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THE ASYMPTOTIC STATE OF
ROTATING HOMOGENEOUS TURBULENCE
AT HIGH REYNOLDS NUMBERS

Kyle D. Squires; Jeffrey R. Chasnov}
Nagi N. Mansour!& Claude Cambon®
Center for Turbulence Research
Stanford University
Stanford, CA 94305, USA

ABSTRACT

The long-time, asymptotic state of rotating homo-
geneous turbulence at high Reynolds numbers has
been examined using large-eddy simulation of the
incompressible Navier-Stokes equations. The simu-
lations were carried out using 128 x 128 x 512 col-
location points in a computational domain that is
four times longer along the rotation axis than in the
other directions. Subgrid-scale motions in the sim-
ulations were parameterized using a spectral eddy
viscosity modified for system rotation. Simulation
results show that in the asymptotic state the tur-
bulence kinetic energy undergoes a power-law decay
with an exponent which is independent of rotation
rate, depending only on the low-wavenumber form
of the initial energy spectrum. Integral lengthscale
growth in the simulations is also characterized by
power-law growth; the correlation length of trans-
verse velocities exhibiting much more rapid growth
than observed in non-rotating turbulence.

INTRODUCTION AND BACKGROUND

Study of turbulent flows in rotating reference frames
has long been an area of considerable scientific and
engineering interest. Because of its importance, the
subject of turbulence in rotating reference frames has
motivated over the years a large number of theoret-
ical, experimental, and computational studies. The
bulk of these studies have served to demonstrate that
the effect of system rotation on turbulence is subtle
and remains exceedingly difficult to predict. For ex-
ample, it is well recognized that the standard models
for the dissipation rate of the turbulent kinetic en-
ergy do not accurately predict the effects of system
rotation. Yet, these models are widely used in en-
gineering predictive schemes for technologically im-
portant areas such as turbomachinery and rotorcraft
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aerodynamics.

A rotating flow of particular interest in many stud-
ies, including the present work, is examination of the
effect of steady system rotation on the evolution of
an initially isotropic turbulent flow. Aside from the
simplifications associated with analysis and compu-
tation of homogeneous flows, one of the principal
reasons for the interest in this problem is that solid-
body rotation of initially isotropic turbulence repre-
sents the most basic turbulent flow whose structure
is altered by system rotation but without the com-
plicating effects introduced by mean strains or flow
inhomogeneities.

For initially isotropic turbulence it is well known
that solid-body rotation inhibits the non-linear cas-
cade of energy from large to small scales. Conse-
quently, the turbulence dissipation rate is reduced
relative to non-rotating flows and there is an asso-
ciated decrease in the decay rate of turbulence ki-
netic energy [1], [2], [3], [4]. Some computations and
experiments have also noted an increase in the inte-
gral lengthscales along the rotation axis relative to
non-rotating turbulence (5], (6], (7], [8]. Increase in
the integral lengthscales has been thought by some
to be a prelude to a Taylor-Proudman reorganiza-
tion to two-dimensional turbulence. However, direct
numerical simulation (DNS) has demonstrated that,
for very rapid rates of rotation, initially isotropic tur-
bulence remains isotropic and three dimensional {3].
The results in Ref. [3] confirm the essential role of
nonlinear interactions for the transition towards two-
dimensional turbulence to occur; such a transition,
first studied using a spectral approach, can be started
only for intermediate Rossby numbers at sufficiently
large Reynolds numbers [6], [9].

While some of the effects summarized above are rea-
sonably well documented, e.g., reduction in the decay
rate of turbulence kinetic energy, other features of ro-
tating flows are less well resolved, e.g., the behavior
of the integral scales. There are also other funda-
mentally important questions associated with rotat-
ing turbulence which cannot be resolved from previ-
ous investigations. For example, while the decrease
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in the kinetic energy power-law exponent relative to
non-rotating turbulence is clear, the actual value is
unknown (nor even its dependence on the rotation
rate). It is not possible to determine, based upon
previous work, whether the effects of rotation on ini-
tially isotropic turbulence are transient in nature or
an inherent property of rotating flows. Such issues
can only be resolved through an examination of the
asymptotic state of rotating turbulence; i.e., its long-
time evolution. Recent large-eddy simulations of
(non-rotating) high Reynolds number isotropic tur-
bulence have demonstrated the universal nature of
the flow at long evolution times, including the exis-
tence of asymptotic similarity states [10]. It is exten-
sion of the ideas in Ref. [10] to rotating turbulence
which has been the primary interest of the present
work. Knowledge of the asymptotic state of rotating
homogeneous turbulence at high Reynolds numbers
is further motivated since it will also determine the
asymptotic state that engineering turbulence models
should yield.

