On the decay of two-dimensional homogeneous turbulence
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Direct numerical simulations of decaying two-dimensional turbulence in a fluid of large extent are
performed primarily to ascertain the asymptotic decay laws of the energy and enstrophy. It is
determined that a critical Reynolds numbir exists such that for initial Reynolds numbers with
R(0)<R. final period of decay solutions result, whereasR§0)>R_ the flow field evolves with
increasing Reynolds number. ExactlyR({0)=R., the turbulence evolves with constant Reynolds
number and the energy decaystas and the enstrophy as?2. A t~2 decay law for the enstrophy

was originally predicted by Batchelor for large Reynolds numbetss. Fluids Suppl. 1112, 233
(1969]. Numerical simulations are then performed for a wide range of initial Reynolds numbers
with R(0)> R, to study whether a universal power-law decay for the energy and enstrophy exist as
t—oo. Different scaling laws are observed fB{0) moderately larger thaR.. WhenR(0) be-
comes sufficiently large so that the energy remains essentially constant, the enstrophy decays at
large times as approximatety °8  © 1997 American Institute of Physics.

[S1070-663(96)01912-5

I. INTRODUCTION theoretical framework, it is worthwhile first to review an
argument of Batchelor®sconcerning the decay, as well as
We consider here the decay of a two-dimensional homosome related later developmefitsThe Navier—Stokes equa-
geneous turbulence in a fluid of infinite extent. One of thetions for two-dimensional turbulence independent of the
attractions of studying two-dimensional turbulence is itsthird direction with velocity fieldu= (u4,u,,0) and vorticity
computational simplicity with respect to fully developed field w=(0,0,0) may be written as
three-dimensional turbulence. Nevertheless, numerical simu-
lations are still non-trivial, requiring high resolution and ‘9_‘”+V,(UM):VV2(0 1)
long-time integrations, and the asymptotic behavior of the  Jt ’
statistics during the decay remains an open problem.
The main contribution of this paper is to present some
new direct numerical simulation results for decaying two- w=VXxu, andV.-u=0. 2

dimensional turbulence. Particular emphasis is placed on d(?from (1) and (2), time-evolution equations for the mean-

termining the long-time asymptotic evolution of the energy]Square velocity (X energy (u2) and mean-square vorticity
and enstrophy as a function of the initial Reynolds number 0|(2>< enstrophy (2) are determined to be

the flow field. We consider here the asymptotic statistica
evolution of the flow field without specifically confronting d )

the existence of coherent vortices or their intermittent distri- &(U )=—21(0%), ()
bution in the fluid. This is counter to most current trends in

two-dimensional turbulence researci. Nevertheless, we and

feel that a careful study of the dependence of the decay sta-

ere

tistics on the initial Reynolds number of the turbulence may — —(w?)=—21((Vw)?). (4)
yield some useful information about the physics of the de- dt
cay. These equations are exact but unclosed because of the pres-

We arrive at our study of two-dimensional turbulence ence of the mean-square gradient of the vorticity (palin-
through earlier work on decaying three-dimensional isotropiGtrophy on the right-hand side of4).
turbulencé In this previous study, large-eddy simulations Batchelor considered the limit— 0 of (3) and(4). Since
were used to confirm theoretical predictions of asymptotiGrom Eq. (4) the enstrophy is bounded by its initial value,
decay laws for the energy and the self-similar decay of the&ne has from Eq(3) at a fixed timet, d(u?)/dt—0, or
energy spectrum based on low wave number spectral invar{y2)— u3, its initial value. This is in contrast to the decay of
ants. The higher resolutions obtainable in simulations of twoza three-dimensional turbulence where the zero viscosity limit
dimensional turbulence permit a study of two-dimensionalis thought to be singular, and there exists some critical time
decay at relatively high Reynolds numbers by direct numeriat infinite Reynolds number, before which the energy re-
cal simulations without the need for subgrid scale modelingmains constant and after which the energy decays as a power

