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The mixing of a passive scalar field by turbulence that is generated by buoyancy forces acting on an 
initial random density field is considered. Various asymptotic similarity states of the passive scalar 
field with and without a uniform mean passive scalar gradient are determined by dimensional 
arguments based on exact or near invariants of the density and passive scalar fields. The results of 
large-eddy numerical simulations are shown to support the derived scaling laws. The large-eddy 
simulations also demonstrate the different mixing properties of an active and passive scalar 
field. 0 I995 American Institute of Physics. 

1. INTRODUCTION 

The time-decay exponent of the kinetic energy per unit 
mass of a high Reynolds number isotropic turbulence can be 
predicted by assuming the existence of an asymptotic simi- 
larity state based on an invariant of the flow field.tm4 An 
analogous result may also be obtained for the time-decay 
exponent of the scalar variance of a decaying high P&let 
number isotropic passive scalar field.5*6 Recent works have 
demonstrated a wider existence of asymptotic similarity 
states for homogeneous turbulence than hitherto suspected. 
In particular, asymptotic similarity states of the velocity 
and/or scalar field were discovered in recent studies of 
buoyancy-generated turbulence,7 decaying isotropic turbu- 
lence in a uniform mean passive scalar gradient,s decaying 
axisymmetric turbulence,g stably stratified turbulence,” and 
rotating turbulence.tl 

In this paper we return to the study of buoyancy- 
generated turbulence, where velocity fluctuations are as- 
sumed to be created in a fluid initially at rest by buoyancy 
forces acting on a random distribution of fluid density. Pre- 
viously, an invariant of the density field was discovered 
which led to the prediction of asymptotic similarity states of 
both the velocity and density fields. We now further consider 
the mixing of an additional passive scalar field transported 
by the buoyancy-generated velocity fluctuations. Such a 
physical flow may occur, say, if a random initial temperature 
field is created by some means in a large body of fluid at rest. 
In addition to the buoyant random temperature fluctuations, 
there may be another random concentration field such as sa- 
linity which negligibly affects the fluid density. We ask 
whether asymptotic similarity states of this additional pas- 
sive scalar field may also exist? We will show that indeed 
similarity states do exist, and that they too can be based on 
the invariant of the density field. We do not yet know of any 
laboratory experiments on buoyancy-generated turbulence, 
nor of any relevant observational data. Our primary motiva- 
tion for studying this problem is to demonstrate further the 
general appearance of asymptotic similarity states in freely- 
evolving homogeneous turbulence. Furthermore, this hypo- 
thetical flow serves the additional purpose of illustrating the 
different turbulent mixing properties of an active and passive 
scalar field under relatively simple conditions. 

We will separately consider two distinct physical sce- 
narios for the passive scalar field. In both cases, fluctuations 
in the density of the fluid (the active scalar) are created at the 
initial instant, and velocity fluctuations are subsequently gen- 
erated by buoyancy forces. In the first case, fluctuations in 
another passive scalar field {assumed not to affect the fluid 
velocity) are also created at the initial instant. The generated 
velocity fluctuations subsequently mix both the active and 
passive scalar fields. In the second case, a uniform mean 
passive scalar gradient is imposed across the fluid. The gen- 
erated velocity fluctuations along the direction of the gradi- 
ent subsequently generate passive scalar fluctuations, which 
are then mixed by the buoyancy-generated velocity field. The 
transport of passive scalar fields with and without a uniform 
mean gradient was also considered previously,* the differ- 
ence here being that the decaying isotropic velocity field 
considered earlier is replaced by a buoyancy-generated flow 
field. 

II. THE GOVERNING EQUATlONS 

The equations which govern the evolution of our veloc- 
ity and density fields may be obtained upon use of the well- 
known Boussinesq approximation that small density fluctua- 
tions affect the flow only through the buoyancy force: 

v-u=o, (1) 

dU P’g V(p-Poli?X) 
x +u.vu= -&-- 

PO 
+ vv2u, 

dp’ 
dt +u-Vp’=DV=p’, 

where u, p, and v are the fluid velocity, pressure, and kine- 
matic viscosity, p. is the constant mean value of the fluid 
density, and p’ is its fluctuation about the mean, g=-jg, 
where g>O is the gravitational acceleration and j is the ver- 
tical (upwards) unit vector, and D is the diffusivity of the 
quantity which is resulting in the fluctuation of the fluid den- 
sity. Denoting the passive scalar field by 0, its transport equa- 
tion may be written as 

