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Some similarity states of stably-
stratified homogeneous turbulence

By J. R. Chasnov

The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong

The decay of statistically homogeneous velocity and density fluctuations in a stably-
stratified fluid is considered. Over decay times long compared to the turbulence timescale
but short compared to the period of internal gravity waves, three distinct high Reynolds
number similarity states may develop. These similarity states are a consequence of the
invariance of the low wavenumber coefficients of the three-dimensional kinetic or potential
energy spectrum; and their preferential development depends on the relative magnitudes
of the initial kinetic and potential energy per unit mass of the fluid. When the turbulence
has decayed over a time comparable to the period of the gravity waves, the three similarity
states mentioned above are disrupted. Evidence will be presented of a new similarity state
which then develops asymptotically. In this similarity state, the time decay exponent of
the total energy per unit mass of the turbulence is reduced by a factor of two from its value
for decaying isotropic turbulence, and the associated vertical integral scale approaches a
constant independent of time.

1. Introduction

The statistics of homogeneous turbulence in fluids of infinite extent typically depend
on time throughout their entire evolution. In homogeneous turbulence at high Reynolds
numbers, similarity states of the flow field may replace the statistically stationary states
that typically occur in bounded flows. In these similarity states the turbulence spectrum
decays without change of shape so that in an appropriately scaled coordinate system
the spectrum is independent of time. Some of the homogeneous flow fields for which
similarity states have been observed by large-eddy simulation include decaying isotropic
turbulence, passive scalars transported by isotropic turbulence with or without a uniform
mean gradient, and buoyancy-generated turbulence. The existence of a similarity state for
decaying homogeneous isotropic turbulence was postulated early on (Kolmogorov, 1941) as
was that for a transported homogeneous isotropic passive scalar field (Corrsin, 1951). More
recent work (Batchelor, Canuto & Chasnov, 1992; Chasnov, 1994) indicates that hitherto
unsuspected similarity states of homogeneous turbulence may exist for non-isotropic flows
which contain more complicating physics, such as flows with buoyancy forces and uniform
passive scalar gradients.

It 1s a natural extension of our earlier work in buoyancy-generated turbulence and tur-
bulence with uniform passive scalar gradients to consider whether high Reynolds number
similarity states exist for homogeneous turbulence in a stably-stratified fluid with both
buoyancy effects and active scalar (density) gradients. In this paper, we first show how
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some of the flows previously considered can occur in a stably-stratified fluid at large Froude
numbers. We will also present some analytical arguments and numerical results which pro-
vide evidence for a new similarity state which develops at small Froude numbers.

2. The governing equations

Choosing our co-ordinate system such that the z-axis is pointed vertically upwards, we
assume a stable density distribution p = pg — 3z + p’, where pg is a constant, uniform
reference density, 3 > 0 is a constant, uniform density gradient along z, and p’ is the
density deviation from the horizontal average. The kinematic viscosity v and molecular
diffusivity D of the fluid are assumed constant and uniform. After application of the well-
known Boussinesq approximation, the governing equations for the fluid velocity u with
zero mean and the density fluctuation p’ are

V-u=0, (2.1)
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where g = —jg with ¢ > 0, j is the vertical (upwards) unit vector, and p is the fluid
pressure.
Our earlier work considered various limiting forms of (2.1)-(2.3) for which one of g or 3
was taken equal to zero. By a suitable non-dimensionalization of Eqs. (2.1) - (2.3), we will
show that under certain conditions the terms containing g and 3 may also be negligible in

a stably-stratified fluid. It is convenient to define a normalized density fluctuation € such
that it has units of velocity, 6 = 1/g/poBp’. Use of 8 instead of p in (2.2) - (2.3) modifies
the terms proportional to ¢ and (3 into terms proportional to N, where N = /¢/3/po is the
Brunt-Vaisala frequency associated with the internal waves of the stably stratified flow.
The mean-square statistics %<u2> and %<92> are the kinetic and potential energy of the
fluid per unit mass, respectively. The equations of motion conserve the total energy per
unit mass in the absence of viscous and diffusive dissipation.

Now, defining dimensionless variables as

T x_T y-Y p_tme) o 6 (2.4)
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where [y, ug and 6y are as yet unspecified length, velocity, and normalized density scales,
the equations of motion (2.1)-(2.3) become

V.U=0, (2.5)
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The dimensionless groups Fy and Ry can be regarded as initial Froude and Reynolds
numbers of the flow, respectively, although their precise definition is yet dependent on our

specification of Iy, ug, and p; o is the Schmidt (or Prandtl) number of the fluid.

