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The spectrum of a passive temperature field, G(k), has been determined by a numerical
simulation using three kinds of isotropic turbulent velocity fields. For a time independent and
Gaussian velocity field, the resulting G(k) has the form G(k) = Gye,€/y 3k ~'7/3, with

G, = 0.33 4 0.02 Ko, confirming the prediction of Batchelor, Howells, and Townsend

[J. Fluid Mech. §, 134 (1959)]. For a velocity field developed through the Navier-Stokes
equations and then frozen in time, G(k) has the same form as above, but with G,

= 0.39 + 0.03 Ko. Finally, for a velocity field developed concurrently with the temperature
field, G(k) collapses onto the spectrum obtained using a frozen, developed velocity field only
for high enough values of the conductivity y. For lower values of y, the power law behavior of

G(k) is less clear.

The determination of the universal turbulence spectrum
of a passive scalar field has been a controversial problem for
more than 30 years. In the first papers on the subject, Obuk-
hov' and Corrsin? generalized Kolmogorov’s universal equi-
librium theory to a scalar field. In 1941, Kolmogorov® had
argued that for very high Reynolds number flows, there
should exist a region in X space, the inertial subrange, where
the three-dimensional energy spectral function E(k) be-
comes independent of the specific details of the source and is
still not directly affected by molecular viscosity. He deter-
mined the function E(k) to have the following universal
form:

E(k) =Ko %k —313, ¢))

where € is the energy dissipation rate and Ko is the Kolmo-
gorov constant. It was argued by Obukhov and Corrsin that
an analogous universal relation should also hold for a passive
temperature field with spectral function G(k), i.e., that in
the region called the inertial-convective subrange,

G(k) =Baeye 3k —373, 2)
where €, and G(k) are defined by

eozzxfkm(k)dk, <92)=Lma(k)dk, 3)

x is the thermal conductivity, (9 2) is the mean square tem-
perature fluctuation, and Ba is the Batchelor constant. Al-
though intermittent spatial fluctuations in the rates of dissi-
pation or conduction may modify Egs. (1) and (2), the
modifications must be slight since the k ~>/* power laws have
been strikingly confirmed by experiment.*

In 1959, Batchelor® and Batchelor, Howells, and Town-
send® (BHT) attempted to extend Eq. (2) to regions of k
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space where the direct effects of molecular viscosity v or
thermal conductivity y become larger than their turbulent
analogs v, and y,. The region where v»v,, but x€£x,, is
called the viscous-convective subrange; the region where
v<v,, but y>y,, is called the inertial-conductive subrange.
Conventionally, a value of the Prandtl number o=v/y = 1
is taken to mark the division of these two regions. Recently,’
it has been argued that the correct dividing value should be
o,, the turbulent Prandtl number, where o, =v,/y,. In the
inertial-convective subrange, o, is independent of wavenum-
ber and has the value”® o, = Ba/Ko=0.5.
The BHT result in the inertial-conductive subrange is

G(k) = GOEGGZ/JX—sk - l7/3’ 4)

where the numerical constant G, was determined to be
G, =} Ko. The BHT result may be shown to be a conse-
quence of a quasinormal approximation for the nonlinear
transfer.*'° It has also been derived by Kraichnan using the
Lagrangian-history  direct-interaction  approximation
(LHDIA)." However, other theoretical arguments and clo-
sure approximations have derived spectral functions in the
inertial-conductive subrange different from that of BHT. In
1968 Gibson'?*'? presented the case for an inertial-conduc-
tive subrange power law of & ~>. Other theoretical predic-
tions for this subrange include an exponential form'* and a
power law'® of k ~'3/3, Recently there have been two more
predictionsofak ~'7/3 power law, Eq. (4), but with different
values for G,. Qian'® has derived a value of G, greater than
that of BHT by a factor of 3.6, while Canuto, Goldman, and
Chasnov’ have found G, = § Ba~2
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Given the variety of theoretically predicted power laws,
i.e., exponential, —17/3, —13/3, and — 3, it may be
hoped that the correct form of the spectrum could be decided
experimentally. Unfortunately, the exotic and toxic nature
of low Prandt] number materials makes experimentation dif-
ficult. Rust and Sesonske'” have reported measurements of
temperature fluctuations for o = 0.025, which Gibson"?
claims can best be fitted by k ~3 rather than k ~!”’>. On the
other hand, data by Granatstein et al.'® can be fitted by
k —'3/3, although the Reynolds number may be too low to
check theories of universality. Clay’s'® experimental data for
liquid Hg (o = 0.018) shows some indication of kK > and
k —'7/3 subranges, although his results must be considered
inconclusive.