$+uW=-/3.u+D,V28, 
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where /3 is the constant mean scalar gradient (possibly zero) 
in some as yet unspecified direction, and D 0 is the molecular 
diffusivity of the additional passive scalar field. We have 
assumed that the fluid density is negligibly affected by fluc- 
tuations in this scalar field. When p=O, the equation for the 
passive scalar is identical to that for the density field, apart 
from the possible difference in the diffusion coefficients 
which will be inconsequential at the large P&let numbers of 
interest to us here. To allow the passive scalar to evolve 
differently than the density field, we make the physically 
reasonable assumption that the correlation (p’@=O at the 
initial instant. It is easy to show directly from the governing 
equations that this correlation subsequently remains zero for 
all times. We will further assume different statistical forms 
for the initial density and passive scalar distributions, as de- 
scribed in the next section. 

Ill. THE LARGE-SCALE FIELDS 

At the initial instant, t-0, the fluid is at rest so that 
u(x)=0 everywhere, and the density field p’(x) is a random 
statistically isotropic realization of some given initial spec- 
trum. If we reasonably assume that the three-dimensional 
spectrum of the density fuctuations W,(k,tj [the Fourier 
transform of the density covariance (p’(x)p’lx+r)), where 
(m-e) denotes an ensemble, or volume average] is an even 
function of k, then the spherically-integrated spectrum 
E,(k,t), defined so that its integral over k is one-half the 
density variance, has one of the following fortns near k= 0 
for t>O: 

E,(k,tj-2dok2 or E,(k,t)-2d’2(t)k4. (5) 
The k” coefficient Co has been shown to be an invariant of 
the flow,’ with its value at all times equal to its value at t = 0. 
When Co is zero initially, it can be shown within a quasinor- 
ma1 approximation that a positive increasing value of C, is 
generated by nonlinear interactions.r2 

Similar comments also apply to the three-dimensional 
spectrum of the passive scalar fluctuations q,(k,tj and the 
corresponding spherically integrated spectrum E 0( k, t). 
When p=O, E,(k,t) thus has one of the following forms 
near k=O for t>O: 

E,(k,t)--2vA,k” or E,(k,tj-2rA2(t)k4, (6) 
where A0 is strictly invariant; when A, = 0, a nonzero value 
of A2 is generated by nonlinear interactions. 

With the density-variance spectrum following one of (5) 
near k= 0, the corresponding form of the buoyancy- 
generated kinetic energy spectrum E(k,t) near k= 0 is 

E(k-,t)-2rB,(t)k* or E(k,t)-2rB,(t)k4, (7) 
respectively, where an exact result for B,(t) may be obtained 
from the governing equations. First, defining the velocity 
spectral tensor *‘ii to be the Fourier transform of the velocity 
covariance’(ui(x)uj(x+r)), and considering its behavior near 
k=O, one’finds 

where O(1) represents terms which vanish when k-+0, and 
Ca is the (invariant) value of the density spectral function at 
k = 0. The initial large-scale density fluctuation is assumed to 
be isotropic. Equation (8) is in agreement with the work of 
Saffman3 for fluid motion generated by a nonsolenoidal force 
such as gravity, except that here the force is applied continu- 
ously rather than only at the initial instant. The exact time 
dependence of the energy spectral coefficient B. is deter- 
mined from (8) by setting i= j and summing, averaging over 
the directions of k and taking k=O: 

2 Be(t)= ; g2 9. i i (9) 

With a nonzero value for p and zero initial passive scalar 
fluctuations, the behavior of the k” coefficient A, of the pas- 
sive scalar spectrum near k = 0 becomes an explicit function 
of time which may also oe determined exactly. We consider 
here explicitly a mean passive scalar gradient p along the 
vertical direction. The results are easily generalized to p in 
an arbitrary direction. For /? along j, we determine 

*r,(k)=; (gj2( l- ~)2Cot4+O(lj, (lo) 
which may be further averaged over the directions of k to 
obtain the exact result 

t4 - 

The value of A0 when p is perpendicular to j is found to be 
a factor of 8 smaller than (11). 

