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In an earlier paper [Phys. Fluids 31, 2065 (1988) ], a numerical simulation of a passive scalar
field convected by a frozen velocity field, i.e., a velocity field with an infinite correlation time,
was performed. In this paper, a simulation of a passive scalar field convected by a velocity field

which is rapidly stirred at all scales of motion, i.e., a velocity field with near zero correlation
time, is performed. For an energy spectrum of the form E(k) « k ~>/3, the temperature
spectrum G(k) is found to obey G(k) « k ~'"/® when conductive effects are dominant. A
theoretical model is proposed which obtains the above result by representing the transfer of
scalar variance by an eddy conductivity, whose correlation time is limited by the correlation

time of the velocity field.

1. INTRODUCTION

In a recent paper' the turbulence spectrum of a passive
scalar field (e.g., temperature fluctuations when the effects
of buoyancy may be neglected) in a fluid of Prandtl number
much less than unity was determined by means of a numeri-
cal simulation. Specifically, the universal region in wave-
number space, called the inertial-conductive subrange,
where the molecular viscosity v is much smaller than the
turbulent viscosity while the molecular conductivity y is
much larger than the turbulent conductivity, was resolved in
the numerical simulation. The Prandtl number of the fluid is
defined as o = v/y.

The passive temperature field 8(x) was taken to satisfy
the usual equation

a0
—_— Vo =y V30, 1
% +u X (1)

where u is the velocity of the fluid. The temperature field is
called “‘passive” since the equation determining the velocity
field is assumed to be independent of 6. Chasnov et al.' per-
formed simulations of Eq. (1) with three different types of
velocity fields. First, and most simply, u(x) was chosen to be
an isotropic, time-independent (frozen) velocity field, satis-
fying continuity, and whose Fourier components were as-
signed random phases (creating a so-called Gaussian veloc-
ity field). Furthermore, the spectrum of the velocity field
E(k), satisfying

1 ouus =f E(k)dk 2)
2 o

was chosen to be proportional to k ~*/3 i.e., E(k) was as-
sumed to obey the Kolmogorov? inertial subrange spectrum,
E(k) =Ko ek =37, (3)

where € is the energy dissipation rate, defined as
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e=2vf°°k25(k)dk, (4)
0

and Ko is the Kolmogorov constant. Of course, by consider-
ing a frozen velocity field, € loses all meaning as a dynamical
variable so that one views Ko €2/ simply as a dimensional
proportionality constant.

The approximation of a frozen, Gaussian velocity field
was also made in the classical paper of Batchelor, Howells,
and Townsend,? who predicted that the spectrum of the pas-
sive temperature field G(k) would obey

G(k) = Goe, €y k=173, (5)
where they determined the dimensionless constant G, to be
G, = | Ko. (6)

The spectrum G (k) is defined so that
<0%> =Lw G(k)dk, €))
while the cascade rate of the scalar variance €, is defined as
€ =2 kazG(k)dk. (8)

Performing the numerical simulation of Eq. (1) using a fro-
zen, Gaussian velocity field, Chasnov et al.' obtained exactly
Eqgs. (5) and (6) for the turbulence spectrum of the tem-
perature field.

Chasnov e al.' then proceeded to relax the assumption
of a frozen, Gaussian velocity field. To determine separately
the effect of these two approximations on the equilibrium
spectrum of the temperature field, they first relaxed only the
Gaussian field approximation. To eliminate this approxima-
tion, they time evolved an initially random velocity field by
performing a numerical simulation of the Navier-Stokes
equations. In order to reach very high Reynolds numbers,
i.e., in order to resolve the inertial subrange and obtain an
approximate kK ~*/3 spectrum, a forcing scheme and subgrid
scale model was employed.* After the Fourier components
of the velocity field developed phase correlations, as deter-
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mined by the Navier-Stokes equations, the fully developed
velocity field was then frozen in time and used to solve Eq.
(1). It was shown that the temperature spectrum G(k)
again obeyed Eq. (5) but with a slightly higher value of G,,
i.e.,

