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By simple analytical and large-eddy simulations, the time evolution of the kinetic energy and 
scalar variance in decaying isotropic turbulence transporting passive scalars are determined. The 
evolution of a passive scalar field with and without a uniform mean gradient is considered. First, 
similarity states of the flow during the tinal period of decay are discussed. Exact analytical 
solutions may be obtained, and these depend only on the form of the energy and scalar-variance 
spectra at low wave numbers, and the molecular transport coefficients. The solutions for a 
passive scalar field with mean-scalar gradient are of special interest, and we find that the scalar 
variance may grow or decay asymptotically in the Iinal period, depending on the initial velocity 
distribution. Second, similarity states of the flow at high Reynolds and P&let numbers are 
considered. Here it is assumed that the solutions also depend on the low-wave-number spectral 
coefficients, but not on the molecular transport coefficients. This results in a nonlinear 
dependence of the kinetic energy and scalar variance on the spectral coefficients, in contrast to 
the final period results. The analytical results obtained may be exact when the similarity 
solutions depend only on spectral coefficients that are time invariant. The present analysis also 
leads directly to a similarity state for a passive scalar field with uniform mean scalar gradient. 
Last, large-eddy simulations of the flow field are performed to test the theoretical results. 
Asymptotic similarity states at large times in the simulations are obtained and found to be in 
good agreement with predictions of the analysis. Several dimensionless quantities are also 
determined, which compare favorably to earlier experimental results. An argument for the 
inertial subrange scaling of the scalar-flux spectrum is presented, which yields a spectrum 
proportional to the scalar gradient and decaying as k- 7’3. This result is partially supported by 
the small-scale statistics of the large-eddy simulations. 

I. INTRODUCTION 

The most basic result in a study of homogeneous tur- 
bulence with transported scalars is the evolution of the 
kinetic energy and scalar variance as a function of time. 
Here we consider passive scalars in decaying isotropic tur- 
bulence. The passive scalar fluctuations are introduced into 
the turbulence in one of two ways. First, random statisti- 
cally isotropic passive scalar fluctuations are introduced 
directly into the fluid at the initial instant of time. The 
introduced scalar fluctuations are then smoothed by turbu- 
lent mixing and molecular diffusion, and the scalar vari- 
ance decays with the mean-square velocity. Second, a weak 
uniform mean scalar gradient is imposed across a turbulent 
fluid. Statistically homogeneous (but not isotropic) passive 
scalar fluctuations are then created as a consequence of the 
turbulent motion along the mean gradient; the scalar vari- 
ance is initially zero and then increases. At later times 
turbulent mixing and molecular diffusion act to smooth the 
generated scalar fluctuations. 

Experimentally, decaying isotropic turbulence is ap- 
proximated by grid-generated turbulence and the decay of 
the turbulence with distance from the grid corresponds to 
the decay in time of an isotropic turbulence. Experiments 
on grid-generated turbulence with and without passive sca- 
lars are numerous, and interested readers can refer to Refs. 
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l-4 for additional details and references. At the moderate 
Reynolds numbers attainable in grid-turbulence facilities, 
it has been determined that the kinetic energy in isotropic 
turbulence decays asymptotically in time as a power law; 
Comte-Bellot and Corrsin’ find the decay to be approxi- 
mately t - 1.25 and Warhaft and Lumley3 find t-1.34. Isotro- 
pic passive scalar fluctuations, introduced into decaying 
grid-generated turbulence by weakly heating the grid or by 
placing a heated mesh of wires downstream from an un- 
heated grid, likewise decays in time, but the power-law 
exponent is less certain. Warhaft and Lumley3 determined 
that the experimental uncertainty is due to the measured 
exponent being a function of the ratio between the initial 
integral length scales of the velocity and scalar tluctua- 
tions. In a different but related study of decaying isotropic 
turbulence in the presence of a passive mean scalar gradi- 
ent, Sirivat and Warhaft4 determined that the passive sca- 
lar variance increases approximately linearly in time at 
large times. 

The idea of a power-law decay of the kinetic energy 
seems to be widely accepted (although the exact exponent 
is less certain), but the behavior of the passive scalar vari- 
ance is still controversial. After the experimental data of 
Warhaft and Lumley3 was published, theoretical argu- 
ments were proposed,5-7 suggesting that the scalar- 
variance decay laws measured in the experiments are of a 
transient nature, and that for sufficiently high Reynolds 
and P&let numbers and long times, a universal value for 
the power-law exponent of the decay would be found. 
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However, recent large-eddy simulations*‘9 have brought 
these latter theoretical results into question, although ad- 
ditional closure calculations” indicate that the numerical 
flow fields may not be evolved sufficiently. The time evo- 
lution of the scalar variance in the presence of a passive 
mean scalar gradient has received somewhat less theoreti- 
cal attention because of the analytical difficulties in treating 
an anisotropic scalar field, although here we mention the 
original theoretical work of Corrsin,” who noted the con- 
stancy of a uniform mean scalar gradient, and the more 
recent closure and numerical simulation studies by Sand- 
er-son et uZ.,12 whose results are in reasonable agreement 
with those of the Sirivat and Warhaft experiment. 

In this paper we study, in detail, by simple analytic 
means and by large-eddy numerical simulations, the evo- 
lution of the mean-square velocity and passive scalar vari- 
ance in decaying isotropic turbulence. The results we ob- 
tam for the decay of the mean-square velocity and the 
scalar variance without mean scalar gradient are known,13 
although our derivation differs somewhat from earlier 
work and more closely follows the spirit of a recent paper-l4 
on homogeneous buoyancy-generated turbulence. Our ar- 
gument is also easily extended to determine a new similar- 
ity state for the asymptotic evolution of the- scalar field 
with mean passive scalar gradient. 

We also present the results of new large-eddy simula- 
tions of 2563 resolution in which the numerical flow fields 
are evolved sufficiently long in time to determine approxi- 
mate asymptotic decay laws of both the kinetic energy and 
scalar variance with and without a mean scalar gradient. 
Large-eddy simulations appear to be uniquely suited for 
this problem: the large-scale statistics of interest are insen- 
sitive to the exact form of the subgrid scale model and 
alternative approaches, such as physical experiments and 
direct numerical simulations are too severely restricted in 
Reynolds and P&Aet number and total flow evolution time 
to precisely test the theoretical predictions. Closure calcu- 
lations can attain the high Reynolds numbers and long- 
time evolutions of interest here,r3 but contain unknown 
errors that can be quantified only by comparison to numer- 
ical simulation. 

II. THE GOVERNING EQUATIONS 

The relevant equations for isotropic turbulence con- 
vecting a passive scalar field with or without a mean scalar 
gradient are 

v*u=o, (1) 

ae 
z+u*v8= -pu3+ D V2f9, 

(2) 

(3) 

wherep and u are the fluid pressure and velocity, 8 is the 
passive scalar field, Y is the kinematic viscosity, and D is 
the molecular diffisivity of the scalar. The fluid is taken to 
be infinite in all directions and the averaged properties of 
the velocity and scalar field are assumed to be independent 

of position. In (3), fl is the constant mean scalar gradient 
taken without loss of generality to be in the x3 direction. 
The cases p=O and fi#O will be considered separately. 

Ill. THE FINAL PERIOD OF DECAY 

Exact analytical treatment of ( l)-( 3) is rendered dif- 
ficult because of the quadratic terms. Under conditions of 
a final period of decay” these terms may be neglected, and 
an analytical solution of (l)-( 3) may be determined. Al- 
though most of the final period results are well known,16 
we recall them here since the ideas that arise in a consid- 
eration of the final period will be relevant to our high 
Reynolds number analysis. 