Ry =

3. Three large Froude number flows

We show here that particular initial fluctuating velocity and density fields in a stably-
stratified fluid can result in the establishment of distinctly different flows when the initial
Froude number of the turbulence is large. The important point here is that with well-
chosen initial flow fields either or both of the source/sink terms, (those terms proportional
to the inverse Froude number in (2.6) and (2.7)), may be negligible over long times.

Flow 1: Isotropic turbulence transporting an isotropic passive scalar

We consider an initial generation of isotropic velocity and density fields of comparable
integral scales and kinetic and potential energies. We identify the unspecified length scale
lp with the initial integral scale of the flow, and ug and 6y with the initial root-mean-square
values of the velocity and normalized density fluctuations, respectively. If Fy > 1, both
of the terms multiplied by 1/Fp in (2.6) and (2.7) are small initially. Over times in which
these terms remain small, the velocity fluctuations decouple from the density field and the
turbulence decays isotropically while transporting an isotropic passive scalar field.

Flow 2: Isotropic turbulence in a passive scalar gradient

Here, we envision the generation of an initial isotropic velocity field with given kinetic
energy and integral length scale, and no initial density fluctuations. We identify [y and wug
as in flow 1. However, the initial conditions introduce no intrinsic density scale. So that ©
attains a value close to unity, we set the dimensionless group multiplying Us in (2.7) equal
to one, yielding 6y = Nly. The dimensionless group multiplying © in (2.6) then becomes
1/FZ, so that if Fy > 1, this term is small initially. As long as it remains small, the
generated density fluctuations are passive and the resulting equations govern the evolution
of decaying isotropic turbulence in the presence of a mean passive scalar gradient.

Flow 3: Buoyancy-generated turbulence

The fluid is assumed to be initially at rest with some given random density distribution.
We identify [y and 6y with the initial integral scale and root-mean-square value of the 6-
field, respectively. So that U attains a value of order unity, we set the dimensionless group
multiplying © in equation (2.6) equal to one, yielding ug = /Nlp#y. The dimensionless
group multiplying Us in (2.7) is now equal to 1/FZ, so that if Fy > 1 this term is small at
the initial instant. Over times for which this term remains small, the resulting equations
govern the evolution of buoyancy-generated turbulence.

How long do the above flows evolve before the effects of the neglected terms become
important? Consider the evolution equations (2.6) and (2.7) after the flow fields have
evolved over a time t. The relevant length, velocity, and normalized density scale of the
flow are now those which characterize the fields at time ¢. The source/sink terms are of the
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same order when the velocity and normalized density scales are of comparable magnitude.
This condition is satisfied by flow 1 from the initial instant. However, the density scale 6’
and velocity scale u’ at time ¢ in flows 2 and 3, respectively, increase from initial values
of zero and can be estimated as 6’ o« Nu't in flow 2, and v’ o« N€'t in flow 3. Hence, the
density and velocity scales become comparable when ¢ > 1/N. Also, the Froude number
of the flow at time t can be shown to be proportional to 1/Nt, so that it also becomes
small when ¢t > 1/N.

We have thus arrived at the intuitive result that physical effects associated with inter-
nal gravity waves affect the flow dynamics only after an evolution time comparable to
the period of the gravity waves. For flows of initially large Froude number, the velocity
and density fields evolve over many turbulence time scales before internal waves become
dynamically important. Hence, similarity states associated with each of the above flow
regimes may be established before a significant decrease in the flow Froude number. In
the next Section, we briefly review the salient features of these similarity states.

4. Asymptotic similarity states at large Froude numbers

The similarity states which develop in the above flows depend on the form of the kinetic
and potential energy spectra at low wavenumbers. Defining the kinetic energy spectrum
Ei(k,t) and the potential energy spectrum E,(k,t) to be the spherically-integrated three
dimensional Fourier transform of %<ui(x,t)ui(x +r,t)) and %<9(x,t)9(x +r,t)), respec-
tively, we write an asymptotic expansion of the spectra near k = 0 as

Ek(k,t) :2771{?2(B0—|—ng2—|—), Ep(k,t) :277162(00—|—Czk2—|—), (41)

where By, B, ..., and Cy,Csy,... are the lowest-order coefficients of the expansion. For
brevity, we consider here only flow fields for which By and Cjy are non-zero unless the entire
spectrum is zero. The invariance of one or both of these low wavenumber coefficients lead
directly to the establishment of different similarity states.