Therefore, the objective of this work has been to ex-
amine the long-time evolution of rotating homoge-
neous turbulence. Of particular interest is the quan-
tification of the asymptotic state at high Reynolds
numbers. Important issues in this regard include de-
termining whether the turbulence kinetic energy and
integral lengthscales evolve as power laws and, if so,
the appropriate exponents for rotating flows. While
the power-law decay of the kinetic energy in non-
rotating isotropic turbulence is widely accepted, the
asymptotic decay of kinetic energy in rotating tur-
bulence is unknown. The behavior of the integral
lengthscales at long times in the evolution of rotat-
ing flows is also not clear. As discussed above, some
previous work suggests an increased growth rate of
the integral scales along the rotation axis relative to
non-rotating isotropic turbulence. As with the ki-
netic energy decay, however, it is not clear if this
is an effect inherent to rotating flows. Asymptotic
power-law behavior of the kinetic energy and inte-
gral scales imply the possible existence of similarity
states, analogous to those found in the non-rotating
flow [10]. Existence of asymptotic similarity states
would be of considerable interest since it would per-
mit prediction of the statistical evolution of rotating
flows at high Reynolds numbers without requiring
knowledge of the complex, and not well understood,
non-linear transfer processes.

Large-eddy simulation (LES) is ideally suited for ex-
amination of the long-time evolution of rotating ho-
mogeneous turbulence. Unlike direct numerical sim-
ulation, LES is not restricted to low Reynolds num-
bers. Aside from the Reynolds number restriction,
DNS is further limited to the initial evolution of ro-
tating flows. The need for high Reynolds numbers
and long time integrations, as can be obtained using
LES, is further motivated by previous studies [3], [6],
(9], [10). The principal drawback to the use of LES
is that it requires use of a model to parameterize
subgrid-scale stresses. However, in a decaying homo-
geneous turbulence, the dominant non-linear transfer
is from large to small scales so that large-scale statis-
tics may not be unduly influenced by the errors in a

small-scale subgrid model.

The governing equations and an overview of the sim-
ulations are provided in the following section. Re-
sults from the simulations are then discussed and a
summary of the work is contained in the final section.

SIMULATION OVERVIEW

In the present study the filtered Navier-Stokes equa-
tions for an incompressible fluid were solved in a ro-
tating reference frame:

V-ou=90 (1)

6—li+u~Vu = —Eprv-T
ot P

+ vVu-20xu. (2)

In (1) and (2), u is the (filtered) velocity vector, p
and p the fluid pressure and density, respectively, and
v the kinematic viscosity. The Coriolis term in (2)
accounts for reference frame rotation, the rotation
vector is denoted 2 and, for the purposes of discus-
sion, is considered to act along the z or “vertical”
axis, 2 = (0,0,). Filtering of the convective terms
yields the subgrid-scale stress 7 in (2) and this term
requires a model in order to represent the effect of
subgrid-scale motions on the resolved scales.