During the final period, viscous and diffusive effects 
dissipate the high-wave-number components of the energy 
and scalar-variance spectra, and at late times the only rel- 
evant part of the spectra are their forms at small wave 
numbers. Defining the energy spectrum E(k,t) and the 
passive scalar-variance spectrum &(k,t) to be the spheri- 
cally integrated three-dimensional Fourier transform of the 
covariances f(Ui(x,f)Ui(x+r,t)) and i(O(x,t>B(x+r,t)), 
where ( * * * ) denotes an ensemble or volume average, ex- 
pansions of the spectra near k=O can be written as 

E(k,t)=2?rk2(Bo+B2k2+...), (4) 

Eo(k,t)=2&(Co+C2k2+~~~), (5) 
where Bo, B2 ,..., and Co,C2 ,..., are the Taylor series coeffi- 
cients of the expansion. When the Taylor series do not 
converge, (4) and (5) should be considered as lowest- 
order asymptotic expansions. Under the assumption that 
all the Taylor series coefficients of (4) converge at the 
initial instant, Batchelor and Proudman17 determined that 
B,=O, and that nonlinear interactions (which are impor- 
tant during the initial period) necessarily result in a time- 
dependent nonzero value of B2 and the divergence of the 
remaining Taylor series coefficients. Saffman18 later 
showed that if the turbulence was created by a nonsolenoi- 
da1 impulsive body force per unit mass applied to the fluid 
at the initial instant, then B2 and higher-order coefficients 
diverge, but B. is finite and nonzero and is invariant in 
time throughout the evolution of the flow. In the absence 
of a mean scalar gradient (p=O), Co is invariant during 
the entire evolution of the flow,19 and for special initial 
conditions such that Co=O, nonlinear interactions generate 
a finite, nonzero, time-dependent value for C,. 

For p#O, an exact relationship between Co and B. 
may be obtained directly from the governing equations. 
The equation for the evolution of the mean of the product 
of 13(x) and 6(x’) obtained from (3) is i; 

a(ee') 
-=v,- (ueekceey +aDvp(eet) 

at 

-g (u3e'+u;e), (6) 

where 8 and 8’ stand for 6(x) and 0(x’) and r=x’-x. 
Defining the spectrum of the vertical scalar flux F(k,t) to 
be the spherically integrated three-dimensional Fourier 
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transform of the covariance (u3(x,t)0(x+r,t)), an asymp- 
totic expansion of F(k,t) near k=O may be written as 

F(k,t)=4&(Ao+Aa@+*.*). (7) 
Taking the three-dimensional Fourier transform of (6) 
and setting k=O, one obtains 

under the reasonable assumption that the Fourier trans- 
form of the third-order two-point product of u and 8 is 
regular at k=O. Note that when p=O, (8) is simply a 
statement of the invariance of Co. An equation for A0 may 
be similarly derived from the three dimensional Fourier 
transform of the expression for the rate of change of 
(~~0’ + @)/2 evaluated at k=O: 

dAo P -y -- 
dt 3 Bo, (9) 

where use has been made of the isotropy of the velocity 
statistics. Equations (8) and (9) may be integrated di- 
rectly since B. is independent of time, and at large times 
one finds 

Co(t) =-$2Bot2. (10) 

This result is exact for all times if there are initially no 
scalar fluctuations. 

During the final period of decay, when interactions 
between different wave number components of the velocity 
and scalar fields are negligible, the leading coefficient B2 is 
independent of time, as is C2 when j?=O. For P#O, C2 
evolves asymptotically during the final period as 

C2=$32B2t2. (11) 

We digress for a moment to show how a general type 
of scalar and velocity distribution can be seen to corre- 
spond to nonzero values of Co and Bo. By definition, Co is 
equal to 

co=& I Wx,Wx+r,t>)dr. (12) 

Statistical homogeneity of the tlow implies the equivalence 
of spatial averages and ensemble mean values and the in- 
dependence of statistical averages on position, so that (12) 
can be rewritten as 

Co=& y”-“, + ( Jvm7t)dx)z=;~ 3 (e)$, 

(13) 
where (*a+) y now denotes an average over the finite vol- 
ume V. The 8 field denotes the fluctuation of the scalar 
quantity from its mean value, so that (0> is necessarily 
zero when the average is taken over an infinite volume. 
However, Co may have a nonzero limit if the average of 8 
over a finite volume decreases as l/ fi for large V. For 
instance, if the initial scalar distribution is such that 6(x,0) 
is independently assigned random values from a Gaussian 
distribution (with zero mean and variance 6;) in different 

regions of the fluid of volume u small compared to the total 
volume V, then Co is found to be independent of V and 
equal to 

The equation analogous to (13) for the low-wave-number 
energy spectral coefficient is 

Bo=;Fm; (h>$+ b2>$+ (u3gA (15) 

so that B. has a nonzero limit if the average over a finite 
volume V for, at least, a single component of u decreases as 
I/ fi for large V. We also note that in flows with active 
scalars, an initial nonzero value of Co directly results in an 
energy spectrum with nonzero value of B. as a direct con- 
sequence of the buoyancy force.14 

Returning again to the ha1 period of decay, the solu- 
tion of (l)-(3) without the quadratic terms most easily 
proceeds in Fourier space, and upon use of (4) and (5) 
and an assumption of large times in the flow evolution one 
obtains, for the decay of the mean-square velocity fluctu- 
ation, I 

(u2)=4~[JoBo(vt)-3’2+J2B2(vt)-5’2+...], (16) 

where 

Jo= 

J2= 

The t-5’2 decay law was determined by Batchelort5 and 
the t-3’2 decay law was determined by Saffman.18 

The results obtained for the decay of an isotropic pas- 
sive scalar are completely analogous. With p=O in (3), 
one Ends 

(82)=4r[JoCo(Dt)-3’2+J2C2(Dt)-5’2+...]. (17) 
The analysis for a passive scalar field with uniform 

mean scalar gradient is only slightly more complicated, 
and one finds at large times the leading-order terms 

(e2) = 

and 

&iY?~~ 
(e2) =3(1 -,)zp2B2v-5’zt- l/2 ) (19) 

when B. and B2 are the leading-order spectral coefficients, 
respectively, and where o=v/D is a Schmidt or Prandtl 
number, and 

IO(~)= eXp( -q2) -exp 3 ( )I 
2 

CT 
drl, 
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FIG. 1. The asymptotic value of the normalized correlation coefficient p 
between the scalar field and the vertical velocity fluctuation during the 
final period as a function of the Prandtl number (T. 

The flux (~$3) is nonzero for this anisotropic flow, and one 
finds asymptotically in the final period the corresponding 
solutions, 

b3@ = 
-47TuL~ 
3 ( 1 _ a) pBov-3’2t- 1’2 

and 

+43@ = 
- hTL2 
3 ( 1 -a) PB2v-5’2t-3’2, 

where 
2 

exp(-q2) -exp + ( )I dv, 

+12 exp(-v2)-exp - ( )I u dv 
The normalized correlation coefficient between the scalar 
field and the vertical velocity fluctuation, defined as 

- +43@ 
P=(u~)l/2(~2)‘/2’ (22) 

approaches a time-independent value during the final pe- 
riod equal to 

ILO1 IL21 
P(d=~; PW=~* (23) 

when B, and B, are the leading-order spectral coefficients, 
respectively. In Fig. 1, we plot the asymptotic value of p as 
a function of (T for the two possible final period flows. We 
note that for u= 1, the scalar and vertical velocity field 
become perfectly correlated with opposite sign. 

