn, the Rossby num-

ber Ro sefk2
f d1y3yV, and the relative scale of the forc

S  LfyLz . Here we consider the limit of a very larg
Reynolds number by using subgrid models, and a sm
enough aspect ratio such that finite-size effects in the h
zontal directions are not important for the times conside
in our simulations. Therefore we are primarily concern
with the behavior of SAR3D flows as a function of Ro a
S for a large Reynolds number andA ! 0.

The choice of forcing plays a role in the determinati
of the critical curve insS, Rod space defining the crossove
from 2D to 3D behavior. We expect the shape of t
force, its dimensionality, and its coherence properties
shift the critical curve, perhaps even significantly. Tabl
provides a few approximate critical values for the case
2D2C forcing. Our purpose for this initial study is t
illustrate a range of behaviors in (S, Ro) parameter spac
for the particular force (2) described above.

We have performed three sets of simulations w
three different resolutions (see Table I): (I)128 3

128 3 8 sA  1y16d, (II) 512 3 512 3 8 sA  1y64d,
(III) 256 3 256 3 32 sA  1y8d. In all cases, the grid
is taken to be isotropic at small scales. The first a
second data sets are used to study separation dista
S # 1 (forcing in the 2D range of wave numbers). Th
third data set confirms that the nature of the resu
does not change when the resolution of the small sc
is increased, and to study separation distancesS $ 1
(forcing in the 3D range of wave numbers).

First we consider 2D2C forcing in the limit Ro!
` sV  0d. We have determined a critical valueSc ø 0.5
above which an overall inverse cascade was not foun
exist and below which a 2D-like inverse cascade of ene
to large scales was found to be stable to 3D motions
scales smaller than the forcing scaleLf [11]. For the case
of A  1y64 andS  0.75, Fig. 1 (solid line) shows the
2468
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time evolution of the total energyK and the ratioedyef .
In this figure, time is nondimensionalized bysefk2

fd21y3

and kinetic energy bysefykfd2y3. After an initial period
of development of the nonlinear interactions, the ene
remains constant in time andedyef ø 1 indicating that
a 3D statistically steady state is established for all wa
numbers. Most of the energy input by the random forc
is transferred directly to higher wave numbers and ev
tually dissipated by viscosity. Figure 2(a) shows ene
spectra at two values of the nondimensional timet ø 42
and t ø 52. These spectraEhskhd are obtained by sum
ming uiskduis2kdy2 overkz and binning into rings of ra-
dius kh with Dkh  2pyLx. One sees that the flow a
these late times is statistically steady, with large fluct
tions in the spectra at low wave numbersk , kf  12.
The spectra at high wave numbersk . kf show an ap-
proximate scalingEhskhd ~ k25y3. Notice that the small
aspect ratio leads to jumps in the spectra at multiplies
the smallest vertical wave numberkz  16. As the pa-
rameterS is increased, less and less energy resides in
low wave numbersk , kf .

The 3D behavior forS  0.75 [Figs. 1 (solid line) and
2(a)] should be contrasted with the 2D behavior at la
scales forS  0.375 [Figs. 1 (dashed line) and 2(b),A 
1y64]. Notice that in both cases the forcing is in the 2
range of wave numbers. In theS  0.375 case, the forcing
is at wave numberkf  6 and the smallest positive vertica
wave number iskz  16 (and thus the smallest wav
number of the 3D range isk  16). The energy spectra
Ehskhd show two different cascade regions: forkh . kf

there exists a forward cascade of energy that quic
achieves a statistically steady state, while forkh , kf there
is an inverse cascade of energy leading to a time-depen
horizontal integral scalel0 that is increasing in time, and
only scales small compared tol0 are statistically steady
The inverse-cascade and forward-cascade regions
simultaneously, and both show rough power-law scal
Eskhd ~ k

25y3
h . Notice that the spectra decrease rapi

in the region of 2D scales6 , kh , 16 greater than the
forcing wave number before exhibiting the approxima
k

25y3
h scaling in the 3D regionkh . 16. For this flow, only

a fraction of the energy input by the forcing is dissipat
by viscosity at small scales, the remainder of which
transferred to larger scales, and this is reflected in the
thatedyef , 1 [Fig. 1 (dashed line)]. Changing from th
eddy viscosity subgrid model to the hyperviscosity subg
model changes only the shape of the energy spectra
wave numbers in the 3D range [see Figs. 1 and 2(b)].

Next we consider rotating SAR3D turbulence driven
the 2D2C force with spectrum given by (2). We va
both the Rossby number Ro and the relative scaleSof the
force to determine the portion of (S,Ro) parameter spac
where an inverse cascade of energy to wave numberskh ,

kf will exist. Table I presents our results for select
values of (S, Ro). Recall that the critical value of th
Rossby number Roc ! ` asS ! 0.5. As can be extracted
from Table I, Roc ø 1.6 for S  0.75 sA  1y64d and
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TABLE I. The behavior (2D, 3D orl for critical) of the turbulence for various (S, Ro) and
2D2C forcing.