In this work the subgrid-scale stresses have been pa-
rameterized in the Fourier space using a spectral
eddy viscosity which accounts for system rotation.
The form of the eddy viscosity for non-rotating tur-
bulence is [11]:

—3.03k
Ve(k|km,t) = [0.145+5.0lexp (%)]

where v, is the eddy viscosity, k,, the max-
imum wavenumber magnitude of the simulation
and E(k,t) is the spherically integrated three-
dimensional Fourier transform of the co-variance
$(ui(x, )u;(x+1,t)} ({-) denotes a volume average).
In this work the eddy viscosity v, has been modified
to account for the weakening of the energy cascade
in a rotating turbulence:

va = vef(a). (4)

In (4), v is the eddy viscosity in rotating turbulence
with the function f(a) accounting for the reduction
by system rotation. Using an EDQNM model mod-
ified to take into account the effect of rotation on
the energy cascade [12], it is possible to calculate the
factor f(a) (see Ref. [13], later corrected by [14]):

_2[(1+a?)?? -0 —1]

fa) = . ®)

where
802

SE(km)k3, ©)

m

a =



As can be seen from (5) and (6), the eddy viscosity is
reduced for increasing Q. It is also worth noting that
(4)-(8) yields an expression similar in form to the
reduction in velocity derivative skewness by rotation
found in Ref. [3] using DNS of rotating isotropic tur-
bulence. Some comparisons between different sub-
grid models (including a dynamic model [4]) and the
one used in this study (4), (5), and (6) are reported
in [15].

The initial energy spectrum of the simulations was
of the form

swo= o (£) o0 |5 (2)]

where C; is given by

2 s3(s+D)
C”’nga-u-@_n ®

and k, is the wavenumber at which the initial en-
ergy spectrum is maximum. In this study simula-
tions with s = 2 and s = 4 were performed, corre-
sponding to the initial energy spectrum having a low
wavenumber form proportional to either k2 or k*.

Because the principal interest of this work was exam-
ination of the long-time evolution of rotating homo-
geneous turbulence, it was necessary to use as large a
value of k,, as possible in order that the flow evolution
not be adversely affected by the periodic boundary
conditions used in the simulations. Adverse affects
occur when the integral lengthscales of the flow be-
come comparable to the box size. Another important
consideration in these simulations was the aspect ra-
tio of the computational domain. Because of the
rapid growth of the integral scales along the direc-
tion of the rotation axis, it was necessary to use a
computational box which was longer along the rota-
tion axis than in the other directions. Preliminary
calculations of rotating turbulence on cubic domains
demonstrated a relatively rapid degradation in the
integral scales in the vertical direction because of pe-
riodic boundary conditions. Numerical experiments
showed that it was optimal to use a computational
box which was four times longer along the rotation
axis than in the directions orthogonal to the rota-
tion vector. Four times as many collocation points
were used in the vertical direction in order to avoid
any effects of grid anisotropy at the smallest resolved
scales.

Simulations were performed using resolutions of
128 x 128 x 512 collocation points. The governing
equations (1) and (2) were solved using a pseudo-
spectral method [16]. The length of the computa-
tional box along the vertical axis was /1287, cor-
responding to a minimum wavenumber of 0.397 and
maximum of 95. The lengths of the computational
volume in the horizontal plane (orthogonal to the
rotation axis) were /27, corresponding to a min-
imum wavenumber of 1.587 and maximum of 95.
The initial root-mean-square velocity fluctuation ug
in (7) was equal to 1/2 and the wavenumber at which
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the initial spectrum was initially maximum, k,, was
75. The initial energy spectrum was set to zero for
wavenumbers greater than 93 to allow the subgrid-
scale eddy viscosity to build up from zero values. For
each spectrum type, l.e., low wavenumber part pro-
portional to k® or k*, simulations were performed
with @ =0, 0.5, and 1.0.

Finally, it is also noted that statistics from simula-
tions performed on a domain having resolutions of
96 x 96 x 384 collocation points were in good agree-
ment with the results presented in this paper. The
principal advantage of the higher resolution simula-
tions is the increase in time the flow field maintains
its asymptotic state before the simulation results are
impacted by the finite computational domain.