The final period decay of (82) when B2 is the leading- 
order low-wave-number coefficient was obtained previ- 
ously by Dunn and Reid,20 who, for historical reasons, did 
not consider the case of nonzero Bo. Comparing ( 18) and 
(19) to ( 17), one observes that (13~) decays less slowly by 
a factor of 3 when @ O  than when p=O. The extra factor 
of 3 arises directly from the increase in time of the low- 
wave-number coefficients of the scalar-variance spectrum 

[see ( 10) and ( 1 l)]. This factor of ? results in an increase 
in ( 02) during the iinal period when B, is the leading-order 
spectral coefficient and a decrease in (e2) when B2 is the 
leading-order coefficient. The behavior of a passive scalar 
in the final period of grid-generated turbulence with mean 
scalar gradient thus provides a sensitive experimental test 
between a k2 or k’ low-wave-number energy spectrum. 
Previous experimental measurements21’22 of (u2) during 
the final period of decay in grid-generated turbulence find 
a t-5’2 decay law, which implies B,=O, although such 
experimental measurements are made difficult by the small 
signal to noise ratio. 

The linal period of decay results can also be found 
directly by a dimensional analysis, and we now present this 
alternative approach, since it will be needed at high Rey- 
nolds and P&let numbers when exact analytical solutions 
cannot be determined. Linear equations govern the final 
period so that the dependence of (u2) on the low-wave- 
number coefficients of the energy spectrum is necessarily 
linear. Viscosity and time are the only other relevant di- 
mensional parameters, so that a dimensional analysis based 
on [Bo]=hm2 and [B2]=Z7tm2 results in 

( u2) a Bov-3’2t- 3’2, 5/2 (u2) a Bp-5’2t- , 

when B, and B2 are the leading-order energy spectrum 
coefficients, respectively. Similar reasoning with [Cc] = 02Z3 
and [CJ=e2Zs yields (for p=O> 

(e2) a C,,D-3’2t-3”, (e2> a C2D-5/2t-5/2, 

when Cc and C2 are the leading-order scalar-variance spec- 
trum coefficients, respectively. For p#O, Ce may be re- 
placed by ( 10) and C2 may be replaced by ( 1 1 ), yielding 
the results of ( 18) and (19). Determination of numerical 
factors, and factors of (T when PfO, apparently requires 
exact analytical solution of the equations. 

IV. EXACT HIGH REYNOLDS NUMBER SIMILARITY 
STATES 

At high Reynolds and P&let numbers, direct effects of 
viscosity and diffusivity occur at much larger wave number 
magnitudes than those scales that contain most of the en- 
ergy and scalar variance, so that the asymptotic forms of 
(u2) and (e2) can be expected to be independent of v and 
D. Viscous and diffusive smoothing of the energy and 
scalar-variance containing components of the spectra are 
now replaced by nonlinear transfer processes, so that one 
can still reasonably expect the asymptotic scaling of (u2) 
and (e2) to depend on the form of the spectra at low wave 
numbers. The low-wave-number coefficient B, is an invari- 
ant, even at high Reynolds numbers, and so is Ce if p=O. 
If p#O, Cc is asymptotically related to B, by ( 10). 

We can now determine the high Reynolds and PCclet 
number, long-time evolution of the energy, and scalar vari- 
ance when B, and Cc are nonzero. Assuming that (u2) 
depends on the invariant B. and t alone, one finds directly 
from a dimensional analysis, 

(u”) a &‘5t-6’5. (24) 
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The nonlinearity of the equations is reflected by the non- Reynolds number isotropic turbulence when B. is the 
linear dependence of (u2) on B,, in contrast to the results leading-order spectral coefficient. Sirivat and Warhaft4 es- 
for the final period. For an isotropic scalar field with p=O, timate the increase in (e2> to be linear in their experiment, 
the scalar variance is assumed to be a function of the in- although there is considerable scatter in their data, and 
variants Cc and B,,, and t alone, and dimensional analysis large-eddy simulations presented in Sec. VIII will be seen 
yields to support (26). 

3/5 6/5 (e2) ccCoB,- t- . (25) 

The linearity of the scalar equation in 8 is reflected in the 
linear dependence of (@) on Cc while the quadratic term 
results in a nonlinear dependence on B,,. When &Xl, Cc 
depends on B. asymptotically as (lo), and the scalar vari- 
ance then evolves as 

V. APPROXIMATE HIGH REYNOLDS NUMBER 
SIMILARITY STATES 

(82) a p” Bi’5t4’5, 

and the vertical scalar flux evolves as 
(26) 

(u@) apBi’5t-1’5. (27) 
Dimensional arguments can also determine the asymptotic 
behavior of the integral scales, and one finds 

L 249 Lea BA’5?/5. (28) 

Dimensional arguments are insufficient to determine di- 
mensionless quantities such as p, (22), when /3#0, and 
L,/L*. The Reynolds and P&let number of the 
turbulence+formed by the product of the root-mean- 
square velocity of the fluid and the integral length scale at 
time t, divided by the constant kinematic viscosity or dif- 
fusivity, respectively-decays as t-1’5, so that they do not 
remain large indefinitely. Nevertheless, we expect the 
above asymptotic state to hold over intermediate times, 
which are long with respect to the initial instant of turbu- 
lence generation, but short with respect to a signiticant 
Reynolds or P&Aet number decay. 

When B,-, or Cc are zero, there are no longer strictly 
invariant quantities on which to base asymptotic similarity 
states. The coefficients B2 and C2 are determined by non- 
linear transfer processes and exact analytical results as 
found above are unobtainable. Nevertheless, if we make the 
additional assumption that the time variation of B2 is small 
compared to the rate of the energy decay,’ and when fi=O 
the time variation of C2 is small compared to the rate of the 
scalar-variance decay, then approximate asymptotic simi- 
larity states can be based on B2 and C2. Closure 
calculations’3 support the assumption of a slow variation in 
B2 and C2 at high Reynolds and P&let numbers. For&O, 
the relevant assumption on C, is the approximate validity 
of (11). 

The tH615 decay law for (u2) was llrst obtained by 
SaffrnamB following earlier work of Kolmogorov,24 by as- 
suming a self-similar decay of the energy spectrum, and the 
tm615 decay law for ( e2) was obtained5 under an analogous 
assumption of self-similar decay of the scalar-variance 
spectrum.* (These arguments can also be found in Ref. 13.) 
The dimensional arguments presented here necessarily 
leads to a self-similar decay of the energy spectrum of the 
form 

By dimensional arguments, one then obtains, when 
B,=O, 

(u2) a B;‘7t- 1o’7. (33) 
When p=O, the scalar variance may follow the three ap- 
proximate decay laws, 

(e2) a C2B;‘r2, (34) 

(e2> a CoB~3’7t-6’7, (35) 

( e2) a C2B;s’7t- loi7, (36) 

depending on which of B. or Co are zero. When p#O, the 
scalar variance follows: 

(02) a B:/7tii7, 

and the vertical scalar flux follows: 
(37) 

E(k,t) = B;‘5t-4’58(L), i= B;‘5?/5k, (29) 

and a self-similar decay of the scalar-variance spectrum 
(for fl=O> of the form 

E&k,t) = B~2’5C,,~-4~5&(i), i= B;‘5tu5k, (30) 
and when fl#O, of the form 

EB( k,t) =~2B;‘5t6~5i?o<i), I;= B;‘5t2i5k. (31) 
In the flow with a mean passive scalar gradient, the spec- 
trum of the vertical scalar flux F(k,t) is nonzero and has 
the self-similar form 

F(k,t) =pB;‘5t6’5&,@, i= B;‘5?‘5k. (32) 
Thus we have found the interesting result that the sca- 

lar variance increases in time as t4j5 in a decaying high 

(2f3e) aj3@/7t-33/1. (38) 

The integral scales depend only on the low-wave-number 
coefficient of the energy spectrum, so that 

L IO Loa Bi’73’7. (39) 

The Reynolds and P&clet numbers decay as t-3/7. 
The decay law (33) was originally proposed by 

