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A Fourier—Hermite pseudospectral method is developed to study numerically the
three-dimensional penetrative convection problem under the Boussinesq approxi-
mation. An S-shaped temperature profile in the absence of motion is prescribed in
the vertical direction. All variables are expanded in terms of Fourier—Hermite basis
functions. The Hermite functions are scaled to adjust the length of the computational
domain in the vertical. A semi-implicit scheme is used for time marching with the
third-order Adam—Bashforth and Crank—Nicholson scheme for the nonlinear and
linear terms, respectively. An implementation of the numerical method on a parallel
computer is also described. Numerical simulation results of resolutibar@4pre-
sented for low-to-moderate Rayleigh numbers with a Prandtl number of unity. The
highly stable outer regions are seen to act as effective lids and all penetrative flow are
contained within the computational box. Variances, heat fluxes, and their budgets are
reported for several Rayleigh numbers to demonstrate the efficacy of the numerical
method. @ 1998 Academic Press

1. INTRODUCTION

The aim of this paper is to develop a pseudospectral method to study penetrative
vection in a domain which is infinite in the vertical direction. Although the closely relal
Rayleigh Bernard problem has received more attention than penetrative convection,
are an increasing number of reports on this problem [1, 10, 11, 13, 14, 16, 17]. The ob
reason is a real need and interest to understand the physics of the earth and stellar
spheres, where penetrative convection plays an important role. Other physical situe
where penetrative convection occurs can be found in [12].

For simplicity, we assume an internal heat source which generates in the absence o
motion an S-shaped temperature profile [15] consisting of a region of negative temper
gradient sandwiched between two semi-infinite regions of positive temperature grac
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Convection caused by the linear instability of the middle layer penetrates into the top
bottom stable layers. Penetrative convection with other three layer models have also |
reported in the literature [10, 13].

We need to choose a numerical method applicable to an infinite domain in the verti
Within a spectral method, the most common choices are periodic extension or don
truncation, and algebraic or exponential mapping. The method of periodic extension |
domain truncation requires that all variables of the problem decay to near zero values
finite distance into the stable layers. The method of mapping uses a function to map
infinite physical domain to a finite computational domain. Then basis functions satisfyi
the proper boundary conditions, e.g. Fourier [4, 5, 21], Jacobi [18], or Chebyshev [2,
are chosen to solve the problem.

An alternative method and the one we develop here is to use Hermite functions as &
functions. This method has been successfully tested on simple problems [2, 7]. The obv
reason for using Hermite functions is that they automatically satisfy the mathemati
boundary conditions of the problem (i.e., all variables go to zera-at) and, hence,
no further boundary treatment is needed. However, there are also other advantages
example, the Gauss—Hermite collocation points are most dense near the origin. Thus
simple scaling of the functions, the collocation points may be distributed so that most
the points lie within the convectively unstable middle layer while the outermost points &
still deep within the stable layers where the fluid is nearly quiescent. Another advant:
is that the Galerkin derivatives for Hermite functions are governed by simple recurret
relations. The second-order spatial derivative, for example, becomes a multiplication |
tridiagonal matrix after decoupling the odd and even modes. If the spatial derivatives
taken in the transform space, the resulting equations are slightly more efficient to sc
than those equations which use rational Chebyshev polynomials, which result in matr
of bandwidth more than three. However, a disadvantage of using Hermite functions inst
of rational Chebyshev polynomials is the lack of a fast transform.

The rest of the paper is arranged as follows. Section 2 presents the governing equat
Section 3 introduces the relevant aspects of Hermite functions. Sections 4-5 derive
discretized equations used in the computation. Section 6 discusses the implement
of our program on a parallel computer. Section 7 presents the simulation results use
validate the numerical method, including the mean temperature profile, variances, heat
and budget terms. Conclusions are given in Section 8.