To place our simulation results within some generaljgw?
Batchelor then proposed that Ed) may be singular in
dPhone:(852) 23587448; Fax(852) 23581643; Electronic mail: the limit v—0 in_that_ th_e t_ime derivative of the e_nstrophy
machas@uxmail.ust.hk may not vanish in this limit. Furthermore, the existence of
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Ug as an invariant of the fluid motion led Batchelor to sug-an integrating factor. Denoting the Fourier coefficients with
gest the hypothesis of a self-similar decay basediprDi- carets and the wave number componentskhyk,, with
mensional analysis then requires all statistics to scalagn k2=k§+ kg, the transform of1) yields
andt alone, and considering the units of enstrophy one ob-
tains immediately w?) o t~2. Although not stated explicitly, ﬁ[&) expl vk2t)]= — exp vk2) V- (Uo) )
the Batchelor argument thus implies the existence of a criti-  dt ’
cal timet. in two-dimensional turbulence at infinite Rey-
nolds number ¢—0) at which the palinstrophy diverges.
For t<t. the enstrophy is constant, whereas fort. the
—2 . — -5 5

'r{ehnestégi)i?g 3::3/,5 as <. The energy remains constant over —V-(Uw)=k1k2(u§—u§)—(k§—kf)u’1u\2. ®)

However, subsequent wdrkon two-dimensional turbu- The Fourier components of the velocity field are determined
lence decay has shown that there exists no finite time singdrom the vorticity field using
larities for this flow. That is, for any fixed time the time
derivatives of both the energy and enstrophy vanish as ~
v—0. Nevertheless, even though Batchelor's results appar-
ently do not apply for fixed asv— 0, it was proposed on the
basis of closure calculatioh® that they remain valid for
fixed but smallv ast—o. The critical timet, after which
enstrophy is dissipated is now(slowly) increasing function
of the initial Reynolds number. C A

Given the approximate very high Reynolds number en-  At=5— max [ug - 0]’ (10)
strophy decay law

where the convection term on the right-hand side may be
rewritten using(2) as

—ig . )

Equation (7) is time integrated using the standard fourth-
order Runge—Kutta method with variable time stepdeter-
mined by the Courant—Friedrichs—Lewy condition

, whereA is the grid spacing in both directions and rfrax|
5 w0, If 1<t indicates the maximum value attained over all the grid
(%)= W2t /12 if t>t ) points. Minimization of ones computer cost requires maxi-
e ¢ mizing the value ofC and after some numerical experimen-
wherew? is the initial mean-square vorticity of the fluid, Eq. tation we have determined th@t= 10 yields sufficient accu-
(3) may be integrated for the energy. One obtains for thgacy. The nonlinear convective term (8) is evaluated by
energy decay: forming the Fourier coefficients of the velocity field using
(9), transforming to physical space and forming the products
ui—2vedt, if t<t, uiu, and u5—u?, and then transforming back to Fourier
(u?)= 2 ApawltT1— Yt/ i 1> (6) space. Hence only four two-dimensional fast Fourier trans-
Up—4vegt 1=2(te/D] if t>te. forms (FFT9 are required to compute the nonlinear term,

The decay law of the enstrophy given t5) thus results in Whereas_ Qirect evaluation qf the Ieft-hz_;md_sid€é8)frequires_

an energy which decays from its initial valueuﬁto afinal One additional FF'_P.The entlre_ calculation is dealiased using

value t—») of u2=u2—4pwit.. This implies that an 2 cwc_ular truncation of Fourier mo_des with wave nun_1ber

amount of energy equal ta? must eventually escape the Magnitude greater thal/3, whereN is the number of grid

effect of viscosity by moving to larger-and-larger scales, aSpomts.ln each direction. Such a dealiasing ensures exact con-

ymptotically approaching wave number zero in spectraS€rvation of energy and enstrophy by the numerical method

space on which viscosity no longer acts. with vanishing w_scpsﬂy. A parallel simulation code for the
The outline of the remainder of our paper is as follows.Nte! Paragon originally developed by Rogallo and V\?Pay'

In Section Il we will briefly discuss the novel features of our fOF three-dimensional turbulence and used in our earlier

numerical method. In Section Il we will present some nu-Study was rewritten to solve?) efficiently. _

merical results at low Reynolds number for which it will be W& Specify initial conditions for our flow field by as-

possible to obtain a clear and simple theoretical descriptiorsUMing an energy spectrum of wave number magnitudé