Kolmogorov24 under the assumption of the invariance of 
the Loisiantski integral,‘5 later shown to be equivalent to, 
the invariance of B2.26 Following the work of Kolmog- 
orov, Corrsin’9 assumed the invariance of B2 and Co and 
derived the t-6’7 decay law (35). The complete set of ap- 
proximate decay laws for (e2) with fl=O were written 
down by Larcheveque et aZ.,5 and are also extensively dis- 
cussed in Lesieur.13 When &=O, the scalar variance is 
again seen to increase in time. 
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Approximate self-similar forms for the spectra may be 
determined when B. or Co are zero, and we record them 
here for later use: 

E(k,t) = B;‘7t-8’71?(,b, I& B;17t2j7k, (40) 

and when /3=0, 

Ee(k,t) = B~4~5C2t-8~5&(~), I;=B;15f2/5k, (41) 

Eo(k,t) = B;2’7Cot-4/7&(i), ,$=B;n$/7k, (42) 

EB(k,t) = B;4’7C2t-g/7&I;), ,&B;17p7k. (43) 

For p#O, we have 

E&k,t) =p2B;‘7t6/7&e(i), l= B;‘7t2/7k, 

F(k,t) =pB;‘7t-1/7fi(i), i=B;‘7t2nk. 

(4) 

(45) 

Lesieur and Schertzer27 numerically solved the eddy- 
damped quasinormal Markovian (EDQNM) two-point 
closure equations for the energy decay in an isotropic tur- 
bulence to test the approximate validity. of the Kolmogorov 
decay law (33) and the spectral similarity form (40). They 
determined that within the EDQNM closure, the energy 
spectrum does indeed follow the similarity form given by 
(40) (neglecting viscous effects), but with B2 depending 
explicitly on time asymptotically as 

B,(t) a ty. (46) 

The corrected energy decay law was then determined to be 
(,3> a f- 10/7+2y/7, (47) 

where Lesieur and Schertzer computed y=O.l6’ using the 
EDQNM approximation, so that (u2) a t-‘.38 instead of 
t- 1.43. We note that the precise value of y is dependent on 
the arbitrary choice of the eddy-damping function in the 
EDQNM model, while the existence of the self-similar so- 
lution (40) only requires a choice of eddy-damping func- 
tion that introduces no additional dimensional parameters 
into the problem. 

Chollet” performed further EDQNM closure calcula- 
tions for the decay of an isotropic passive scalar-variance 
spectrum. He determined that when B2 and C2 are both the 
leading-order coefficients in the energy and scalar-variance 
spectral expansions, the scalar-variance spectrum decays 
self-similarly as (43), where now, in addition to (46), C2 
evolves asymptotically as 

C2( t) a P’. (48) 

The corrected scalar-variance decay law for this case is 
then 

(82)at- , IO/7 - 5 y/7 + y’ (49) 

where Chollet determined y’ =0.06, so that ( e2) a t- 1.48 
instead of t-1e43, Again, the precise value of y’ is dependent 
on the choice of eddy-damping functions. The decay law 
for the scalar variance when B2 and Co are the leading- 
order coefficients contains only the correction due to 7, and 
with y=O.19 one finds a t-0.93 decay law instead of t-0*86. 
We have independently confirmed the above-mentioned 

EDQNM closure computations, and have also determined 
a self-similar decay of the passive scalar-variance spectrum 
when B. and C2 are the leading-order spectral coefficients. 
With the same eddy-damping parametrization as used by 
Chollet, we find 

C2(t) a ty”, (50) 

where y” =O. 14, approximately a factor of 2 larger than 
the value of y’. This results in a t-‘.86 decay law for the 
scalar variance rather than tw2. 

A correction to the scalar-variance growth in the pres- 
ence of a mean scalar gradient when B2 is the leading-order 
spectral coefficient may be determined by assuming a self- 
similar form (neglecting viscous and diffusive effects) for 
the scalar-variance spectrum. If we assume that C2 now 
increases asymptotically as C2 a ?+Y+Y” as a result of the 
time dependence of B,, as represented by y and nonlinear 
transfer in the scalar equation as represented by y”,. then 
the scalar variance is now found to evolve asymptotically 
as (e”) a e’7+2y’7+v. An EDQNM computation of 7”’ 
has not yet been performed, but it is reasonable to expect 
its value to be of similar order of magnitude as y’ and y”. 

Finally, we mention a recent paper,29 which revisited 
the consequences of assuming a complete self-similar decay 
of the energy spectrum.r6 This is in contrast to the self- 
similar decay discussed above, which is only valid for 
scales in which the effects of viscosity may be neglected. 
Complete self-similar decay may take place as c-+ 00 7 only 
if an asymptotic expansion of the energy spectrum near 
k=O has the peculiar form 

E(k)=Ak+*.. . 

A dimensional analysis based on the invariant A and t 
yields the long-time behaviors, 

(u’) a A”2t- *, L, a A”4t”2, 

for the evolution of the mean-square velocity and the inte- 
gral scale of the turbulence. The corresponding Reynolds 
number of the flow is seen to be independent of time, as is 
necessary for complete self-similar decay. 

VI. LARGE-EDDY SIMULATIONS 

In this section, we present results of several large-eddy 
simulations designed to test the high Reynolds and P&let 
number asymptotic scalings of Sets. IV and V. We employ 
a pseudospectral code for turbulence in a periodic box3’ 
with a subgrid scale model to solve directly ( 1 )-( 3). Sim- 
ilar numerical simulations have already been successfully 
performed by Batchelor et al.14 for homogeneous 
buoyancy-generated turbulence, and these simulations fol- 
low the spirit of earlier simulations performed by Lesieur 
and Rogallo.8 For the subgrid scale model, we employ a 
spectral eddy viscosity and eddy diffusivity,31p32 parame- 
trized by 
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v,tklk,,t)= 0.145+5.01 exp 
1 ( -3*:km) 1 

(51) 

and 

~etklkm,t) Detklkm,t)= a, , 
where km is the maximum wave number magnitude of the 
simulation and oe is an eddy Schmidt (or Prandtl) num- 
ber, assumed here to be constant and equal to 0.6. Our 
results are insensitive to the precise values of the coeffi- 
cients used in (5 1) and (52). The value of the molecular 
Schmidt number of the fluid is arbitrary, since we do not 
resolve either viscous or diffusive scales. We take the initial 
energy spectrum of the isotropic turbulence to be 

E(k,O)=iASuik;‘(t)‘exp[ --is(ir], (53) 

where s is equal to 2 or 4, A, is given by 

(54) 

and kP is the wave number at which the initial energy 
spectrum is maximum. The leading-order coefficient of the 
expansion of E(k) near k=O when s=2 or 4 is 

~424 
B0== Y 

44 

P 
B”=f?rk’, 

P 
(55) 

respectively. In the 2563 numerical simulations presented 
here, we take the initial root-mean-square velocity u. equal 
to unity and kp= 100, where the minimum computational 
wave number is unity (corresponding to a periodic box of 
length 27r), and the maximum wave number is 120. The 
initial energy spectrum is set to zero for wave numbers 
greater than 118 to allow the subgrid scale eddy viscosity 
and eddy diffusivity to build up from zero values. We 
choose as large a value of kp as possible in an effort to 
attain an asymptotic similarity state before the integral 
scales of the flow become comparable to the periodicity 
length. A velocity field with the initial energy spectrum 
given by (53) is realized in the simulation by requiring the 
spectral energy content at each wave number to satisfy 
(53)) but randomly generating the phase and velocity com- 
ponent distributions.30 We also note that when s=2, con- 
sistency with ( 15) for a turbulent flow in a box of volume 
(2~)~ requires a uniform mean velocity of random direc- 
tion with magnitude equal to 6. However, a uniform 
velocity has no effect on the computation other than a 
uniform phase shift of all the Fourier components. 