In the absence of definitive theoretical or experimental
results, the remaining possibility is to perform a numerical
“experiment” to determine the correct spectral function.
However, with existing computers, complete numerical res-
olution of all important scales of motion is restricted to low
Reynolds number flows. Kerr®® through a direct numerical
simulation, was able to identify a small Kolmogorov inertial
subrange. However, the Reynolds number was too low for
the observance of the inertial-convective and inertial-con-
ductive subranges, while the resolution of the scalar was too
poor for the observance of the viscous-convective subrange.
Recently,?! through the use of a high symmetric fiow, an
inertial range spectrum was successfully simulated over al-
most one decade of wavenumber. Results for the passive sca-
lar were not reported.

In this Letter, we present the results of the  first numerical
simulation of the inertial-conductive subrange. In light of the
limitations placed on a direct numerical simulation of the
Navier-Stokes equations because of computer speed and
memory requirements, we do not attempt to fully resolve the
velocity field. Instead, our approach is motivated by a theo-
retical argument found in the BHT paper.® In the inertial
range of the velocity field, the characteristic time scale of
velocity fluctuations is 7, ~ (€k 2) ~'/?, while in the conduc-
tive subrange of the scalar field, the scalar fluctuations are
damped out in a time of the order of 75~ (yk?)~". It has
been argued that the inertial-conductive subrange should oc-
cur for values of the wavenumber k> k. o, where k¢ o is
defined in Eq. (5). This translates into 7, > 74, i.., the char-
acteristic time scale of velocity fluctuations is much longer
than that of the scalar fluctuations in the inertial-conductive
subrange. It thus follows that a reasonable assumption,
which will considerably reduce the amount of computa-
tional time required for the simulation, is to assume that the
velocity field is time independent and its spectral function
satisfies Eq. (1). We then need only to time advance the
scalar equation.

The code we use is a modification of a code developed by
Rogallo.? The fluid velocity field is Gaussian and is frozen
in an isotropic state, satisfying continuity, and having an
energy spectrum of Eq. (1). The temperature field is time
advanced (128> grid points) according to the unforced sca-
lar equation until the shape of the temperature spectrum
becomes independent of its initial state. In a simulation of
the inertial-conductive subrange, the temperature field can
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easily be fully resolved, since the conductivity y may be cho-
sen as large as desired.

In Fig. 1 the three-dimensional temperature spectral
function G(k) Xk '"/* vs k is plotted for one realization of
Eq. (1). Units are shown in the figure caption. Here k¢ is
the Corrsin—-Obukhov wavenumber,

kco = (e/x)' (5)
We have modified the usual Corrsin—-Obukhov units to in-
clude the Kolmogorov constant since we have no way of
calculating € separately, but only in the combination
Ko €/3. In the units used in Fig. 1, Eq. (4) simplifies to
G(k) =Gy Ko™ 'k 72,

Figure 1 clearly shows an inertial-conductive subrange
of the form of Eq. (4). Averaging over the wavenumbers,
3.5 <k < 8.5, we find

G, =0.33Ko (6

in excellent agreement with the BHT result. We have also
computed G(k) for a few other realizations of Eq. (1), and
have found statistical fluctuations of approximately
+ 0.02 Ko.