2. GOVERNING EQUATIONS

The S-shaped temperature profile (Fig. 1) was first used by Matthews [15] to study
onset of penetrative convection. The temperature field is written as

T (X1, X2, X3, 1) = AXS — BXo + (X1, X2, X3, 1), 1)

whereAxS — Bx; is the primary temperature state ahi the temperature field induced by
the fluid motion. The subscript 2 denotes the vertical component. This profile assume:
internal heat source 6f6xAx,. The temperature gradient is unstable betwgB/3A,

but stable above and below this central region. Physically, these stable layers of fluid a
lids on the fluid motion. If the computational box is of sufficient height, Hermite function
can then be used as basis functions without the need for additional boundary treatmer
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FIG. 1. Mean temperature profile in the absence of motion with vertical depth.

The Navier-Stokes and temperature equation for the velocity dieldd temperature
field 9 under the Boussinesq approximation may be written as

d 1 5
—U+U-Vu=——Vp+Xgat +vV-u, (2)
ot £0

3
Ez‘}+u.v(Ax§— Bx, + 1) = k V20, )
V.u=0, 4)

wherev is the kinematic viscosity is the thermal diffusivityg is the gravitational accel-
eration,x is the thermal expansion coefficiept, is the average fluid density, anis the
modified pressure. Physically, all fluctuating fields tend to zebg as +oco. Th generated
turbulent motion is assumed to be homogeneous in the horizontal planes and numer
we assume the velocity and temperature fields to be periodic in the two horizontal di
tions. Our choice of box width is such that the statistical results remain unchanged
increasing width.

Pressure can be eliminated by operating on (2) with the opepgtdvs< V x andx,- V x.
The momentum equation is then reduced to the following two scalar equations,

d

6 ="F+ gaVZ9 + vV, (5)

d

—r=—-G+ V2 6

o’ + V7, (6)
whereé = —X,-V x V x uand¢ = Xz - V x U. The symbol$- andG represent-x, - V x

V x (u-V)uandxz-V x (u-V)u, respectively, The operat®i stands fon?/ax2+92/9x3.
Equations (3), (5), and (6) can be nondimensionalized with lengthdcaleéB/A)/?, time
scale ¥./ga B, and temperature scald. The nondimensional equations are

9
ok =—F+vﬁﬁ+,/%vzs, @)

0
S8 =-CG+ \/ERV%, (8)
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ad 1
—9=-H-uy(3x5 -1 V29, 9
at X3¢+ 7R ©
whereH represents the heat advection term and
Bd*
R=32C Y (10)
VK K

The Rayleigh numbeR and Prandtl number are the two nondimensional groups of our
problem. Our choice of units is useful for revealing the asymptotic behavior of the flc
statistics at larg®, since turbulent dissipation is expected to become independéhasf
R — oo.

Another nondimensional group is the aspect r&tie= L /d, whereL is the half width
of our periodic box in the horizontal direction. We have in general takena 10.472 and
have shown that this is sufficiently large so that the statistical results remain substanti
unchanged with larger values & Also note that with the above choice of length scale
the unstable layer lies betweeri//3.

In order to calculate the nonlinear terms and the gradient production term in Egs. (7)-
we need to recovar from the variables. This is done formally using

up = V%, (11)
e Ts 32Uy

u = —V 2 _— = y 12

! h <8x3 axlaxz) (12)
aTe 82Uy

U= -V 2| — . 13

3 h <3X1 + 8X23X3) ( )

As we will observe later, the mean part and fluctuating part of the fields behave differer
asx, — +oo, and we will need to treat them separately. In particutais decomposed
as® = (¢) + ¢/, where(- - -) denotes an ensemble average, or equivalently, in the fin
statistically steady state an average with respect to the two horizontal directions an
time. A time-evolution equation fgr) can be derived from (9):

1 2
D) =) ’

2 =) 14
Jat X2 +»,/0'R3X22< > ( )

The horizontal mean of the vorticity ang vanish identically so that no decomposition for
& and¢ are necessary. The horizontal meamg and(us) fluctuate about zero in a single
realization, but their ensemble or time-average is zero.