In the simulations with no mean scalar gradient (fi 
=O), the passive scalar-variance spectrum is initialized 
analogously to (53). We present results of two simulations 
with p=O: the first with an initial energy spectrum with 
s=2 convecting two passive scalar fields with initial spec- 
tra having s’ = 2 and 4, and the second with s=4 and s’ =2 

and 4. Computations of these two velocity fields and four 
scalar fields are sufficient to test the previously discussed 
theoretical results. 

In the simulations with a mean scalar gradient (p#O>, 
the initial fluctuating passive scalar field is taken identi- 
cally equal to zero, and two simulations are presented with 
an initial energy spectrum with s=2 and s=4. The value of 
/3 is inconsequential provided it is nonzero, and we choose 
p=1. 

For later use, we define the large-eddy turnover time 
7(t) as 

7(t) =L,(t>/(U2)1’2, (56) 

where L,(t) is the velocity integral scale at time t, defined 
as 

QT J;k-lE(k,t)dk 
X (Uj(X,t)Ui(X+r,t>)=- 2 j-o”E(k,t)dk ’ 

(57) 
where r=(rsin II,cos 4, rsin $sin#, rcos 9). For later 
use, here we also define the scalar integral scale as 

LeW = 4T;02j fd4j-)W@jow dr 

T J;k-lEg(k,t)dk 
x (e(x,t)etx+r,t)) =- 2 j’o”E&k,t)dk ’ 

(58) 
In defining the velocity and scalar integral scales, we have 
averaged over all the directions of the vector r and summed 
over the components of the velocity field. In an isotropic 
turbulence, L, is two-thirds the usual longitudinal integral 
scale typically measured in experiments. We note that the 
definitions of the integral scales given by (57) and (58) are 
strictly valid only for an infmite fluid, and must be modi- 
fied for flow with periodic boundary conditions (see the 
Appendix). 

Use of (53) in (57) and the analogous equations for 
the scalar-variance spectrum and integral scale yields the 
following explicit values for the initial integral scales: 

J;; 2&r- 
L,tm =7, s,s’=2; LJO) =r ,, s,s’=4; 

P P 
(59) 

demonstrating directly that the initial integral scales of the 
flow are inversely proportional to kp. 

VII. RESULTS FOR DECAYING ISOTROPIC 
TURBULENCE WITHOUT MEAN SCALAR GRADIENT 

The evolution of the energy spectrum with s=2 and 
the associated passive scalar spectra with s’ =2 and 4 is 
presented in Fig. 2, and the corresponding spectra for s=4 
are presented in Fig; 3. The low-wave-number coefficients 
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FIG. 2. Time evolution of the spectra with leading-order coefficient B. 
and fl=O: (a) Energy spectrum; (b) scalar-variance spectrum with 
leading-order coetlicient CO; and (c) scalar-variance spectrum with 
leading-order coefficient C, . 

of the h? spectra are approximately invariant in time (ex- 
cept at the latest times when there is a poor statistical 
sample of the energetic scales), while the low-wave- 
number coefficients of the k4 spectra increase with time, a 
consequence of nonlinear transfer from small to large 
scales. 

The instantaneous power-law exponents (i.e., the log- 
arithmic time derivatives of the energy and scalar vari- 
ance) obtained directly from the large-eddy simulations for 
the decay of (u2) and (82) are plotted in Figs. 4 and 5 as 
a function of t/T(O). The solid lines in Figs. 4 and 5 rep- 
resent the results obtained from the large-eddy simulations 
and the dashed lines represent the exact and approximate 
analytical results of Sets. IV and V. The simulation curves 
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FIG. 3. Tie evolution of the spectra with leading-order coefficient Bz 
and p=O: (a) Energy spectrum; (b) scalar-variance spectrum with 
leading-order coefficient Co; and (c) scalar-variance spectrum with 
leading-order coefficient C, . 

are labeled by the leading-order nonzero low-wave-number 
coefficient of the spectra. 

Upon inspection of Figs. 4 and 5, the results of the 
large-eddy simulations are seen to be in reasonable agree- 
ment with the analytical results of Sets. IV and V. In 
particular, the analytical result -f for the decay exponent 
of (u2) and ( e2) when B. and Co are the leading-order 
spectral coefficients is expected to be exact, and we note 
only a few percent difference between the analytic result 
and those from the large-eddy simulations. 

One observes from Figs. 4 and 5 that the approach of 
the simulation results to a constant power-law exponent 
takes a very large number of initial large-eddy turnover 
times. This is reasonable, since the rate at which the flow 
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FIG. 4. Time evolution of the power-law exponent of (u’). The solid lines 
are the results of the large-eddy simulations and the dashed lines are the 
exact and approximate analytical results discussed in Sets. IV and V. 

approaches its asymptotic state should be governed by the 
total number of large-eddy turnover times undergone by 
the flow at time t, 

s 
f dt’ 

N(t)= - 0 df’) ’ (60) 

where T(t) is the large-eddy turnover time at time t, and 
not by the total number of initial large-eddy turnover 
times, where r(t) in (60) is replaced by r(O). In an as- 
ymptotic similarity state, dimensional arguments yield 
r(t) at, so that for large times in the numerical simula- 
tions, we have 

N(t) aNtI, (61) 
indicating a slow logarithmic growth in the number of 
large-eddy turnover times undergone by the flow at time t 
as a function of t. A plot of N(t) vs t/T(O) is presented in 
Fig. 6 and the slow growth of N(t) at large times is evi- 
dent. 

The slow approach to asymptotic behavior makes it 
diflicult to obtain high precision results from our 2563 
large-eddy simulations for the power-law exponents, since 
the integral scales of the flow grow to a size comparable to 
the periodicity length scale before exact attainment of the 
asymptotic results. This is particularly true for the scalar 

O-1 
4.4 4 I 

-2 Jo 

FIG. 5. Time evolution of the power-law exponent of (82). The solid lines 
are the results of the large-eddy simulations and the dashed lines are the 
exact and approximate analytical results discussed in Sets. IV and V. 
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FIG. 6. The number of large-eddy turnover t imes N(i) undergone by the 
flow at t ime r/r(O), where r(O) is the initial large-eddy turnover time. 

decay exponents, because, as we shall see, the integral scale 
of the scalar field is approximately twice as large as that for 
the velocity field in the asymptotic similarity state. Simu- 
lations performed with the peak of the initial spectra at 
substantially larger values of kP would improve the preci- 
sion of our computations, but must await a new generation 
of computers. However, lower resolution simulations 
( 1283) performed with k,=50 do yield similar results to 
those presented here, indicating that these results are not 
yet significantly modified by the modeling of an infinite 
fluid by a periodic flow field. 