Although the simulation data clearly shows a k
power law subrange, it is yet unclear for which precise range
of wavenumbers the result holds. Gibson'® has suggested
that a k ~3 power law may appear for wavenumbers
keo <k <kg,, where kg =0~ *kc . Even though we
have assumed an inertial range form for the velocity field
{Eq. (1)] that, at first glance would imply a vanishing vis-
cosity, in fact, the existence of a cutoff wavenumber k¢ in the
simulation may be used to infer a viscosity for the fluid. A
rough estimate for this effective viscosity may be obtained by
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FIG. 1. Three-dimensional temperature spectral function, G(k) Xk '7'*,
convected by a frozen, Gaussian velocity field that satisfies Eq. (1). Here, &
is in units of Ko** k¢ ,, while G is in units of Ko~ *"*(ex*)'"*(¢,/€).
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setting the dissipation wavenumber k, = (€/v*)'/* equal to
k¢ within a factor of order unity. Upon calculation of kc
and k, we find that Gibson’s inertial-conductive subrange
may be too narrow to allow any additional power law depen-
dence to be observed.

The excellent agreement of Eq. (6) with the original
BHT prediction is, in hindsight, perhaps not unexpected. In
fact, our main assumptions parallel those underlying the
BHT theory; that is, that the velocity field is isotropic with a
spectral function satisfying Eq. (1), and that it be considered
time independent (frozen) and Gaussian. However, the
question remains as to how well real turbulence may be ap-
proximated by a frozen, Gaussian velocity field since the
velocity field does fluctuate in time and its high order mo-
ments (e.g., the skewness and flatness factors) are found to
be non-Gaussian at large Reynolds numbers. To study the
sensitivity of the temperature spectrum to the frozen, Gaus-
sian field approximation, we have solved the Navier-Stokes
equations (64° grid points) using a forcing scheme and eddy
viscosity subgrid model.?® First, we evolved the velocity and
temperature fields concurrently until an inertial subrange
developed. The circles in Fig. 2 show a plot of k *G(k)/E(k)
for this case. Units are shown in the figure caption. We plot-
ted the ratio of G(k) to E(k) in order to smooth out the
fluctuations in G(k) caused by deviations in E(k) from an
exact k ~>'3 power law. If G(k) satisfies Eq. (4) and E(k)
satisfies Eq. (1), then k *G(k)/E(k) = G,/Ko. Second, we
took the developed velocity field from the first case, froze it
in time, and continued the evolution of the temperature field.
The squares in Fig. 2 correspond to this simulation. For
comparison, the triangles in Fig. 2 represent a 64> simulation
using a frozen, Gaussian velocity field.
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FIG. 2. Three-dimensional temperature spectral function normalized to the
three-dimensional energy spectral function, G(k)/E(k) X k *. Here k is in
units of k., while G /E is in units of €,/€. The three curves correspond to:
/\s frozen, Gaussian velocity field; 0, frozen, developed velocity field; O,
fluctuating, developed velocity field.
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It is evident from the three cases shown in Fig. 2 that
G(k) best attains a k ~'"/3 spectrum when the velocity field
is frozen, the value of G, being G, = 0.33 + 0.02 for the case
of a Gaussian velocity field and G, = 0.39 + 0.03 for the
case of a developed velocity field. The difference in the values
of G, may be understood in terms of the development of
velocity correlations in the latter case as opposed to the for-
mer. Since only one realization of the temperature and veloc-
ity field is shown in Fig. 2, it is unclear as to the statistical
significance in the rise of G, from 0.33 to 0.39, although the
results presented appear to be typical among the few realiza-
tions examined. When the velocity field is allowed to fluctu-
ate in time, the power law behavior of G(k) becomes less
clear. However, a simulation performed with a value of the
conductivity a factor of 3 greater than that presented in Fig.
2 resulted in the collapse of the temperature spectrum for the
fluctuating, developed velocity field (circles in Fig. 2) onto
the temperature spectrum for the frozen, developed velocity
field (squares in Fig. 2). This behavior is not unexpected
since the ratio of the characteristic time scale of the scalar
fluctuations, 7,, to that of the velocity fluctuations, r,, be-
haves like 7,/7, ~ ', and thus the frozen field approxima-
tion becomes more accurate with increasing conductivity.
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