(I) 128 3 128 3 8 (II) 512 3 512 3 8 (III) 256 3 256 3 32

s0.75, `d 3D s12y16, `d 3D s0.75, 1.6d l s2.0, 1.5d 3D
s0.75, 2.0d 3D s9y16, `d 3D s0.75, 1.3d 2D s4.0, 1.8d 3D
s0.75, 1.4d 3D s8y16, `d l s0.75, 1.25d 2D s4.0, 1.4d l

s0.75, 1.25d l s7y16, `d 2D s0.75, 0.5d 2D s4.0, 1.25d 2D
s0.75, 1.2d 2D s6y16, `d 2D s1.0, 0.25d 2D s4.0, 1.1d 2D
s0.75, 1.1d 2D s4y16, `d 2D s0.5, 2d 2D s4.0, 1.0d 2D
s0.75, 0.75d 2D s0.75, 2d 3D s8.0, 0.7d 2D
s0.75, 0.5d 2D
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decreases slowly forS . 0.75. The data suggest that Roc

may asymptote to a nonzero constant for largeS.
Numerical data sets I and II were used to exploreS # 1.

For aspect ratiosA  1y16 and 1y64, the range ofS is
limited by the dimensions of the box to approximate
0.1 # S # 1. For S  0.75, we found the near-critica
values Ro 1.25 for A  1y16 and Ro 1.6 for A 
1y64 (Table I). The critical Ro for fixedS changes by
(20–25)% when the aspect ratio is lowered fromA 
1y16 to 1y64, suggesting that finite-size effects in t
horizontal directions may be influencing the results
the caseA  1y16. For fixedS and decreasing Ro, th
value of edyef decreases approximately linearly for R
less than the critical value, indicating that a larger fract
ity
FIG. 1. A  1y64, Ro  `, S  0.75 (solid line);A  1y64,
Ro  `, S  0.375, eddy viscosity model (dashed line);A 
1y64, Ro  `, S  0.375, hyperviscosity operator=4 (dotted
line); A  1y64, Ro  0.5, S  0.75 (dot-dashed line).
r

of energy is cascaded to large scales as the Rossby nu
is decreased below critical. Figure 1 compares Ro `

(solid) and Ro 0.5 (dot-dashed line) forA  1y64 and
S  0.75.

The scalinged  OsRod indicated by our results fo
2D2C forcing can be understood in light of the closur
[9,11] which show that, in a statistically steady state,
energy flux tok . kf is proportional to a decorrelatio
time scalesukpqd. In the absence of rotation, this time sca
is determined by the nonlinear interactions and isOs1d
with respect to the variables nondimensionalized byef and
n

FIG. 2. (upper) A  1y64, Ro  `, S  0.75 (statistically
steady); (lower)A  1y64, Ro  `, S  0.375: eddy viscosity
(solid line) with time increasing upwards; hyperviscos
(dotted line). The lines areEh ~ k

25y3
h .
2469
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FIG. 3. A  1y8, S  4.0, Ro  1.8 (approaching a statisti
cally steady state with time increasing downwards).

kf . Rotation introduces an additional linear decorrelat
mechanism on a time scaleOsRod. Hence the latter is the
dominant decorrelation time scale when Ro, 1. A subset
of triad interactions is not decorrelated by rotation:
resonant triads for whichkzyjkj 6 pzyjpj 6 qzyjqj 
OsRod. However, there is no energy transfer between
and 3D modes resulting from the resonant triads [8],
thus we expect the scalinged  OsRod for 2D2C forcing
and Ro smaller than theOs1d critical value. The scaling
ed  OsRod may hold in general (i.e., for 3D3C forcing
since the number of resonant triads isOsRod as Ro! 0.

Figures 3 and 4 present results from data set III
2D2C forcing in the 3D range of wave numbers. Figure
shows energy spectraEhskhd (time increasing downward
for the point in (S,Ro) spaceS  4.0, Ro  1.8 which is
on the 3D side of the critical curve, meaning that there
.

by

e

FIG. 4. A  1y8, S  4.0, Ro  1.0: (solid line) Ehskhd at
three times (time increasing upwards); (dashed line)Eskh, kz 
0d at the latest time. The line isEh ~ k

25y3
h .
2470
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no inverse cascade of energy tok , kf  16. Figure 4
shows spectra forS  4.0, Ro  1.0 which is on the 2D
side of the critical curve and shows that a fraction of th
energy input by the force is transferred to wave numbe
smaller than the forcing wave numberkf  16 by an
inverse cascade of energy. The dashed line in Fig. 4
the pure 2D spectrumEskh, kz  0d to indicate the wave
numbers containing significant 3D energy.

The critical curve in (S,Ro) space defining a crossove
from 2D to 3D behavior will be shifted when the force i
modified. The existence of an inverse cascade in SAR
flows subjected to 3D3C forcing is probably most releva
to the geophysical applications, and is the subject
ongoing study. With 3D3C conical forcing (2), the critica
curve shifts only slightly: We found a critical value Roc ø
1.25 for A  1y64 and S  1.0, while this value Ro
1.25 is just below critical for 2D2C forcing,A  1y64 and
S  1.0. We also found the persistence of a strong inver
cascade for the cases:A  1y64, Ro  0.5, and S 
1.0 leading toedyef ø 0.8; andA  1y8, Ro  0.1, and
S  2.0 leading toedyef ø 0.6 and representing 3D3C
forcing deeper in the 3D range of scales. These resu
demonstrate that it is possible to drive a 2D inverse casc
from purely 3D forcing at the small scales in a rotatin
flow.
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