IV. EXACT ASYMPTOTIC SIMILARITY STATES 

We are now in a position to determine exact asymptotic 
similarity states of a passive scalar field in buoyancy- 
generated turbulence when the large-scale density fluctua- 
tions are characterized by a nonzero C,,. We begin with di- 
mensionally correct forms of the evolution of the mean- 
square velocity, density variance and integral scale in a high 
Keynolds and P&let number turbulence:’ 

(,2),B;‘5t-6/5, (p’“)ocCoB;3/5t-6/5, loc-;15t2/5 

(12) 
For a buoyancy-generated flow field, we replace B,= Be(t) 
with (9) to find the laws 

(p’“)~c, 9 
i 1 

-315 (13) 
t-12’5, ICC - 

i i 

g”co l’sy4,5 
PO 

in agreement with earlier work.7 Also observe the interesting 
feature that the Reynolds number of the flow field increases 
asymptotically as t 3/5 Now, when /3=0, the evolution of the . 
passive scalar variance may also be found from (12) upon 
replacing B, with (9) once again, and Co with A,: 

(s’)KAo( !g) -3’5t-‘2’5. (14) 
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FIG. 1. Time evolution of the density and energy spectra with E,(k,t)--k2 
near k=O: (a) density spectrum E,(k,t); (b) energy spectrum E(k,t). 

We have thus obtained the result that a passive scalar field 
initialized with A, nonzero decays asymptotically at the 
same rate as the density field with C, nonzero. Note that 
there are undetermined dimensionless coefficients in (13) 
and (14), and it is reasonable to expect that the coefficient in 
the scaling equation for (P’~) will be smaller than the coef- 
ficient in the equation for (8) since the mixing of density 
fluctuations should be more efficient than the mixing of a 
passive scalar. Large magnitude density fluctuations generate 
vertical velocity fluctuations directly at the location where 
mixing can be most effective. 

For the passive scalar with nonzero mean scalar gradient 
@#O), there exists only the single invariant low wave- 
number density,spectral coefficient. Replacing A,=A,,(t) in 
(14) by (ll), the passive scalar variance is determined to 
increase asymptotically as 

i -20 \ z/5 

(@)ap’( $yJ P. (15) 

For a passive scalar field with uniform mean gradient in a 
decaying isotropic turbulence, we previously8 determined a 
sIower increase with power-law exponent t415. Buoyancy- 
generated turbulence is hence signiticantly more effective in 

generating passive scalar fluctuations from a uniform mean 
gradient than is an isotropically decaying turbulence. 

For comparison with our later numerical simulations, we 
now construct exact asymptotic similarity states for the pas- 
sive scalar spectra. Similarity states have previously7 been 
constructed for the density and energy spectra and we also 
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FIG. 2. Time evolution of the passive scalar spectra E,(k,t) corresponding 
to the density and energy spectra of Fig. 1: (a) E,-k’ near k= 0; (b) E s-k4 
near k=O; (c) E, with fllg. 
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FIG. 3. T ime evolution of the density and energy spectra with E,(k,t)--k4 
near k=O: (a) density spectrum E,(k,t); (b) energy spectrum E(k,t). 

include them here for completeness. Using the results of (13) 
and (14), the similarity forms of the energy, density, and 
decaying passive scalar spectra are determined to be 

3/s 

t2’5B(i), 

(16) 
t-8’5~,(i); 

In the presence of a uniform passive scalar gradient, the cor- 
responding similarity state for the passive scalar spectrum is 

2 G4w=P2 g2 ( 1  
315 t*2’5k&. 

The nondimensional wave number l is given by 

i;= 1  
i 1  
g2co “5t,,Q  

Pi5 
(19) 

V. OTHER POSSIBLE SIMILARITY STATES 

When A, and/or Co are initially zero, there no longer 
exist exact invariants on which to base asymptotic similarity 
states. Nevertheless, earlier numerical results7$ suggest the 
development of other similarity states and that approximate 
forms for these similarity states may be obtained by assum- 
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FIG. 4. T ime evolution of the passive scalar spectra E,(k,t) corresponding 
to the density and energy spectra of Fig. 3: (a) E,--k’ near k= 0; (b) E8--k4 
near k=O; (c) E, with dig. 
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FIG. 5. Time evolution of the power-law exponent of (p”). The solid lines FIG. 7. Time evolution of the power-law exponent of (@) with p=O. The 
are the results of the Iarge-eddy simulations and the dashed lines are the solid lines are the results of the large-eddy simulations and the dashed Iines 
exact and approximate analytical results discussed in Sets. IV and V. are the exact and approximate analytical results discussed in Sets. IV and V 

ing the near invariance of the coefficient A,, and that of C2 
when p=O. These theoretical results are necessarily less cer- 
tain, since the exact time dependence of AZ, B,, and C, can 
not at present be accurately estimated without direct solution 
of the governing equations,13 or some type of closure 
approximation.r4 