G,=0.39Ko. 9)

In the third and final simulation, the Navier-Stokes
equations with a forcing scheme and subgrid model* was
solved concurrently with Eq. (1). It was seen that this slight-
ly affected the power-law dependence of G(k), although as
the value of the molecular conductivity y was increased
further,a k ~'7/?subrange was again obtained. This was to be
expected, since the frozen field approximation should be ac-
curate when the convective time scale, (¢k2) '/*, is much
longer than the conductive time scale (yk 2) ' and the con-
ductive time scale is seen to be shortened relative to the con-
vective time scale with increasing y.

Il. NUMERICAL SIMULATION

In this paper, we perform a simulation of Eq. (1) using a
velocity field not previously considered. In contrast to the
case of a frozen velocity field, where the correlation time of
the velocity field is infinite, we examine the case of a rapidly
fluctuating velocity field, whose correlation time approaches
zero. For example, suppose that some external stirring force
applied to a fluid was able to make the velocity field fluctuate
at all scales of motion with a correlation time much shorter
than either the convective time scale or the conductive time
scale. Such a physical experiment may be hard to perform in
the laboratory, since when a fluid is “‘stirred,” it is usually
only the largest scales of the system that are directly affected,
but is relatively easy to perform in the computer. ( This same
“thought experiment” was considered earlier by Kraich-
nan,” but in a different context.) In this paper, we will deter-
mine the turbulence spectrum of the passive temperature
field in the conductive subrange by performing a numerical
simulation using the code employed in Ref. 1.

To perform the above *‘experiment,” we have solved Eq.
(1) using an isotropic, Gaussian velocity field that satisfies
continuity and whose spectrum is given by Eq. (3). The use
of the Kolmogorov spectrum for the velocity field seems
rather arbitrary, since one does not expect such a spectrum
to develop when the velocity field is being strongly influenced
at all scales of motion by an external stirring force. Neverthe-
less we choose such a spectrum for convenience and in order
to compare the results to the spectrum of Batchelor et al.,?
Eq. (5). Furthermore, in order to simulate a velocity field
that is being stirred rapidly at all scales of motion, a different
realization of Eq. (3) is chosen with each time step of the
simulation. That is, the phases and velocity component dis-
tribution of the Fourier modes of the velocity field are reran-
domized with each time step of the numerical simulation. If
At is the time step of the simulation, then the correlation
time of the velocity field, defined as the average time 7 over
which u(x,?) remains correlated withu(x,? + 7), is given by
7 = At /2. The time scale 7 is chosen to be much smaller than
the convective and diffusive time scales of the turbulence.

In Fig. 1, we plot the three-dimensional temperature
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spectral function, G(k) X k ''/* vs k. Units are shown in the
figure caption. Here k., is the Corrsin—-Obukhov wave-
number. As clearly seen in Fig. 1, a new power-law subrange
is obtained. The numerical simulation results distinctly
show that G(k) « k "'/ when the effects of molecular con-
ductivity strongly damp the temperature fluctuations.

1. THEORETICAL INTERPRETATION

A heuristic argument is presented below, which ac-
counts for the above behavior of the temperature field. Fig-
ure 2 represents a typical interaction among the Fourier
components of u and 8, which gives rise to the transfer of
scalar variance in the inertial-conductive subrange, be it that
resulting from a frozen velocity field or a rapidly varying
velocity field (or by a more realistic freely decaying velocity
field). In the graph, we have assumed that E(k) decreases
much slower than G (k) in the conductive subrange. This is
certainly true if E(k) « k =% and G(k) « k"3 or
k "3 If this is the case, it is reasonable, then, to view the
transfer of scalar variance, which is a product of two tem-
perature Fourier components and one velocity Fourier com-
ponent, to be a consequence of the following nonlocal inter-
action. One of the temperature Fourier components must be
at wavenumber k. This is the wavenumber to which the sca-
lar variance is being transferred. Since most of the scalar
variance resides at much lower wavenumbers (say g<k), at
least relative to the velocity fluctuations, the other Fourier
component of the temperature field must be approximately
8(q). Finally, since the wavenumbers k, p, and ¢ must form a
triangle, i.e., p + q =k, the Fourier velocity component
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FIG. 1. Three-dimensional temperature spectral function, G(k) <k ''/*,
convected by a rapidly varying velocity field that satisfies Eq. (3). Here, k is
in units of Ko** k. ,, while G is in units of Ko *’* (ex*)"/*(¢,/¢€). The
open circles represent the numerical simulation data while the dashed line
represents the theoretical resuit.
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FIG. 2. Nonlocal transfer of scalar variance in the inertial-conductive sub-
range. This transfer may be successfully modeled by an eddy conductivity.