The numerical method for solving Egs. (7), (8), and (9) are discussed in the followi
two sections while the method for solving Eq. (14) is discussed separately in Section 5

3. BASIS FUNCTIONS
We expand the fields, ¢, and®’ in a Fourier—Hermite series. For instance,
N/2 N/2  M-1

E X, X )= D> Y > Enmn(OETTHENG (). (15)

ni=—N/2 n3=—N/2 m=0
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In (15), N is the number of modes in the horizontal directimpandxs andM is the number
of modes in the vertical directiot. Alsok; andks are the horizontal wave numbers, which
are equal tan; /L andnsz /L, respectively. The Hermite functidn,(x,) is defined as

(SX2)2> 1 (16)

him(X2) = Hmn(s%) exp(— > ) T
The functionHp, (%) is the usual Hermite polynomial of order, exp(—x%) is its weighting

function and ¥+/(m!2Mx1/2) is its normalization constant. The function is scaled by th
factors, which is used to better distribute the collocation points in the vertical directic
Scaling factors which are functions & andm have also been reported by Funaro [8]
These scaling factors have been applied to Laguerre polynomials and their usage on He
functions are then suggested. However, the simple scaling above is sufficient for our r

Our definition of Hermite functions satisfies the usual orthogonality relations,

400
/ hm(X2)hn(X2) dX2 = Smn, (17)

0]

wheredm,, is the Kronecker delta. Using (17), Eq. (15) may be invertexbionto Gauss—
Hermite collocation points. Converted to our scaled functions, these collocation points
rm/S, wherer, are the roots oHy,. Thus one observes that with the current definition c
the scale factos, an increase i decreases the distance between the most negative |
positive collocation points.

We will also make use of the following recurrence relationtgKx,):

1 m m+1
Xohm(X2) = S (\/ Ehmfl +4/ Thmﬂ)s (18)
dh m m+1
e S(\/ 21T h'““)‘ )

The rate of convergence with Hermite function expansions was studied by Boyd
Borrowing his definition, the order of real axis decays the least upper bound ¢ffor
which f (xp) = O(ep'XZ“) for some constanp as|xz| — oo along the real axis. He found
that for functions which are Gaussian, ive= 2, the rate of convergence is fastest. Hermit
functions then become an optimal basis for expansion. However, Hermite functions are
recommended as a basis for expansion whenl. The order of real axis decay for our
problem can be approximated by considering the following eigenvalue equation, der
by Matthews [15] for the linearized equations:

52 3
(W - kz) Uz + RIE(1—3x5)uz = 0. (20)
2

Following a standard procedure of asymptotic analysis, we asspme~S* and substi-
tute this into (20), retaining only the leading term. We thus obtain

6
<§> = 3RI*XZ, (21)

dX2
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which results inS = (3Rk2)1/6x§'/3, and hencer = ‘é‘. This analysis, however, is not valid
for the mean equation, which exhibits an algebraic decay rate atdarged which we will
not expand in a Hermite series (see Section 5).

4. TEMPORAL DISCRETIZATION

When (15) and the corresponding expansions;fand® are substituted into (7)—(9),
the Fourier and Hermite differentiations must be performed. For each wave nkpset
ks, there arises the set of equations

%é =—F— K%+ \/ERAé (22)
dz_ 64 \/EAE (23)
dt R

45 _a- B, + 145 (24)
dt VoR

wherek? = kZ + k2 # 0 andF, G, andH are representations & G, andH in spectral
space, respectively. The even and odd Hermite modes of mauieaxl B decouple, so
that these matrices take the form

[—Bo—K> ¥ 0 0
Y2 —B2—K :
A=| o 0
: YM—4 —Bm-a — K YM—2
| O 0 YM-2 —Bm—2 — k? |
[360—1 3y 0 0
3y 3ha—-1 32 :
B= 0 0 )

: 3ym—4 3Bm-—a—1 3ym-2
0 0 3m—2  3Bm—2—1)

wherey, = s?4/m2 —m/2 andBy, = s?(2m + 1)/2, withm = 0,2,..., M — 2 for the
even modes anch =1, 3,..., M — 1 for the odd modes.