In Section IV high Reynolds number results for the decay ofN€ general form

the energy and enstrophy will be presented. These will be 1 K\ 2s+1 K\ 2
further analyzed in Section V and various scaling laws for  E(k,0)= = agudk, | — exg —|s+t=||

. S : 2 Pk 2/\k
different ranges of initial Reynolds numbers will be postu- p P (11)
lated which are in agreement with the simulation data. Fi-
nally, in Section VI the self-similar decay of the energy spec-with s=0,1,2,... , and where the normalization constant
trum will be considered. is given by

a;=(2s+1)St1/2%!

Il. NUMERICAL METHOD All the results presented here correspondste3. This al-

lows the development of k& energy spectrum at small wave
Our numerical method time advances the Fourier coeffinumber§ to be a consequence of the non-linear interactions
cients of the vorticity field treating the viscous term(l) as  among different Fourier components of the flow field. The
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initial vorticity field is generated in Fourier space with ran- 0

dom phases and with amplitude correspondinglt, i.e.,
A kE(k,O) 1/2 . -0.5
w(k,0)= expi2mé), (12
-1}
with ¢ a different uniform deviate for each wave number
vector k subject to the requirement of complex conjugate ~1sf n
symmetry of the Fourier components.
Given the form of the initial energy spectrughl) with b o N T
s=3, a simulation run is uniquely identified by itmicro-
scalg Reynolds numbeR(t) att=0, where we define the ol m
Reynolds number at timeby
rRip=Y (13 B S S e AR
v’ r
with
FIG. 1. Evolution of the logarithmic derivative of the energy) (and en-
u(t):<u2>l/2’ w(t)=<w2)1/2, |(t)=u(t)/w(t). strophy (n) for R(0)=8. ’ M
(14
The value ofu(t), w(t) andl(t) att=0 is determined from
the initial energy spectrurll) to be ber has decayed sufficiently so that the nonlinear terms in the
572 governing equation are negligible and the coefficiBatin
W(0)=Ug, ©(0)=w= /2s oo a7 becpmes constant. The linear govgrning equatigns may
2s+1 then be integrated exactly and one obtains the following final
2511 (19 period of decay solutions for the energy and enstrophy as
1(0)=ly=\/s—=k: !, t—o0:
2s+2P ) ) ) 5
U)o By(wt) ™4, «B,(vt)"°. 18
so that withs= 3, one has (UeBa (1) (@)=B(s1) (18
Such a solution may also be obtained from dimensional
R(0)= Zﬁ (16) analysis by requiring the energy and enstrophy to be linearly
8kpv' dependent orB, as a consequence of the linearity of the
The maximum number of grid points used in the simulations?_quat'ons’ and in addition to be functlonswt}ndt alorje.
is 4096 he Reynolds number of the turbulence during the final pe-

12 50 that this solution is

riod is found to decrease ds
internally consistent.
Ill. THE DECAY AT LOW REYNOLDS NUMBERS Results for the energy and enstrophy decay from direct
) : . i numerical simulations performed with initial Reynolds num-
We first consider the evolution of the flow field at rela- || R(0)=8 are presented in Fig. 1. To best test the theo-

tively low initial Reynolds numbers. Batchelor's high Rey- retical results, we define the logarithmic derivative in time of
nolds number result of constant energy and an enstroph%e energy and enstrophy as

decreasing as™ 2 implies that the Reynolds number of the

turbulence at time given by(13) increases linearly in time. _dIn(u?) _dIn(w?) 19

However, well-known ideas concerning the final period of n= dint ’ m= dint (19

decay of a turbulent flow field implies a Reynolds number . .

which decreases in time. We thus postulate the existence ofvglh'Ch may be computed usir@) and(4) from

critical initial Reynolds number above which the Reynolds (@?) ) ((Vw)?) 20
—_— m: —

number of the turbulence increases asymptotically, and be- "= —2ut (u?)

vt———.