Another potential source of error in the computed de- 
cay exponents plotted in Figs. 4 and 5 is the omission from 
our calculation of the energy and scalar variance contained 
in Fourier modes of wave number magnitude greater than 
km. Since we are performing large-eddy simulations, there 
is still substantial energy and scalar-variance in these sub- 
grid scales, which conceivably could modify the values of 
the exponents computed only from the resolved scales. It is 
indeed possible to include the contribution of the subgrid 
scales to the decay exponents by assuming a self-similar 
evolution for the energy and scalar-variance spectra. If, 
say, the energy spectrum E(k) has a self-similar form 
based on some invariant I, one can write, in general, 

E(k)=I~m-l&,$), /$=11’3f”2+‘k, (62) 

where n is the true decay exponent of the mean-square 
velocity. For example, when the energy spectrum has a ,@ 
form at small k, I is given by po15, and n = - f The 
resolved-scale mean-square velocity in the numerical sim- 
ulation can be written explicitly as 

(63) 

so that the time dependence of (n’), is seen to be due to 
both its explicit dependence on P and the dependence of I;m  
on f (km being fixed in the simulation). Defining n, to be 
the logarithmic derivative of (u’), (this is the quantity 
plotted in Fig. 4), it follows from (63) that the relation- 
ship between n, and n is given by 
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t(d/dt) Jfm&k)dk 
n,=n+ 

J$i&)dk * 

The time derivative of the integral with a time-dependent 
upper limit may be performed, and the resulting equation 
may be solved directly for n in terms of n, to obtain 

n,-2A 
n=m, (65) 

where A=k,,J3(km)/(u2), corrects the value of n due to 
the direct effect of the sharp cutoff of the spectrum at km. 
If we assume that E(k) follows the Kolmogorov spectrum 
at wave number km, 

E( km) a p3k$‘3, (66) 

where E is the flux of kinetic energy; then, since by dimen- 
sional analysis, 

g a g+ 1 l/5 , E a Bzj7t- 1”7, (67) 

for B. and B2, the leading spectral coefficients, respec- 
tively, A decays in time, respectively, as 

A a t-4/15, A a t-4/2l. (68) 

For sufficiently long evolution times, the resolved-scale de- 
cay exponent will then approach the true decay exponent. 
At the latest times in our large-eddy simulations, we find 
approximately a 3% difference between n, and n for the 
power-law exponent of the decaying mean-square velocity. 
For instance, when B. is the leading-order energy spectral 
coefficient, we tind the final value n = - 1.215 to be com- 
pared to nr= - 1.180. The expected theoretical value is 
n=-1.2. 

The assumption of a slow variation in B2 and C2 made 
in Sec. V appears to be quite good in all the computed 
cases, except perhaps when B. and C2 are the leading-order 
nonzero coefficients (see Fig. 5), where the error between 
the approximate analytical result and the resolved-scale 
LES result is more than 20%. Our EDQNM computation 
discussed in Sec. V did show that C2 had a stronger depen- 
dence on time when B. is the leading-order energy spec- 
trum coefficient than when B2 is, and this is apparently in 
qualitative agreement with the simulation results. A LES 
estimate for the magnitude of the time variation of B2 and 
C2 requires more precise results than that obtained here, 
although recent simulations of a large ensemble of turbu- 
lent flows indicate that B2(t) a ty, with ~~0.25.‘~ 

In Fig. 7, we present the power-law exponent of the 
velocity integral scale defined in ( 57) (also see the Appen- 
dix). The power-law exponent of the integral scale for the 
cases s=2 and s=4 is observed to be in good agreement 
with the analytical results. 

As a further test of the theoretical ideas of Sets. IV and 
V, we have resealed the energy and scalar-variance spectra 
for the last ten curves in each plot of Figs. 2 and 3 accord- 
ing to their exact and approximate asymptotic similarity 
forms, and displayed the results in Fig. 8. A good collapse 
is observed for all the spectra, except perhaps for the scalar 

FIG. 7. Time evolution of the power-law exponent of the velocity integral 
scale. The solid lines are the results of the large-eddy simulations and the 
dashed lines are the exact and approximate analytical results discussed in 
Sets. IV and V. 

spectrum with leading-order nonzero coefficients B. and 
C,. This is consistent with the results for the power-law 
exponent of (82) discussed above. 

A dimensionless statistic not obtainable by simple di- 
mensional arguments is the ratio of the velocity and scalar 
integral scales, and this statistic is plotted for the four pos- 
sible scalar evolutions in Fig. 9. When both the energy and 
scalar-variance spectra have the same power-law behavior 
near k=O (be it k2 or k4), this ratio takes on an approxi- 

FIG. 8. Resealing of the last ten spectra in each of Figs. 2 and 3 according 
to their exact and approximate asymptotic similarity forms given in Sets. 
IVandV. 
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FIG. 9. Time evolution of the ratio of the velocity to scalar integral scales 
for the four possible scalar evolutions. 

mate asymptotic value off In all cases, there is a tendency 
for the scalar integral scale to become larger than the ve- 
locity integral scale. We have earlier noted that this results 
in less reliable scalar statistics than velocity statistics be- 
cause of the influence of the periodic boundary conditions. 

Here. we note that previous large-eddy simulations of 
decaying isotropic passive scalarsgP9 found a faster decay of 
the scalar variance than predicted by the analytical results 
of Sets. IV and V. This faster decay is also evident in Fig. 
5 at small times, where it is observed to be a transient 
effect. We have further shown that the magnitude of the 
power-law exponent during this transient is directly related 
to the initial ratio between the velocity and scalar integral 
scales, with a larger magnitude when the initial scalar spec- 
trum is peaked at a wave number twice that of the initial 
energy spectrum, and a smaller magnitude when the initial 
scalar spectum is peaked at a wave number half that of the 
initial energy spectrum. This result is also in qualitative 
agreement with experiments3 and two-point closure 
studies.5,7 

In a two-point closure Test Field Model (TFM) 
study,7 it was proposed that the power-law exponents, and 
the integral scales are related by nB/nu= 1.63(L,/L8)“3, 
so that the ratio of the integral scales is determined by 

(69) 

where n, and na are the power-law exponents of the kinetic 
energy and scalar variance, respectively. Using the exact 
and approximate theoretical power-law exponents (see 
Sets. IV and V) in (69), we exhibit in Table I the TFM 
predicted values of L,/Le for the four possible asymptotic 

TABLE I. Two-point closure (TFM) predicted values of L,,/LB com- 
pared to the LES results. 

TFM LES 

BoSo 0.48 0.46 
BOG 1.03 (0.74) 0.74 
&So 0.22 0.30 
BPG 0.48 0.48 
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FIG. 10. Tie evolution of the spectra with leading-order coefficient B. 
and p=l: (a) Scalar-variance spectrum; (b) scalar-flux spectrum. 

similarity states, and compare them to the integral scale 
ratios obtained from our LES results (see Fig. 9). Because 
of the large discrepancy between the approximate theoret- 
ical decay exponent and the LES result when the leading- 
order spectral coefficients are B, and C2, we have added in 
parentheses the integral scale ratio predicted by (69 ) when 
the LES exponent Q,= - 1.6 is used, instead of the approx- 
imate theoretical result no= -2. Even though (69) was 
developed only for the particular case of B2 and C2 being 
the leading-order spectral coefficients, the agreement be- 
tween (69) and the four ratios obtained from the LES 
results is quite good. 

VIII. RESULTS FOR A PASSIVE SCALAR WITH MEAN 
SCALAR GRADIENT 

In Figs. 10 and 11 we plot the time evolution of the 
scalar-variance spectrum and the scalar-flux spectrum in 
the presence of a uniform passive mean-scalar gradient (p 
= 1) . Both spectra increase from initially zero values. 

In Fig. 12, we plot the power-law exponent of the re- 
solved scale (@) as a function of f/r(O). The solid lines 
are the simulation results and the dashed lines are the an- 
alytical results found in Sets. IV and V. The analytic result 
when B. is the leading-order nonzero coefficient is ex- 
pected to be exact, and here we find good agreement with 
the large-eddy simulation results. Reasonable agreement 
between the simulation and the approximate analytical re- 
sult is found for the case when B2 is the leading-order 
coefficient. In Fig. 13, we rescale the last ten scalar- 
variance and scalar-flux spectra shown in Figs. 10 and 11 
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FIG. 11. Time evolution of the spectra with leading-order coefficient B2 
and JY= 1: (a) Scalar-variance spectrum; (b) scalar-flux spectrum. 

according to their exact and approximate asymptotic sim- 
ilarity forms presented in (31) and (32) and (44) and 
(45). 4 good collapse is observed, providing further evi- 
dence for the existence of a similarity state. 