Time integration is carried out through a semi-implicit scheme. The nonlinear teri
are marched with third order Adam-Bashforth while the linear terms, including the soul
terms, are calculated implicitly using the Crank-Nicholson method [6]. The fully discretiz:
equations become

-1
sn+l _S_t\/g 8_t\/E )"n_ ”n_ﬁZ"n+1 An>
& _(1 > RA> (<1+2 RAE AF 2k(ﬁ +9" ), (25)
= (55 (3R ae)
¢ _( 5 RA> 14+ S\ gA) " — A6, (26)

P = C((D + £)F" — AR + (F + H)E" — GAFM), @27)
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where
-1

st 1 st 2 st [o N\t
C= [1_Eﬁ - (E) B(A—E\/;Az) kzl , (28)
1

D=1+ %\/%A (29)
£ =K (5_;>ZB(A - %\/;ﬁ) 71, (30)
F= —%BA‘l, (31)
G= —%tB (A— %t %A2> _l, (32)
H=g<1+%t %A), (33)

and the nonlinear forcing are given by
won(Ge i) e

with the equations foA G" andAH" being of similar form. The matrig is full; directinver-
sion is employed to solve (27) with co@t(% M?3) for each set of equations. Equations (25
and (26) involve only tridiagonal matrices and are relatively inexpensive to compute.

5. THE MEAN EQUATION

Equation (14) for(®*) can not be accurately solved by Hermite expansion since as
will show below this mean field does not go to zeraxas—> +oo. Here, another solution
method for () is proposed. Neglecting the time-derivative in (14) and integrating on
from —oo to x,, one obtains

M = \/O’R(Uzly), (35)
dX2

where we have made the reasonable suppositioruthaind the gradient of) vanish at
= +o00. A second integration of (35) fromx; to x; yields

()00 = SVoR / (Ug0') . (36)

where we have assumed thé} is antisymmetric inx; as is the mean temperature profile
in the absence of motion.

As aconsequence of convection, the total temperature field (1) is thus shifted by a con
equal to

_ %m / " (Ut dse. (37)

at a large distance above the convectively unstable layer. Our numerical simulat
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presented in Section 7 will later show this constant to be positive. Representation of the n
temperature induced by the fluid motion by a Hermite series is thus inaccurate. Rather
make direct use of (36). The integral on the right-hand side of (36) is easily performed us
the trapezoidal rule, and whes attains its maximum value on the grid the integration re:
sult from the trapezoidal rule agrees with the spectrally accurate Gauss—Hermite quadr:
from —oo to oo to within 0.1%. Rather than implement (36) directly which may result ir
some numerical instabilities, we implemented a relaxation method based on the séép siz

1 e
Dnsa6e) = (1= 30 (F)n0) + 5t VR / (Uz9") de, (38)

so that (36) is recovered after the flow field attains a statistically steady state.

Our method for treating the mean is only approximate in a single realization with fini
statistics, since the derivation of (36) depends on having performed an ensemble ave
However, since we are interested only in the statistics of the flow field in the statistica
steady state, this approximate treatment of the mean appears reasonable and should
in a negligible error.

A set of equations may also be derived for the mean of the horizontal velogities
and(uz). However, since these means are identically zero under an ensemble average,
precise treatment little affects the numerical results and will not be discussed further.

6. IMPLEMENTATION DETAILS

During program initialization, the Hermite transformation matrices are computed. T
coefficients of the backward transform matrix are obtained from (16) and the forwe
transform matrix are obtained by inverting the backward transform matrix. A disadvante
in using Hermite functions is that there is no fast transform. However, the coefficients
symmetrical with respectto the origin and this is used to reduce the number of multiplicati
by one-half, making the transformation m%nz) operation.