When Co# 0, an approximate solution may be obtained 
for a decaying passive scalar field @=O) with A,= 0 ini- 
tially: 

cm 

where we assume that A, is nearly invariant at large times. 
Other approximate solutions may be obtained when 

Co= 0 initially by assuming that C, is nearly invariant at 
large times. Previously, approximate results were obtained 

FIG. 6. Time evolution of the power-law exponent of (II’). The solid lines 
are the results of the large-eddy simulations and the dashed lines are the 
exact and approximate analytical results discussed in Sets. IV and Y 
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for the evolution of the density variance, mean-square veloc- 
ity fluctuation, and integral scale in the buoyancy-generated 
flow:7 

(p’“)~c, g+ 
i 1 

-517 
t-20'7, ICC g2c2 

i 1 

u7 (21) 
t4/7 

p," . 

Two more approximate similarity states for a decaying pas- 
sive scalar field with p=O may also be determined: 

-311 
t-'2/7 tm-20/l 

9 

(22) 
depending on whether A0 is nonzero, or zero, initially. Note 
that the second of Eq. (22) exhibits the same time depen- 
dence as that of the density field in that flow. 

Finally, for a passive scalar field with p#O, the approxi- 
mate solution when Co = 0 initially is given by 

Equation (23) is to be compared to the time dependence t417 
found previously’ when the hydrodynamics is that of decay- 
ing isotropic turbulence with B. = 0. 

Closure calculations for isotropic turbulenceI suggest 
the possibility that (20)-(23) may in fact be exact provided 
we use the precise values of A 2 =A 2( t) and C, = C,(t). We 
can test this hypothesis by constructing the following pos- 
sible asymptotic similarity forms for the various spectra: 

E(k,t)=(u2)lk(i), ql(W =(P’2)&Ah 

E,(k,tj=(82)Zio(fi), k=lk. (24) 

The numerical values of (u2), (8) and the integral scale I 
may be taken directly from the large-eddy simulations. The 
integral scales of the various fields are all expected to grow 
at the same rate; however, in resealing the spectra we will 
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FIG. 8. Time evolution of the power-law exponent of (8) with /3=1. The 
solid lines are the results of the large-eddy simulations and the dashed lines 
are the exact and approximate analytical results discussed in Sets. IV and V. 

E 
FIG. 9. Resealing of the last ten spectra in each of Figs. 1 and 3 according 
to the similarity forms given in Sets. IV and V: (a) density spectrum 
E,(k,tj; (b) energy spectrum E(k,t). 

FIG. 10. Resealing of the last ten spectra in each of Figs. 2 and 4 according 
to the similarity forms given in Sets. IV and V: (a) p=O; (b) p=l. 

use the spherically averaged integral scale associated with 
the given field. The similarity forms given by (24) generalize 
(16)-(19) when there no longer exists exact invariants. 

VI. LARGE-EDDY SIMULATIONS 

In this section, we present the results of large-eddy simu- 
lations used to test the similarity state predictions of Sets. IV 
and V, and to compute dimensionless coefficients of interest 
which can not be predicted a priori. The numerical simula- 
tions presented here are similar to those done previously.778 A 
parallel pseudospectral codei5’16 for turbulence in a periodic 
box of length 27~ is used with an eddy viscosity/diffusivity 
subgrid mode1’7P18 to solve the velocity, density, and scalar 
field equations given by (l)-(4). The molecular transport 
coefficients are set to zero. Here, the results of two separate 
2563 simulations will be presented, each simulation time 
evolving a (three-dimensional) velocity field and five scalar 
fields, which included one active density field, two passive 
scalar fields with no mean scalar gradient @=O), and two 
passive scalar fields with mean scalar gradient (/3= 1) parallel 
or perpendicular to the gravitational direction. The initial 
conditions of both simulations were such that the velocity 
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FIG. 11. Comparison of the relative mixing efficiencies of an active and 
passive scalar field. 

field and the two passive scalar fields with p=l were zero 
everywhere at the initial instant. The two passive scalar fields 
with p=O were initialized in both simulations to a k2 and k4 
spectral behavior near k= 0. The two different simulation 
runs corresponded to an active density field initialized with 
either a k2 or k4 spectrum near k = 0. 