Flow 1: Isotropic turbulence transporting an isotropic passive scalar

The low wavenumber coefficients By and Cy are separately invariant (Saffman, 1967a;
Corrsin, 1951), and when they are non-zero the high-Reynolds number asymptotic results
for the kinetic energy, scalar-variance and integral scale may be determined by dimensional
analysis to be (Saffman, 1967b; Larcheveque, et al., 1980)

‘ 2 _3 1
(W)« B5t73,  (0*) x CoBy *t™%,  lo BSt5. (4.2)
The nature of this similarity state is such that the kinetic and potential energy spectra
decay without change of shape so that stationary spectra may be defined by the appropriate
scaling of the wavenumber and spectral amplitudes.

Flow 2: Isotropic turbulence in a passive scalar gradient

The passive density (scalar) fluctuations for this flow are generated by velocity fluctua-
tions along the direction of the mean gradient; consequently, the low wavenumber coeffi-
cient of the potential energy spectrum is no longer invariant in time. Rather, Cy depends
directly on the invariant By, N and t by

1 ‘
Co(t) = §N2B0t2. (4.3)
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Use of (4.3) in (4.2) yields the asymptotic growth of the scalar variance (Chasnov, 1994)
2

(6*) < N?B5t5 . (4.4)

Flow 3: Buoyancy-generated turbulence

Here, the velocity fluctuations are generated by density fluctuations and By is no longer
invariant; however Cj is invariant. The coefficient By is related to Cp, N and t by

2 ‘

and substituting (4.5) into (4.2) yields (Batchelor, et al., 1992)

12

(u?) o (N2Co)3t7 %,  (6%) x Co(N?Co) 3t~ %, o (N2Co)5t5,

Ot

(4.6)

An interesting and unusual feature of the similarity state for buoyancy-generated turbu-
lence is an increase in the flow Reynolds number asymptotically.

5. The flow at small Froude numbers

After the stratified flow evolves over a time t ~ 1/N, the Froude number is of order
unity so that the above large Froude number similarity states are no longer valid. As
the flow evolves further so that Nt > 1, the Froude number may be expected to become
small, and it is of some interest to consider whether a different similarity state of the
flow field is established asymptotically provided the Reynolds number of the flow remains
large. To construct a similarity state, an invariant of the kinetic and potential energy
spectra near & = 0 must be determined. Such an invariant does indeed exist and is
associated with the low wavenumber coefficient of the total energy spectrum E(k), defined
by E(k) = Ex(k) + E,(k). An expansion of the total energy spectrum near k£ = 0 yields

E(k,t) = 277]62(A0 + AQ[{?Z + .. .), (51)

where Ag = By + Cy and Ay = By + (5 are the sum of the low-wavenumber kinetic and
potential energy spectral coefficients. The coeflicient Ay can be shown to be an exact
invariant of the flow. Here, we consider its value to be non-zero at the initial instant.

We thus have a new invariant Ag upon which to base an asymptotic similarity state.
However, a straightforward dimensional analysis is now complicated by the addition of
another relevant dimensionless group, namely Nt¢, which is directly proportional to the
number of wave periods over which the flow has evolved. For asymptotically large Froude
number flows, Nt is vanishingly small and does not enter into the scalings; however, this
may not be the case at small Froude numbers when Nt is large.

Despite the above difficulty, we nevertheless attempt a dimensional analysis of this prob-
lem by considering the evolution of the total energy of the flow, e = ((u?) + (6?))/2, for
which there exists the associated invariant Ag. Assuming a power law dependence on time,
dimensional analysis then yields

e = ce ATt E(ND)T, (5.2)
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where we write the proportionality constant ¢, explicitely, and z is an unknown exponent.

In addition to the total energy decay, it is of interest to consider the evolution of the
integral scales of the flow field associated with the total energy. The integral scales may
evolve differently depending on whether they are measured parallel or perpendicular to
the vertical axis. Defining the vertical integral scale of the total energy to be /,, and that
of the horizontal integral scale to be [;,, dimensional analysis yields

ly= e, AStE(NE)Y, 1 = e, ATtE(ND)?, (5.3)

where ¢;, and ¢, are proportionality constants, and y and z are two additional exponents.
A consideration of the total energy spectrum (5.1) as a function of the wavenumber
magnitude k is not entirely appropriate for a flow in which the time dependencies of the
integral scales in the vertical and horizontal directions may be different. Rather, one
should define an energy spectrum as an explicit function of the vertical and horizontal
wavenumbers. A simple argument based on the existence of the invariant Ag and an
assumption of a self-similar decay in time of this redefined energy spectrum yields the

constraint
el 7 o« Ag; orequivalently, = +y-+2z=0. (5.4)

In addition, a heuristic argument can be offered which determines the unknown exponent
x. At small Froude numbers, two disparate timescales of the flow exist: the fast time-
scale of the wave field and the slow time scale of the turbulence. If we assume that the
correlation time of the nonlinear transfer is directly proportional to the fast time scale

1/N, then dimensionally
de 1

d N
which may be integrated directly to yield the value z = 3/5 in (5.2).