A parallelized fortran program is written for the Intel Paragon XP/S10.xtdrection
is local to each processor and the data is transposed betwean #mel x; directions.
The communication costs are small compared to the overall computational cost so tha
speedup of the code is approximately linear. Since the coefficients of the Hermite transf
matrices vary over a large range of magnitude, double precision is used to reduce
roundoff error. The cpu time per each time step for & §imulation is 1.6 < 64 nodes.
Approximately half of the time is spent on the evaluation of nonlinear terms (which includ
all the transformations and the transpose). The program requires 15 words per nod
memory.

The simulations are begun at low Rayleigh numbers, and starting from random ini
conditions the fields are evolved until the flow becomes statistically stationar £0t50,
about 40 time units are needed to achieve stationarity. To reduce subsequent computa
times, simulations performed at higher Rayleigh numbers are initialized with the rest
from lower R. All simulations presented here are performed at resolutién 64

7. NUMERICAL RESULTS

A calculation of the linear stability of the S-shaped temperature profile was repor
in [15], where Fourier functions via a shooting method were used to solve the eigenve
equation. A critical Rayleigh numb&; = 88.04 for the onset of convection was determined
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at a wave numbeét = 1.26. The same results have also been found using a spectral met
with Hermite functions [19].

The penetrative convection problem has been simulated Rithl150, 223, 326, 550,
1194, 2000, 4000, and 8000. These values range ft@0RL to 454R.. In the calculations,
the distance between the origin and the outermost Hermite collocation pointsrtiaken
to be 3. We have shown that this depth is sufficient to contain the turbulent penetration
that the numerical results are not contaminated by reflection from the artificial boundze
which occur due to the last Hermite collocation point.

Since the main objective of this paper is to develop the Fourier—Hermite pseudospe
method for penetrative convection, only partial results will be reported. Here, we pre:
various statistics and their budget terms mainly to demonstrate the efficacy of the nume
method. Additional results related to the detailed flow structure and the penetration d
[19] and scaling in Rayleigh number [20] are reported elsewhere.

7.1. Temperature Profile

The mean total temperature profil€E) = x3 — x, + () for all simulated Rayleigh
numbers are plotted in Fig. 2a. Only the region betwedr?254 is shown. The unstable
region lying betweenrt1/+/3 is indicated by the thick lines at top and bottom of the plo
The primary temperature state, which is present in the absence of fluid motion, is indic
by the broken line. With increasing (indicated by the direction of the arrows), the meal
temperature approaches a zero constant in the unstable region. The gradient of the
temperature is shown explicitly in Fig. 2b. The gradient of the mean temperature is obse
to approach zero in the unstable layeRamcreases.

The mean temperature fie{ét) induced by the fluid motion is plotted directly in Fig. 3.
The constant temperature shiff of the total mean temperature derived in (37) is clearl
evidentfor|x;| > 1, and the temperature shiftis shown to be positive above the convecti
unstable layer and equal in magnitude but negative below.

7.2. Variance and Flux

The variance of the vertical velocity2) and horizontal velocityu? + u2) are plotted in
Figs. 4a and b. Again, the thick lines at the top and bottom of the figures show the uns

FIG. 2. (a) Mean temperaturéT); (b) gradient of mean temperatudéT )/dx, for the computed range of
Rayleigh numbers. The arrows indicate the direction of increaRinthe thick lines at the top and bottom of the
figures indicate the unstable region.
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FIG.3. The mean temperature induced by the fluid moti@pfor the computed range of Rayleigh numbers.
The arrows indicate the direction of increasiRg

region. The Rayleigh numbers plotted are indicated on the figures. The curvasfor
(Fig. 4a) are bell-shaped with peaks at the center. They fall to zero at a valygsightly
larger than unity. The maximum value @f2) increases with increasing Rayleigh number
at low R until R reaches approximately 1194, after which the maximum value decrea:
asR increases further. The curves faZ + u3) (Fig. 4b) have maxima at a value slightly
less thant1, indicating that the velocity vector has been turned horizontally by the stat
layers. The values of the maxima increase at sfiRateach a maximum at approximately
R = 326 and decrease thereafter. The local minima of these curves=at0, however,
monotonically increase with increasifiyy As Rincreases, it is to be expected that the fluid
turbulence becomes more isotropic in the unstable central region.