RESULTS

The time development of the resolved-scale turbu-
lence kinetic energy, (u?), for both initial spectrum
types is shown in Figure 1 for each rotation rate. The
time axis in Figure 1 and following figures has been
made dimensionless using the eddy turnover time in
the initial field

7(0) = Lu(0)/{u?) (9)

where L,(t) is the velocity integral scale at time ¢
defined as

© fo kT Bk, t)dk
2 [ E(k t)dk

In isotropic turbulence, L, is two-thirds the usual
longitudinal integral scale measured in experiments.
Throughout this work, “k? spectrum” refers to an
initial energy spectrum E(k) with low wavenumber
part proportional to k? while “k* spectrum” refers to
an initial E(k) with low wavenumbers proportional
to k*. The characteristic effect of increasing Q on
the evolution of (u?) is evident in Figure 1, i.e., inhi-
bition of the energy cascade with increasing rotation
rate resulting in a less rapid decay of kinetic energy.

Lu(t) = (10)

The effect of rotation on the evolution of turbulence
kinetic energy is even more clearly seen in Figure 2.
Plotted in Figure 2 is the power-law exponent of (u?)
for each rotation rate and initial spectrum type. It is
evident from Figure 2 that, following an initial tran-
sient, the power-law exponent becomes independent
of time.

The values of the power-law exponents for the sim-
ulations at zero rotation rate are in good agree-
ment with the simulations of Ref. [10] despite the
anisotropic computational box. Comparison of the
power-law exponents for a given initial spectrum
type clearly show the reduction in the decay rate
of kinetic energy in rotating turbulence. It may be
observed that for both initial spectrum types, the
power-law exponent is reduced by approximately a
factor of two in rotating turbulence relative to its
value at Q = 0. Finally, in the asymptotic region the
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Figure 1: Time development of resolved-scale kinetic
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energy in rotating turbulence. ,Q=0;----,
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Figure 2: Time development of the power-law expo-
nent of (u?) in rotating turbulence. k2 spectrum:

oo =05 ---= | Q= 0.5 , Q2 =10. k*
spectrum: —-— , Q =0; —— , Q = 0.5; —— |
Q=1.0.

power-law exponent of (u?) is independent of the ro-
tation rate, depending only on the form of the initial
energy spectrum.

Chasnov [10] showed that, at high Reynolds num-
bers, the asymptotic decay of (u?) in isotropic tur-
bulence could be accurately described using simple
scaling arguments and dimensional analysis. The
analysis is predicated on the assumption that the
asymptotic scaling of (u?) is dependent on the form
of E(k) at low wavenumbers and independent of vis-
cosity. For high Reynolds number turbulence this
is reasonable since the direct effect of viscosity oc-
curs at much higher wavenumber magnitudes than
those scales which contain most of the energy. The
asymptotic forms found in {10] can be obtained by
first considering an asymptotic series expansion of
the energy spectrum near £ =0
E(k) = 27k? (B + Bok® +.. ) . (11)
The initial £(k) with low wavenumbers proportional
to k2 corresponds to a non-zero value of By while
the k* spectrum is obtained for By = 0 and non-
zero By. Saffman [17] considered a homogeneous
turbulence field generated by a distribution of ran-
dom impulsive forces and showed that as a conse-
quence of momentum conservation By is invariant in
time. Batchelor & Proudman [18] considered an ini-
tial flow field in which all of the velocity cumulants of
the turbulence are exponentially small at large sep-
arations distances. For this flow Bs (the Loitsianski
integral) is non-zero but not time invariant. Closure
calculations [19] and large-eddy simulations [20] have
shown that the time dependence of By is weak rel-
ative to the overall turbulence decay, however, and
is therefore assumed constant for the sake of obtain-
ing an approximate asymptotic scaling law for (u?‘
Thus, assuming the appropriate dependence of (u?)
on either By or Bj, dimensional analysis yields the
asymptotic scaling of (u?) for non-rotating turbu-
lence [10]
(12)

(u?) « Bg/5t_6/5 (k? spectrum)

and

(u2) o« BH"¢=19/7 (k% spectrum). (13)
as previously obtained by Saffman [21] and Kol-

mogorov [22].