must be approximately u(p), where |p|~ |k|. Hence the
transfer of scalar variance is a result of a nonlocal interaction
between u(p) and 6(q), causing a nonlocal transfer of scalar
variance to @ (k). It is plausible to represent such a nonlocal
interaction and transfer by an eddy conductivity (as made
popular by Heisenberg®). Accordingly, we write the eddy
conductivity acting on wavenumbers less than k by®

2 (* E(k)
k)y==—] ——dk,
x: () 3 J;: n. (k)

where § E(k)dk is the root-mean-square turbulent velocity
of the fluid between wavenumber k and k + dk, and n,_
(k)" is the correlation time among the Fourier compo-
nents associated with the nonlinear transfer. Then the equa-
tion for the transfer of scalar variance in the inertial-conduc-
tive subrange can be written as®

(10)

k
e,,=2[)(+x,(k)]f k2G(k)dk . (11)
0
One can easily solve Eq. (11) for G(k), i.e.,
G(k) = e, ECk)k [y + x. (k)] n(k)~'. (12)

The Batchelor et al.* result can be obtained (as pointed out
in their paper) by assuming y> y, (k) and

n (k) =yk?. (13)
Using Egs. (12) and (13), we find
G(k) =le,xy *k *E(k), (14)

which is equivalent to Eq. (5) when one uses Eq. (3) for
E(k). Presumably, Eq. (14) is of more general validity, as
long as E(k) decreases much less rapidly then G(k) in the
conductive subrange. It should be noted that the choice of
the conductive time scale for n. (k) ~', Eq. (13) implies that
molecular conduction interferes destructively with the effec-
tiveness of the nonlinear cascade of scalar variance. If this
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was not the case, then a more reasonable choice for n, (k)
would be n_ (k) = y,(k)k?, which would result in G(k)
o k ~'3/3, as originally predicted by Ogura.” However, re-
cent numerical simulation results' are seen to be in agree-
ment with the ¥ ~'7/3 power law, implying the essential cor-
rectness of Eq. (13).

The power-law subrange found in the present simula-
tion may be derived in an analogous heuristic manner. The
concept of an eddy conductivity is also assumed to be valid in
this case. Now, however, the correlation time of the nonlin-
ear transfer is given by 7, i.e., in place of Eq. (13), we have

n.=7"", (15)
independent of k. Then, instead of Eq. (14), we may derive,
assuming y >y, (k),

G(k) =iregy %k ~?E(k),

—11/3

(16)

which yieldsa k spectrum when use is made of Eq. (3).
We have plotted the above theoretical result for G(k) as the
dashed line in Fig. 1. As can be seen, the agreement of Eq.
(16) with the simulation data is quite good.

Although the above theoretical argument has been pre-
sented in a heuristic manner, Eq. (16) may in fact become
exact as 7— 0. An eddy conductivity equivalent to Egs. (10)
and (15) has been previously derived by Kraichnan® in the
context of second-order perturbation theory, which the au-
thor claims is exact in the limit 7—0. More phenomenologi-
cal closure theories, such as the eddy damped quasinormal
Markovian (EDQNM) closure® can also be made to yield
the same result as Eq. (16), as long as the choice of eddy
damping rate in the scalar equation is made in analogy to Eq.
(15).
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