The variance of the scalar fluctuation at the same valugsisplotted in Fig. 5a. There
are several local maxima for each curvexat= 0, at approximatelx, = +1, and smaller
maxima further outward. The values of the maxima decreasg &t0 with increasingR
greater than 150 as the central unstable layer becomes well mixed. After an initial incre

(u2) (uf + u3)
' 9000 ——sn—— 1194 '

oocs] ol 1104 4000
4000 2000

N 8000 o 8000

0.02F 150 0.015|

00151 0.01 150

=3 -é -1 0 1 2 3 x2 93 -2 -1 [i) ; 2 3 x2

FIG. 4. Variances of the velocity foR = 150, 1194, 2000, 4000, and 8000: (&§); (b) (U2 + u3).
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(%) (uz)
150
0.015} 1194
oo} 1194 \ /\ 2000
T 4000
0005 150 — ~ 8000
93 -2 -1 ) 1 2 a w2

FIG. 5. Variance of the temperature fluctuation and the heat fluRfer 150, 1194, 2000, 4000, and 8000:
(@) (9%); (b) (uz").

the secondary maxima & = +1 also begin to decrease with increasRgThe heat flux
(up®?) is plotted in Fig. 5b for the sami®. The flux is positive within the unstable layer anc
becomes negative in the stable layers.

To better visualize the overall behavior of the variances and heat flux as a functiyn c
the statistics are integrated owerand plotted in Fig. 6. It is now more clear that all the
integrated values increase from zerdat: R. = 88.04 to a maximum at a relatively small
R and then decrease with increasiRgA study of the asymptotic behavior of the statistic:
with R will be reported elsewhere [20].

The spectra associated with the variance of the vertical velocity are presented to illus
the convergence of the spectral method. The two-dimensional spectrum of wave hum
computed at vertical positioxp is defined as

k 7k o (KL, X, Ky)[2
Eu(K, Xp) = NE, Z |U2(K;, %o, Ky) I, (39)
—Ak/2<k' <k+Ak/2

where the summation is over a ring of widtk and k = (k? + k2)%/2, N(k) is the number

0.045

R

L . L n . s n
1000 2000 3000 4000 5000 6000 7000 8000

FIG.6. Vertically integrated values of the statistics versus Rayleigh number. The curves are labeled as foll
I, (U2); T, (U2 + U2y T, (972); 1V, (upd).
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R=8000

R=550

i . X
10 —1 (] 1 2 k

10 10 10 10°

FIG. 7. Fourier spectr&, (k, 0) for R=550, 1194, 2000, 4000, and 8000.

of wave vectors lying within the ring, arig denotes the Fourier component with transform
in thex; andxs directions only. The stationary speciga(k, x, = 0) for R=550t0 8000 are
plotted in Fig. 7. Itis observed that the spectra at low wave numbers are relatively insensi
to the Rayleigh number. However, as the Rayleigh number increases, the spectral col
at the higher wave numbers also increases. This is to be expected since the dissip
becomes effective at smaller and smaller scales.Reer8000, the spectrum spans only
three decades so simulations of much larger Rayleigh numbers would require impro
small scale resolution.