In Fig. 14, we plot the ratio of the velocity to scalar 
spherically averaged integral scale in this flow. Again, we 
note that the scalar integral scale is larger than the velocity 
integral scale in the final similarity state, although here the 
factor is closer to 3 than 1. The scalar integral scale also has 
a different value along different directions in this flow be- 
cause of the direction singled out by the mean scalar gra- 
dient. In Fig. 15, we plot the ratio of the scalar integral 
scale taken along the mean scalar gradient to that taken 
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FIG. 12. Time evolution of the power-law exponent of (@) for decaying 
isotropic turbulence with a passive mean scalar gradient. 

FIG. 14. Time evolution of the ratio of the velocity to scalar integral 
scales for the two possible scalar evolutions. 

-- 
i0’ Id 12 

L 

FIG. 13. Resealing of the last ten spectra in each of Figs. 10 and 11 
according to their exact and approximate asymptotic similarity forms 
given in Sets. IV and V. 

perpendicular to the gradient. Immediately after the initial 
generation of scalar fluctuations this ratio is exactly two, 
whereas at later times nonlinear effects decrease this ratio 
to about 1.4. 

Sirivat and Warhaft4 measured in their laboratory ex- 
periment the ratio between the scalar integral scale in the 
direction perpendicular to the gradient and the longitudi- 
nal velocity integral scale, and obtained a value of 0.9. 
From our simulation data, we find a value closer to 0.8 
when B2 is the leading-order spectral coefficient, and 
slightly lower when Be is the leading-order coefficient. 

B2 

Bo 
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FIG. 15. Time evolution of the ratio of the scalar integral scale taken FIG. 17. Time evolution of the ratio of the scalar-variance production to 
along the gradient L$ to that taken perpendicular to the gradient Li. dissipation (-), and the mechanical to scalar time scale (---). 

Another nondimensional quantity measurable in this 
flow is the normalized correlation coefficient between the 
scalar field and the vertical velocity fluctuation p, defined 
in (22). Immediately following the initial generation of 
scalar fluctuations p= 1, whereas for isotropic passive sca- 
lars p =0 for all times. In Fig. 16 we plot p as a function of 
f/r(O). As the flow evolves, nonlinear effects are seen to 
decorrelate the scalar and third component of the velocity 
field until p attains the approximate asymptotic value of 
0.7 when Be is the leading-order spectral coefficient, and 
slightly lower when B2 is the leading-order coefficient. This 
value is in good agreement with the experimental value of 
0.7 found earlier by Sirivat and Warhaft.4 

In addition, Sirivat and Warhaft obtained asymptotic 
experimental results for the ratio of the scalar-variance 
production to dissipation, -fi( u@)/E~, and the mechani- 
cal to scalar time-scale ratio ( (u2)/e)/( (82)/e,), where E 
and rre is the kinetic energy and one-half scalar-variance 
dissipation rates, respectively. The time evolution of these 
two ratios from the large-eddy simulation is displayed in 
Fig. 17. Sirivat and Warhaft obtain a value of 1.5 for the 
ratio of the scalar-variance production to dissipation and 
we find asymptotic values of approximately 1.6 and 1.4 
when Be and B2 are the leading-order spectral coefficients, 
respectively. For the mechanical to scalar time-scale ratio, 

1.0 

r- 

~- 

-=-1 

0.9 

4 0.8 

0.7 

0.6 +&-- . . -T 
400 600 800 low 1200 ,400 1600 ,804 2000 

t/4J) 

FIG. 16. Time evolution of the normalized correlation coefficient between 
the scalar field and the vertical velocity fluctuation. 
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Sirivat and Warhaft obtain the value 1.4, although there is 
considerable scatter iu their data, and we find values of 
1.15 and 1.25, respectively. We also note that the following 
theoretical relationship exists between these two ratios: 

p2yy));gz~ ( 1+fic!5$)-1, (70) 

where n, and ne are the time exponents of the kinetic en- 
ergy and scalar variance. 

IX. SMALL-SCALE SPECTRA 

All of the results presented above have been based on 
the large-scale structure of homogeneous turbulence and 
its consequences for the energy and scalar-variance con- 
taining range of eddies. Here we will examine some of the 
spectral results of our simulations with regard to the small- 
scale turbulence. 

A similarity state of the small-scale statistics of the 
velocity field, which depends only on the rate of energy 
dissipation E, and the kinematic viscosity Y was originally 
proposed by Kolmogorov.34 An analogous similarity state 
of the small-scale statistics of a passive scalar field, which 
also depends on the rate of (one-half) scalar-variance dis- 
sipation E@, and the molecular diffusivity D was proposed 
independently by Obukhov3’ and Corrsin.36 The existence 
of a similarity state for passive scalar transport in isotropic 
turbulence based on the low-wave-number spectral coeffi- 
cients implies that E and ee themselves are functions of 
these coefficients, and time t. We have so expressed E in 
(67) above, and ee may also be given by one of 

Eea COB0 
-3/5t-11/5 

, ~0 a C2Bc’tw3, 

~eaCoB2 
-3/7+3/1, 4a C2B;5+17/7 

, 
(71) 

in the absence of a mean scalar gradient. In the presence of 
a mean scalar gradient, ee is given by one of 

4 a fi2 Bg”t- 1’5, ~0 a $ Bi”t- 3’7. (72) 

Although E and ee depend on large-scale properties of 
the flow, as demonstrated explicitly by (67), (71), and 
(72), the essence of the Kolmogorov hypothesis, and its 
scalar field analog is that the statistics of scales lying in an 
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inertial-convective subrange may depend on the energy and 
scalar-variance containing scales of the flow only through E 
and ee. The celebrated k-5’3 power laws for the energy 
and scalar-variance spectra in the inertial-convective sub- 
range are then obtained by assuming molecular transport 
coefficients are irrelevant for these scales, so that by dimen- 
sional analysis, 

10’ I-- . . ..~ -- 

I la) 

E(k) a E2/3k-5/3, I&(k) a E~Z- 1’3k-5’3. (73) 

Here we present a simple argument for the form of the 
scalar-flux spectrum F(k) in the inertial-convective sub- 
range. A scaling for F(k) based solely on E and ee is un- 
satisfactory, since F(k) must vanish when the scalar sta- 
tistics are isotropic, as occurs when /3=0. From the 
governing equation (3) for the scalar field it is evident that 
8 depends linearly on the mean scalar gradient p when B is 
nonzero. Accordingly, we postulate the scaling 
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F(k) =Pf (e&L (74) 

for wave numbers lying in the inertial-convective subrange. 
Although it is true that ee itself is a quadratic function of 
p when fi is nonzero, we emphasize again that this is of no 
importance under a Kolmogorov-like hypothesis since ee 
itself is taken as the fundamental variable. Dimensional 
analysis applied to (74) yields, directly, 

= 100 & 
‘73 
m 
7, 
2 w 10-I - “x(0 -% 

P(k) apdnk- . l/3 (75) 

Hence the scalar-flux spectrum F(k) decreases faster than 
dm with increasing k, as is reasonable for a re- 

turn to isotropy of the small scales. Here we note that the 
same k-7’3 spectrum for F(k) has been previously pre- 
dicted for a stably stratified flo~.~~ An analogous deriva- 
tion of the buoyancy-flux spectrum for homogeneous buoy- 
ancy generated turbulence may be given,38 and in this flow 
the buoyancy-flux spectrum also follows a k-7/3 law, but 
with a different scaling coefficient seen to be directly pro- 
portional to the gravitational acceleration g rather than the 
scalar gradient /3. 
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The small-scale wave-number power-law exponents ev- 
ident in Figs. 2 and 3 and 10 and 11 show some anomolous 
behaviors with respect to the above scaling laws, (73) and 
(75). In particular, the passive scalar field without a mean- 
scalar gradient has a strong tendency toward a k-’ spec- 
trum, as previously noted,* whereas in the presence of a 
scalar gradient, the tendency of the scalar-variance spec- 
trum is toward an exponent of approximately k-‘.3. The 
scalar-flux spectrum is also apparently somewhat less steep 
than the k-7’3 spectrum predicted above. It is difficult for 
us to judge the influence of the subgrid scale model on 
these spectral exponents, but we note that an approximate 
k-’ scalar spectral slo e has also been observed in direct 
numerical simulations. !i 