The general form of the initial k’ and k” active and 
passive scalar spectra is given by 

E,,,(k,0)=~aa,8~k~1(k/k,)S exp[ - &k/k,)‘], iW 
where s is equal to 2 or 4 and a, is the appropriate normal- 
ization constant so that the integral over the spectrum yields 
(&)/2. The initial scalar spectrum is maximum at wave num- 
ber kp. We choose &=l and k,= 100, and set the gravita- 
tion coefficient g/pa to unity. The two simulations performed 
encompass all of the possible similarity states discussed in 
Sets. IV and V. 

Figures 1 and 2 present the spectral results of the first 
simulation with lZ,(k,t)-2rk2C, near k=O. Figure 1 dis- 
plays the density and energy spectra, previously computed at 
1283 resolution in an earlier work.7 We have been careful to 
maintain sufficient sample of the energetic eddies at the lat- 
est times of evolution. The spectral results for the passive 
scalar fields are given in Fig. 2: Figs. 2(a) and 2(b) present 
the decaying spectra for a passive scalar field initialized with 
a k” and k4 spectrum, respectively, and Fig. 2(c) presents the 
growing spectrum of the passive scalar field with mean sca- 
lar gradient parallel to the axis of gravity. The spectrum of 
the passive scalar field with mean scalar gradient perpendicu- 
lar to the axis of gravity is of similar shape, and is omitted 
here. Figures 3 and 4 present the corresponding spectral re- 
sults of the second simulation with E,(k, t)-2 rk4C2 near 
k=O. 

The time evolution of the power-law exponents (loga- 
rithmic derivatives) of the density variance resulting from 
the two simulations is presented in Fig. 5 while those of the 
root-mean-square iRMS) velocity are presented in Fig. 6. 
The simulation results are labeled by the leading-order low 
wave-number spectral coefficient C, and C,, respectively, of 

3.d 
0 20 40 60 60 I+ 100 140 

t/r0 

FIG. 12. Ratio of the scaIar variance generated for a scalar gradient parallel 
to the gravitation axis to that generated when the scalar gradient is perpen- 
dicular to the axis. 

the density spectrum. The solid lines are the results of the 
simulations and the dashed lines are the exact and approxi- 
mate theoretical results discussed in Sets. IV and V. Time is 
in units of ra = dm, where 1, is the initial integral 
scale of the density field, given by la = $hlc, when s=2 
in (W), and Ia = 2 613 kp when s = 4. The simulation and 
theoretical scalings are found to be in good agreement, par- 
ticularly when the theoretical results are expected to be ex- 
act. 

The new results of interest to us here-the decay and 
growth exponents of the passive scalar variance-are pre- 
sented in Figs. 7 and 8. Figure 7 presents the decay expo- 
nents for a decaying passive scalar field with no mean scalar 
gradient, and Fig. 8 presents the growth exponents of the 
growing passive scalar field with mean gradient parallel or 
perpendicular to the gravitational axis. The dashed lines are 
the exact and approximate theoretical results discussed ear- 
lier. In Fig. 7, the simulation curves are labeled by the 
leading-order low wave-number spectral coefficients of the 
passive scalar and density field. The exact theoretical result 
-12/S for the exponent, obtained when both A, and Co are 
nonzero, is in excellent agreement with the corresponding 
results from the numerical simulation. The remaining ap- 
proximate theoretical results are in qualitative agreement 
with the simulation results, with the largest deviation occur- 
ing when A2 and Cc, are the leading-order spectral coeffi- 
cients. In this case, we obtain an asymptotic power-law ex- 
ponent of approximately -3.35 instead of -4, a difference 
of about 16%. This difference is most likely a consequence 
of the relatively large time variation of the coefficient 
A,=A,(t) in (20). 

Tn Fig. 8, the simulation results are labeled by the 
leading-order low wave-number spectral coefficient of the 
density field, and by 11 or I, corresponding to a passive scalar 
gradient parallel or perpendicular to the gravitational field, 
respectively. The simulation results are also in good agree- 
ment with the theoretical predictions. The exponent 815, cor- 
responding to a density spectrum proportional to k” near 
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k=O, is expected to be exact and the agreement between the 
simulations and theoretical result is excellent. The exponent 
S/7 is only approximate for a density spectrum proportional 
to k4 near k = 0, and the simulation results deviate somewhat 
more from this theoretical result. 