A Hermite spectrum can be obtained by summing over the Fourier coefficients in
horizontal directions,

(M) = [Oa(ke, M, ko) 2, (40)
ki, ka

where, because of the orthogonality relation (1Y),, ®(m) is equal to the vertically
integrated value afu3). The spectra (m) are plotted in Fig. 8 foR = 326, 1194, 8000. The

° +t
o
x00080, 144,
X 4+6° Fe,

+

x a +, xxx °°++4,’ 1
XX x ®000000,* 1o ° T
10 Xy o5t 10 x

Xy o+ X x x °
X x ° - Xxxy ©
Xxy 10 x
X x

x

10 20 30 4 50 60 70 ] 10 20 3 40 50 &0 70

(a) (b)

FIG. 8. Hermite spectra (m) for R=326(+), 1194(0), 8000(x): (a) even modes; (b) odd modes.
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even and odd modes, corresponding to symmetric and antisymmetric functions, respect
are plotted separately. It is evident that the error is small due to truncatiorsince the
spectral amplitudes are already quite small at largeHowever, it is more difficult to
interpret these plots than those for the Fourier spectra in terms of whether the resoluti
adaquate since largea modes not only provide better resolution in terms of grid spacir
but they also extend the collocation points deeper into the stable fluid layers.

For R=326 and 1194¢ (m) have several local maxima, which are likely to be indicativ
of the presence of several convective cells observed in flow visualizations [19]. These
are no longer well defined wheR=8000.

7.3. Budget Terms

To further demonstrate the capability of our numerical simulation, the budget equat
for (u3), (U2 + u3), (¥'2), and(up®?) are derived and each term in the budget is compute
and plotted forR=8000. Since the pressure appears explicitly in the budget equation
must be obtained by solving the pressure Poisson equation:

p:v—2<aixzz9—v.(u-V)u>. (41)

Similarly tow, we can writep as a mean plus a fluctuatiop= (p) + p’. The mean pressure

can be related to the mean temperature fluctuation and the variance of the vertical vel
by averaging the nondimensional form of (2):

() = ——((uz) +(p) - (42)

We will use (42) to eliminate the mean pressure so that only the fluctuating prgssuitie
appear in the budget equations.
The first budget equation we consider is that(ia}),

a
ot

o /ous duy
|<u2) =24/ =(——),
2 R 3Xj 3Xj
3
g = <|O axu2>
0 o 0 ,
1 = oo (| B )~ () — 29 ).

Vi) = 2(uzt).

< >—|(2)+||(u)+”|(u>+lv<u2> (43)

where

For statistically stationary flows, the time derivative term on the left of (43) is zero. T
physical interpretation of each term is standayg; is the dissipation term due to viscosity,
I'l,2 is the redistribution of energy by pressure from the vertical direction to the horizor
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directions, | || ) is the transport term, antV, W) is the source term due to buoyancy.
Similarly, the budget foru? + u3) is given by the equation

ad
SrULHUD) = g + Tzag) + 111 zg), (44)

| 2 o /duy dUq 4 oUs dus 3U3

2,2y = — —( —

{u+ug) V R\ ax; ax; = ax;j ax;
,aul ,3U3

e = 2<p X, +p 8)(3>’

ad o 0
g = e (/o (6 +18)) — (uafu +3)) )

Equation (44) is similar to (43), except for the absence of an explicit buoyancy sour
Energy is transferred to the horizontal velocities by the pressure terms. The other
budgets considered are

where

0

E(ﬁ/z) - |<19r2) + I |(1912> + | I I (9/2) s (45)
where
a(T)
I g2y = —2(Up?’
72 (Ud') — %
P A LA
) = o R\ 0Xj 8Xj ’
B 1 9
g2y = — 9’2y — (up'?) ),
0 = 5 (maxz( ) — (U29"%)
and
d
P = (U2?) = Loy + oy + T 00 4 1 Vigeey + Vigen, (46)
where
Loy = (9%

I (ug®’)y = < 2> 8X2

Frs
I I I (ugv’) = 8X2 9
o ([ [0/ 0u 1/ o ,
IV, = — — (¥ — 9y — (usp’) |,
o = 5 (VR0 Be) + 7wl ) ~ 07 - 47)

v _ o, 1 99’ u,
2o = R VoR/ \ox; dx;/’

Equation (45) is the budget equation for the temperature varidpeg:s the source term
due to gradient productior;l ;2 is the diffusion term due to thermal conductivity; and
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FIG.9. The budgets of the velocity variances. The labeling in the figures correspbndsoous dissipation;
I'l, pressure redistribution;l | , transport;l V, buoyancy: (ap(u3)/at; (b) d(u3 + u3)/at.