The results above may be generalized for rotating ho-
mogeneous turbulence by considering the additional
dimensionless group for this flow, Qt. For the rotat-
ing flow a dimensional analysis yields the following
possible asymptotic decay:

(u?) o BY*1=%/3 (Qt)*

(k? spectrum)  (14)

(u?) Bgﬁt'm/7 (Qt)x, (k* spectrum). (15)

For rotating turbulence at high Reynolds numbers
and low Rossby numbers it is possible to offer plau-
sibility arguments to determine the unknown expo-
nents z and z’. In this regime rotating turbulence
is characterized by two disparate timescales, a long



timescale representative of the turbulence evolution
and a short timescale associated with the rotation
frequency, Q. If it is assumed that the correlation
time of the non-linear triadic interactions is directly
proportional to the short timescale 1/Q, then the
transport equation of (u?) may be written as

d{u?)

dt = %f(T, Bo or Bz) (16)

for the two initial spectrum types. The long
timescale of the non-linear interactions in (16) is
denoted T and may be constructed on dimensional
grounds from (u?) and By or B;. Dimensional anal-
ysis may be used to determine the unknown function

f, yielding
dfu?) 1

1 p-2/3, 2\8/3
da QBO {u®) (17

for non-zero By and

(18)

d(u?) _ 1 os, av19/5
dt QBZ (11 )

for zero By. Integrating (17) and (18) results in the
predicted asymptotic decay for {u?) in rotating tur-
bulence:

(u?) « B§/593/5t'3/5 (k? spectrum)  (19)

and

(u?) B§/7Q5/7t“5/7 (k* spectrum). (20)
The scaling laws (19) and (20) predict that in rotat-
ing turbulence the kinetic energy decay exponent is
reduced by a factor of two relative to its value in the
non-rotating flow (c¢f. 14 and 15). More importantly,
the exponents predicted from (19) and (20) and the
actual values obtained in the simulations (Figure 2)
are in very good agreement. The actual value of the
power-law exponent for cases with non-zero By is
around -0.65, compared to a predicted value of -0.6,
while the exponent in the asymptotic region for sim-
ulations with zero By is approximately -0.78, slightly
smaller than the predicted value of -0.71. Thus, ne-
glecting the weak time dependence of the leading or-
der term Bs, necessary in order to obtain (20), ap-
pears Jjustified.

While the asymptotic scaling laws (19) and (20) yield
exponents for the dependence of (u?) on time which
are in good agreement with the large-eddy simula-
tions, it is not possible to verify the power-law de-
pendence of the kinetic energy on £ using the results
in Figure 2. To test the scaling of (u?) on , the
quantities
(u2)

PR St S, 21
B2PQ315¢-3/5 =)

and
(u?)

—— 22
PR 2

are plotted in Figure 3. Note that the value of B,
used in (22) is from the initial condition. Provided
that the dependence on § shown in (19) and (20) is
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Equations (21) and (22)

0 . T . :
0 10 20 30 40 50
Qt
Figure 3: Check of asymptotic scaling laws (19) and
(20). k? spectrum: ——— , @ = 0.5; -~ ,Q=10.
k% spectrum: —— , @ =0.5; ---- , Q= 1.0.

correct, (21) and (22) in Figure 3 should asymptote
to the same dimensionless constant at long times (for
a given initial spectrum type). The results in Fig-
ure 3 show that the collapse of the kinetic energy
obtained using the asymptotic scaling laws is excel-
lent for the k2 spectrum. For the k* spectrum the
collapse is reasonable considering the assumption of
a time-invariant By. It may be concluded that Fig-
ure 3 validates the scalings on rotation rate as ob-
tained from the analysis leading to (19) and (20).

In rotating turbulence it is possible that the velocity
fluctuations along the rotation axis may possess a dif-
ferent power-law decay than those in the plane nor-
mal to the rotation vector (i.e., the horizontal plane).
It is not clear based upon previous numerical and ex-
perimental results as to the behavior of the vertical
fluctuations (w?) relative to the velocity scale in the
horizontal plane, g(uQ) + (v?))/2. Shown in Figure 4
is the ratio of ({u?) + (v?))/2 to the vertical fluctu-
ations, (w?). With the exception of the highest ro-
tation rate in the simulations with non-zero By, the
results in Figure 4 show that in the asymptotic re-
gion the ratio of mean-square velocity fluctuations is
approximately 0.8. This result is further significant
since it also implies the existence in the asymptotic
region of a single velocity scale in rotating turbu-
lence.