Nevertheless, despite the deviations from the classical 

J?IG. 18. Compensated spectra with leading-order coefficient B. and 
fl= 1: (a) energy spectrum; (b) scalar-variance spectrum; and (c) scalar- 
flux spectrum. 

vs k for our large-eddy simulations of decaying isotropic 
turbulence in a passive scalar gradient with nonzero B. in 
Fig. 18. Although the k power-law exponents are not well 
followed, the spectra still collapse at the highest wave num- 
bers, lending at least partial support to the classical scal- 
ings. We do not know why the power-law exponents are 
not well reproduced, although closure studies” indicate 
that inertial-convective range asymptotics may be difficult 
to obtain from numerical simulations of limited wave num- 
ber span. 

power-law exponents above, we can still try to collapse our 
small-scale spectra according to the above scalings. In par- 
ticular, we plot the compensated spectra, 

X. CONCLUSIONS 

Simple analytical arguments with a minimum number 
of assumptions have been shown to yield the asymptotic 
long-time, high Reynolds and I-&let number decay laws of 
the kinetic energy and scalar variance in a decaying isotro- 
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pit turbulence with decaying isotropic passive scalars. 
These laws were previously derived by assuming a similar- 
ity state for the energy and scalar-variance spectra.13 We 
show that, in fact, the only necessary assumption is that 
the energy and scalar variance depend asymptotically on 
invariants of the velocity and scalar field, self-similarity of 
the spectra follows directly from this assumption. A 
plausability argument is offered for this asymptotic scaling 
by comparing flow at high Reynolds numbers to that dur- 
ing the final period, for which exact solutions may be ob- 
tained. 

We have also determined the high Reynolds and P6clet 
number similarity state for a passive scalar in the presence 
of a uniform mean scalar gradient. Here, the scaling is 
based only on an invariant of the velocity field. The scalar 
variance is found to increase in this similarity state, in 
agreement with earlier experimental results. We further 
determine that the scalar variance may increase or decrease 
in the final period, depending on the form of the low-wave- 
number energy spectrum. This exact analytical result may 
be of use in the determination of the form of the low-wave- 
number energy spectrum in grid-generated turbulence ex- 
periments. 

Decaying isotropic turbulence in the presence of a uni- 
form passive scalar gradient can be seen to be mathemati- 
cally analogous to buoyancy-generated turbulence studied 
earlier,i4 but with the roles played by the fluctuating ve- 
locity and scalar fields reversed, and the mean scalar gra- 
dient replacing the constant gravitational acceleration, In 
the buoyancy-generated flow, it is the low-wave-number 
coefficient of the scalar-variance spectrum that is invariant, 
and the similarity state that develops is based on this in- 
variant. 

Finally, large-eddy simulations of a high Reynolds and 
P&let number flow were performed to test the theoretical 
predictions. These large-eddy simulations are similar to 
earlier work,**9 but here the fields are evolved sufficiently 
far in time to observe the development of an asymptotic 
similarity state. Power-law exponents of the kinetic energy, 
scalar variance, and velocity integral scale were determined 
and shown to support the analytical results. Additional 
statistics-such as the ratio of the velocity to scalar inte- 
gral scale, the ratio of the scalar integral scale taken along 
the mean scalar gradient to that taken perpendicular to the 
gradient, the normalized correlation coefficient between 
the scalar field and the vertical velocity fluctuation, the 
ratio of the scalar-variance production to dissipation, and 
the ratio of the mechanical to scalar time scale-were com- 
puted and compared to existing experimental data and 
two-point closure studies. The analytical and numerical 
methods exploited in this work are currently being ex- 
tended to other homogeneous flows. 

ACKNOWLEDGMENTS 

I wish to thank Professor M. Lesieur for his hospitality 
and support of this work during my haif-year visit to his 
laboratory in Grenoble and Dr. R. Rogallo for providing 
me his numerical simulation code and for many interesting 
discussions. I am also grateful to Professor G. K. Batchelor 

for detailed discussions on this work, and to Dr. 0. Metais, 
Dr. J. Riley, and Dr. N. Mansour for their helpful com- 
ments. I also wish to express my appreciation to Professor 
P. Moin and Professor W. Reynolds for providing me the 
opportunity to pursue this research at CTR. The simula- 
tions in this paper were performed on the NASA-Ames 
Cray YMP, the NAS 128 node Intel hypercube, and the 
Caltech 5 12 node Intel machine, and I gratefully acknowl- 
edge the support of these institutions. The vectoral lan- 
guage compilers for the YMP and the Intel machines were 
written by Dr. A. Wray. This work was partially supported 
by a scholarship from the French government while I was 
a visitor at the Institut de Mecanique de Grenoble. 

APPENDIX: COMPUTATlON OF THE INTEGRAL 
SCALE IN A PERIODIC FLOW 

Equation (57) defines the spherically-averaged veloc- 
ity integral scale in an infinite fluid. Our simulation ap- 
proximates an infinite fluid by a velocity field that is peri- 
odic within a cube of length 2~. The analogous definition 
for the integral scale in the periodic flow is 

where we restrict the integration region to the volume of a 
sphere of radius P lying completely inside a single periodic 
box of length 27~. Such a spherically averaged integral scale 
will have less statistically error than an integral scale which 
is computed by only averaging over the three periodic di- 
rections of the flow, as is customary. 

To compute (Al ) , the velocity field may be expanded 
in a Fourier series as 

u(x,t) = 2 fi(k,t)exp(zk*x), 
k 

(A21 

where the components of k in the sum span the set of 
integers, Replacing the ensemble average in (Al ) by a 
volume average over the entire periodic box, and substitut- 
ing the Fourier expansion (A2) into (Al ), we obtain, after 
integrating over the box, 

L,(t) = 4Tflu2) F u”i( k,t)u^i( -k,t) I, v dr. 

(A3) 

The remaining integral over a sphere of radius rr may be 
most easily performed in spherical coordinates, and we 
obtain 

L,(t) = 
+i(O,O,O) I2 7r 

(u2) +20 

XC 
kfO 

li,(kJ)T-kt) (asi,Tk,), (A4) 

where k is the magnitude of the wave vector k, ( u2) may be 
computed from the Fourier coethcients as 
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(U2) = T u^i(k,t)u^i( -k,t) 

and 

Si(x) = s 
x sin(y) 

- dy. 
0 Y 

The Fourier coefficient G(O,O,O) is equal to the uniform 
velocity of the fluid in the periodic box; the maximum 
value possible for L, is z-, and this value is attained when 
iI(O,O,O> is the only nonzero Fourier coefficient. The first 
term on the right side of (A3) is identically zero when B2 
is the leading-order spectral coefficient, and, although non- 
zero when Be is the leading-order coefficient, may be safely 
neglected in our simulations. The quantity in large paren- 
theses in (A4) approaches unity for large values of n-k, as 
it must, in order to recover (57) for an infinite fluid. In our 
simulations where the integral scale is much smaller than 
rJ it may be safely set to unity when B2 is the leading-order 
spectral coefficient, but has a few percent effect on our 
results when B, is the leading-order coefficient. To imple- 
ment (A4) in the simulation, we have used a highly accu- 
rate rational approximation39 for Si(x) . 

Analogous results may be obtained for the scalar inte- 
gral scale LO(t). 
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