I'11 92 is the transport term. Equation (46) is the budget equation for the heat flux:is
the buoyancy production terrhl (s is the gradient production term in the unstable laye
and the gradient destruction term in the stable layldrisy, s is the pressure redistribution
term; |V, is the transport term; and,,, is the dissipation term.

Each term in the above budget equations are calculated explicitly and are shown in Fi
and 10. The sum of all the budget terms in each equation should be zero in a statisti
stationary state, and the sum is computed explicitly and shown in the plots. The bu
for (u3) is shown in Fig. 9a. Comparing with Fig. 4a, the varianceipfs produced by
the buoyancy term in the unstable region and then spreagiltby the transport term.
Redistribution by pressure is effective at the interface between the stable and uns
layers. The dissipation term maintains the system in statistical equilibrium. The pres
termin Fig. 9ais exactly balanced by the corresponding term of Fig. 9b, and the sum of t
two terms is zero by continuity. The two side peaks in the variance diagrgof ef u3)
are clearly a result of the redistribution of energy by pressure.

FACK % (uz?)

a 3
X 10
10 5 1

5

4

3

2

2

FIG. 10. The budgets of the temperature variance and heat flug{¢&))/at. The labeling corresponds to
gradient productiont | , heat diffusion;l 1 I, transport. (bp (u,®)/3dt. The labelling corresponds 1q buoyancy
production;! | , gradient production/destructioht | , pressure redistributionV, transport)V, dissipation.
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Figure 10a shows the budget termg®f2). The source comes from the product of heat
flux with the mean temperature gradient. Hence, as the gradient of the mean temper:
decreases at the center withthe central peak gfy’?) also decreases. Across the unstable-
stable interface, the heat flux changes sign from positive to negative. Hgriéealso
decreases and rises again to form two peaks on each side, where the mean tempe
gradient is now negative. The transport term, as in all other cases, redistributes the vari
from regions of large values to small values. Figure 10b{@gr?’) has five terms. Within
the unstable region, the buoyancy and gradient production terms act in concert to proc
the heat flux. Outside the unstable region, the gradient becomes a sink term. Buoy:
continues to generate heat flux within the stable region, which is then transported away
also redistributed by pressure. Dissipation acts to maintain statistical stationarity.

All of the budgets which are calculated explicitly balance to near zero as they sho
in a statistically stationary flow, providing us confidence in the accuracy of our numeri
method for the numerical simulation of turbulent penetrative convection.

8. CONCLUSION

In this paper, we have demonstrated the applicability of a Fourier—Hermite pseudosj
tral method for performing a numerical simulation of turbulent penetrative convection.
demonstrate the numerical method, an initial three-layer temperature profile with a cer
unstable layer bounded above and below by stable layers is prescribed in the absence o
motion. The fluctuating fields are expanded in Fourier and Hermite basis functions. T
mean temperature field induced by the fluid motion is treated analytically and is determil
to be directly related to an integral over the numerically computed heat flux. A semi-impli
scheme is used for integration in time. Since the top and bottom stable layers act as effe
lids on the turbulent maotion, all the flow is contained within the computational box. Tt
simulation results are thus free from numerical reflection. We have computed the m
temperature profile, variances and heat flux over a range of Rayleigh numbers upRg 45.
whereR. is the critical Rayleigh number for the onset of convection. The budgets of tl
variances and heat flux have also been computed at the largest Rayleigh number. Toge
the simulation results demonstrate the accuracy and efficacy of our numerical method
provide a means to further explore the physics of penetrative convection.
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