For the rotating flow, by axisymmetry, there are pos-
sibly five independent lengthscales. These integral
scales are obtained from integration of the two-point
correlation function

Laap = ﬁ / (o (X)ua(x + ra))drg . (23)

The lengthscale Lgq.s measures the correlation be-
tween the a velocity components with separation in
the 8 direction. In the horizontal plane the indepen-
dent lengthscales may be expressed using (23) as

Ly = (L1 + La22)/2
Lhe = (Li1,2+ L221)/2
Lrs = (Lasq+ Las2)/2. (24)
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Figure 4: Time development of mean-square velocity
ratio in rotating turbulence. k? spectrum: o----o |

Q =0, ~—--, Q@ = 0.5; - , = 1.0. k*
spectrum: —-—  Q = 0; —— | Q = 0.5; —— |
Q=1.0.

The integral scale Ly; measures the horizontal cor-
relation of longitudinal velocities, Lo the horizontal
correlation of lateral velocities, and L3 the correla-
tion in the horizontal plane of vertical velocity fluctu-
ations. For the vertical direction (along the rotation
axis) the two independent integral scales are

(L11,3+ La2,3)/2
L33 3 (25)

Ly =
Ly, =

where L, measures the vertical correlation of lateral
velocities and L,o the vertical correlation of vertical
velocities.

For the non-rotating flow dimensional analysis yields
directly the asymptotic scalings of the integral scales
for high Reynolds number isotropic turbulence [10]

L, x B(l,/stz/5 (k? spectrum) (26)

Ly o« BY 7 (k% spectrum).  (27)

For the rotating flow the appropriate dependence
of the integral scales on the invariant By and ap-
proximate invariant By can be approached in the
same manner as for the kinetic energy, i.e., through
introduction of the additional dimensionless group
Qt with appropriate exponents. For example, for
the vertical lengthscales L,» the development in the
asymptotic state may be expressed as

Lys o BY*t23(Qt)¥2 (k? spectrum)  (28)

and

Ly x B;/7t2/7(Qt)yl? (k* spectrum).  (29)
Using (24) and (25) one could write similar expres-
sions for the other lengthscales; each with a possi-
bly distinct exponent as in (28) and (29). Unlike
the kinetic energy, however, we do not yet have an
argument for predicting a priori the appropriate ex-
ponents for the integral lengthscale growth in the
rotating flow. Rather, the results of the large-eddy
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Figure 5: Time development of integral lengthscales
in rotating turbulence, @ = 1. Asymptotic growth
rate in non-rotating turbulence also shown in lower
portion of Figure. y Lpi; ====, Lpo; === ,
Lha; —-—, Lo1; —-— , Lys. (a) k? spectrum; (8)
k* spectrum.




simulations are used to supply the unknown expo-
nents.

Shown in Figure 5 is the time development of the
integral scales for both initial spectrum types. The
curves shown in Figure 5 are for the highest rotation
rate used with each initial condition. Also shown
for reference in both Figures is the slope correspond-
ing to the asymptotic growth rate in non-rotating
isotropic turbulence. It is clear from Figure 5 that
the growth of L,; is much more rapid than the
asymptotic growth rate in non-rotating turbulence
as well as the other integral scales in the rotating
flow. With the exception of L1, the growth rate of
the integral scales in the rotating flow are slightly
suppressed relative to the non-rotating case. More
importantly, the simulation results demonstrate that
in the asymptotic region the integral lengthscales do
in fact exhibit power-law growth and, with the ex-
ception of L,i, the power-law exponents of the in-
tegral scales are identical. Thus, in the horizontal
plane there is a single independent lengthscale, Lj,
while there exist two independent integral scales in
the vertical, L,; and L,». The asymptotic scaling
laws obtained from the simulations for the k* spec-
trum are approximately

L, o« BYsq-3/2041/4
Ly o« B35

Ly x By*Q3/204/4 (30)
while for the k* spectrum the long-time evolution
of the lengthscales determined from the large-eddy
simulations are approximately