We do not yet have have an a prior: argument to determine the remaining unknown
exponents y and z, although these exponents must satisfy the constraint given by (5.4).
Rather, in the next Section we present the results of large-eddy simulations in which
estimates for all three exponents may be computed.

i

€3, (5.5)

6. Large-eddy simulations at small Froude numbers

To obtain a high Reynolds number flow at small Froude numbers, we perform large-eddy
simulations of Eqgs. (2.1) - (2.3) using a pseudo-spectral code for homogeneous turbulence
(Rogallo, 1981). For the subgrid scale model, we employ a spectral eddy-viscosity and
eddy-diffusivity similar to that of Chollet and Lesieur (1981). We take the initial kinetic
energy spectrum of the form given by Chasnov (1994) with the low wavenumber portion
of the spectrum proportional to k2. The initial potential energy spectrum is taken to
be zero. In the large Froude number regime, this corresponds to flow 2 above: isotropic
turbulence in a passive scalar gradient. Preliminary calculations showed that the horizontal
integral scales grew more rapidly than the vertical scales, in agreement with previous
direct numerical simulation results (Riley, et al., 1981), and that it was optimal to use a
computational box which was eight times longer in the horizontal directions than in the
vertical. Accordingly, we took a computational box length of 47 in the two horizontal
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FIGURE 1. The energy statisticss ——, Fy = 16.5; - - - -, Fy = 93.2; (a) time-evolution
of the power-law exponent of e; (b) verification of the scaling relation given by (5.3) with

r =3/5.

directions and 7 /2 in the vertical direction, with a corresponding grid resolution of 512 x
512 x 64 so that the grid remained cubic at the smallest resolved scales. With a periodic
box, the vertical wavenumber then took the values k, = 0,44, 48,...,£128 and the
horizontal wavenumbers took the values k;,k, = 0,£1/2,+1,...,4+128. The peak of
the initial isotropic kinetic energy spectrum k, was placed at a wavenumber of 64. Two
computations were performed with initial Froude number Fy = ug/Nly given by Fy = 16.5
and 93.2. In the definition of Fy, ug is taken as the initial root-mean square velocity
fluctuation, and Iy = /7 /kp. The computations were performed holding u¢ and [y fixed
and varying N by a factor of approximately 5.65. The results of the computation are used
here to test the postulated scalings given in §5 and to compute values of the unknown
exponents x, y, and z.

In Figure la, we plot the power-law exponent of ¢ (i.e., the logarithmic derivative with
respect to t) of the total energy as a function of t/7g for both initial Froude number flows,
where 79 = lg/ug. The asymptotic value of the time exponent is approximately —3/5,
indicating a value of z in (5.2) equal to 3/5, in agreement with our heuristic argument.
In figure 1b, we plot the proportionality constant ¢, of (5.2), i.e., we plot the evolution of

e/(Ag/5N3/5t_3/5), for both initial Froude number flows. The approximate convergence
of the two curves at large values of Nt to a constant confirms the overall scaling given by
(5.2) with + = 3/5 and ¢, ~ 1.6.

The vertical and horizontal integral scales of the total energy are plotted versus t/m
in Figure 2a for both initial Froude number flows. Evidently, at large-times the vertical
integral scale approached a constant, independent of time. This implies that y = —2/5 in
(5.3). The additional constraint of (5.4) then yields z = —1/10. In Figure 2b, we plot the
evolution of ¢;, and ¢;, for both flows. Again the simulations are in reasonable agreement
with the overall scaling given by (5.3), with ¢;, ~ 1.4 and ¢;, ~ 1.6.

We have thus presented findings of a new similarity state which develops at large
Reynolds numbers and small Froude numbers when the initial flow field consists of an
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FIGURE 2.  The integral length scales: ——, Fy = 16.5; - - - -, Fy = 93.2; (a) time-
evolution of the horizontal and vertical integral length scales of the total energy; (b)
verification of the scaling relations given by (5.4) with y = —2/5 and z = —1/10.

isotropic velocity distribution and no density fluctuations. It is also possible that the sim-
ilarity state which develops at small Froude numbers depends on the way in which the
initial flow fields are initialized. Métais and Herring (1989) demonstrated by direct nu-
merical simulations that the nature of the flow at small Froude numbers does depend on
the relative state of the turbulence and wave field before entering the low Froude number
regime. Some preliminary computations which we have performed verify that this is indeed
the case; we intend to report on these findings at a later date.
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