The reasonable agreement of the power-law exponents 
computed above with the theoretical results of Sec. IV and V 
indicates the overall soundness of our theoretical arguments. 
Additional evidence for the existence of asymptotic similar- 
ity states of the flow fields may be obtained by demonstrat- 
ing a collapse of the spectra at the latest times of the simu- 
lation under the exact similarity scaling of Sec. IV as well as 
the similarity scaling of Sec. V given by (24). The latter 
scaling may also be exact, but the asymptotic behavior of 
(8) and 1 are not known a priori but are given by the results 
of the simulation. In Figs. 9(a) and 9(b), the last (in time 
evolutionj ten displayed density and energy spectra shown in 
Figs. 1 and 3 are resealed according to the above-mentioned 
similarity scalings, apart from arbitrary multiplicative con- 
stants which just shift the curves on the log-log plots to 
permit a clearer display. In Figs. 10, the analagous resealed 
passive scalar spectra are also plotted. Figures 10(a) and 
10(b) correspond to zero and nonzero mean passive scalar 
gradients, respectively. For s = 2 in (25), the nondimensional 
times displayed range between 33<t/7,<72, while for 
s = 4,45 < tl TV< 126. The collapse of all the spectra is quite 
remarkable, indicating that similarity states of the flow field 
exist even when the low wave-number coefficients are not 
strictly invariant. 

Finally, we present numerical results pertaining to two 
dimensionless coefficients of interest which can not be pre- 
dicted by the dimensional arguments of Sets. IV and V. The 
fYirst coefficient is related to the relative efficiency of turbu- 
lence mixing of an active or passive scalar field. We have 
seen that for density and passive scalar fields of initially the 
same spectra (but different realizations), the asymptotic rate 
of decay of density and scalar variance are the same as evi- 
denced by the same decay exponents. However, as noted 
earlier, the proportionality constants may be different corre- 
sponding to different mixing efficiencies. In Fig. 11, we plot 
the ratio Aa(p’Z)/Co(B’), when A0 and C, are the leading- 
order spectral coefficients of the passive scalar and density 
spectra, respectively; and A,(p’2)IC2( S”), when A2 and Ca 
are the leading-order spectral coefficients. These latter coef- 
ficients are taken at t = 0. The computed ratios decrease from 
unity at the initial instant, indicating more efficient mixing of 
the density field. The value of the ratio for the Ao, Co case 
decreases to an approximate asymptotic value of 0.75. The 
value of this ratio for the AZ, C, case asymptotes to a higher 
value of 0.9. 

The values of the low wave-number coefficients using in 
the ratios above are not readily obtainable from experimental 
measurements. However, they may be related to more easily 
measurable quantities using the initial spectra given by (25). 
For instance, the spectral coefficient A, is given by 

@lf 
Ao=-p 

where 4 is the initial passive scalar variance and lo is the 

spherically averaged passive scalar integral scale. An anaIo- 
gous result is also obtained for Co. When A 2 is the lowest- 
order coefficient, the scaling on 1: is replaced by 1;. 

The other dimensionless coefficient, plotted in Fig. 12, is 
the ratio of the scalar variance when the uniform mean gra- 
dient is along the gravitational axis, to that when the gradient 
is perpendicular to the axis. At small times, the value of this 
ratio is eight as can be computed from the linearized equa- 
tions, and decreases to somewhat smaller values at later 
times. When Co is the leading-order density spectral coeffi- 
cient, the asymptotic value is approximately 6, while when 
C, is the leading-order coefficient, the asymptotic value is 
closer to 5. 

VII. CONCLUSIONS 

The theoretical results and the results of the large-eddy 
simulations taken together clearly demonstrate the develop- 
ment of asymptotic similarity states of a passive scalar field 
transported by homogeneous buoyancy-generated turbu- 
lence. Using a simple similarity analysis, we have thus pre- 
dicted the long-time evolution of a decidedly nontrivial 
flow-the nonlinear interactions in this system are fairly 
complex and involve a coupling between the three- 
dimensional velocity field and both an active and passive 
scalar field. Direct analytical consideration of the full non- 
linear equations by closure, for instance, would have been 
complicated indeed. We have avoided the need for such a 
detailed analytical investigation by considering the conse- 
quence of the existence of exact and approximate flow in- 
variants associated with the density and passive scalar field. 
This powerful technique of similarity analysis together with 
large-eddy simulations hold promise for the discovery of 
other asymptotic similarity states in homogeneous turbu- 
lence. 
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