L o B;/'Iﬂ—a/astl/s
Lyi 33/7932/3%6/5

Ly o BYTQ3/3541/5 (31)
Perhaps the most striking feature of the integral scale
behavior is that even in the asymptotic region the
growth of L,; is much more rapid than the other
lengthscales. Surprisingly, the vertical correlation of
vertical velocities, L3, is relatively unaffected by ro-
tation which would seem to indicate a “de-coupling”
between the two vertical lengthscales. However, this
de-coupling occurs while there is close coupling be-
tween L and L, as well as between the veloc-
ity components in the vertical and horizontal planes
(Figure 4).

The relations (30) and (31) yield the appropriate de-
pendence of the integral lengthscales on time but,
similar to the kinetic energy considered earlier, it is
not possible to verify the dependence on rotation rate
from the results in Figure 5. Shown in Figure 6 are
the ratio of the integral lengthscales to the appropri-
ate combination of By, B2, , and ¢, i.e.,

Ln, Ly | (33/59—3/2%1/4)

Lo / (33/593/5t1) (32)

Equation (32)
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3
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Figure 6: Check of asymptotic scaling laws (30) and
(31). @=10.5: y Ly oo, Lyp;====, Lya.
Q=10 —-—, Lp; ===, Ly1; ——, Lya2. (a) k?
spectrum; (b) k* spectrum.

for the k? spectrum (Figure 6a) and
Lh,; va / (B;/7Q_3/35t1/5>

Lot / (B;/"'QSZ/SStG/S) (33)
for the k* spectrum (Figure 6b). The collapse of the
lengthscales for the different rotation rates in Fig-
ure 6 demonstrates that the scalings (30) and (31)
possess the proper dependence on the rotation rate.
The collapse of the integral scales L, is especially
striking given the relatively strong dependence on
Q. Figure 6 also demonstrates an excellent collapse
of the horizontal integral scale L. The collapse of
Ly using the (30) and (31) for different 2 possesses
the greatest amount of statistical variation, presum-
ably due to the fewer number of samples available to
compute this lengthscale.

SUMMARY

Large-eddy simulations of high Reynolds number
rotating homogeneous turbulence have been per-
formed. The calculations were evolved sufficiently
far in time to observe the development of the asymp-
totic state for initial conditions with low wavenum-
bers proportional to both k% and k*. The simula-
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tions demonstrate the characteristic effect of solid
body rotation on initially isotropic turbulence, i.e.,
inhibition of non-linear energy transfer from large to
small scales and less rapid decay of kinetic energy.
In the asymptotic region the decay exponent of the
turbulence kinetic energy is also observed to be in-
dependent of time as well as rotation rate.

Simple scaling arguments and dimensional analysis
were used to obtain predictions of the asymptotic
behavior of the kinetic energy. Assuming that the
non-linear triadic interactions have a correlation time
directly proportional to the rotation time scale allows
one to predict a priori the asymptotic scaling laws
for the turbulence kinetic energy. The predicted val-
ues were found to be in very good agreement with the
simulation results, supporting the analytical results.

In the rotating flow simulation results indicate that
in the asymptotic region the integral lengthscales un-
dergo a power-law growth. With the exception of
the correlation length along the rotation axis of hor-
izontal velocities, integral lengthscale growth in the
rotating flows is found to be slightly suppressed rel-
ative to non-rotating isotropic turbulence. In the
asymptotic region there is a single horizontal length-
scale but two independent vertical lengthscales. The
de-coupling between the vertical lengthscales was un-
expected, especially considering the strong coupling
between the vertical and horizontal velocity fluctua-
tions.

More work is required to better understand the
asymptotic state of rotating turbulent flows at high
Reynolds numbers. Application of the scaling laws
to the appropriately defined energy spectra is needed
to further validate the similarity states indicated by
the power-law evolution in the kinetic energy and
integral lengthscales found in this work. Use of the
database accumulated during the course of this work
will also be invaluable for future studies directed to-
wards extension of engineering turbulence models to
high Reynolds number rotating flows.
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