(w?)
low which it decreases to small values eventually attainin% o
the final period of decay. f the energy and enstrophy decay as power laws in time,

An analysis of the final period of decay in two- then their logarithmic derivatives are just the power-law ex-

dimensional turbulence follows closely the three- ponents. In Fig. 1, the logarithmic derivativasand m are

dimensional case. It is assumed that during the early tim@lottéd versusr, where
evolution, nonlinear interactions are sufficiently strong so t 12
that the energy spectrum after some tiineakes the low- T= J;dt{w ) (21

wave-number forf
_ 3 can be considered a measure of the number of eddy turnover
(kD) ~mBa(0k", k=0, A7 times undergone by the flow at tinte The normalized time
as a consequence of direct nonlinear transfer of energy from best represents the time interval over which one expects
small-to-large scales, commonly called backscatter. At subsignificant changes in the power-law exponent. It is apparent
sequent times, it is further assumed that the Reynolds nunfrom Fig. 1 that the final period of decay soluti¢h8) is
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FIG. 4. Time evolution of the energy and enstrophy R§0)=15.73 com-

FIG. 2. Evolution of the logarithmic derivative of the energy) (and en-  pared to the analytical results (23).

strophy (m) for R(0)=14, 15.73 and 18.

] . yield an approximate power-law decay of the energy as
approached asymptotically insomuch thaandm approach ;-1 5n4 an approximate enstrophy decayt a&
—2 and -3, respectively, at large times. Strong deviations  an analytical derivation of these power-law exponents is
from thgse asymptouc pov.vejir-lavlv exponents at the !at?SFSossible by assuming that the energy and enstrophy decay as
times simulated is due to finite size effects of the perlodlcpower laws, and that the Reynolds number approaches a

box, so tha(17) is no longer valid. - time-independent constant, here taken to Rje at large
It is of interest to consider somewhat larger initial Rey- tjmes. Writing

nolds numbers. These simulation results are of 20480- 5 )

lution with k,=300 in (11). Results for the logarithmic de- (u)=bt",  (o)=ct™ (22)
rivatives of the energy and enstrophy wi{0)=14,15.73,  one has from the definition of the Reynolds numtis) the
and 18 versusr are shown in Fig. 2. The corresponding equationsn=m/2 andb= R/ /c. Furthermore, the energy
Reynolds number&(t) versusr are shown in Fig. 3. Our  equation(3) yields the equations—1=m andnb=—2c.
numerical experiments demonstrate the existence of a critic&p|ying, one thus obtains the asymptotic solution at
Reynolds numbeR.~15.73 such that folR(0)<R. the R(0)=R.:

Reynolds number decays monotonically in time and for
R>R. the Reynolds number decreases initially, and then in-
creases asymptotically. Results for initial Reynolds number
R(0)=14,18 are shown in Figs. 2 and 3 for comparison
purposes. AtR(0)=R., the numerical simulation results

(U= 3wRA™Y, (0?)=3iRA2 (23)

™n Fig. 4, the energy and enstrophy decay®§0)=15.73 is
compared to the analytical resu(&3), where we have taken
R, = 12.5 as approximately determined from Fig. 3. The
simulation results and analytical solution are in good agree-
ment at large times. Interestingly, the Batchelor decay law
t=2 for the enstrophy is found by assuming a flow field

FIG. 3. Time evolution of the Reynolds numiRifor R(0)= 14, 15.73 and

18.

174

1 R(0) = 18
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which decays at constant Reynolds number. The energy
however is no longer constant but decays as

When R(0)>R., the Reynolds numbeR(t) increases
asymptotically, and it is of interest to consider whether an-
other different similarity state develops. It is plausible that a
unique similarity state exists since all flows with initial Rey-
nolds numbers greater th&t presumably approach infinite
Reynolds numbers at—o. Calculations for a range of
R(0)>R. will be presented in the next section to test the
possibility of a unique similarity state.

IV. SIMULATIONS AT HIGH REYNOLDS NUMBERS

We now present the results of direct numerical simula-
tions of two-dimensional turbulence decay with initial Rey-
nolds numbers ranging frolR(0)=32 to 4096. The simula-
tions have been performed so that the small scales of the
turbulence are adequately resolved and finite size effects as-

J. R. Chasnov



sociated with the computational box may be neglected. The 4096
calculations were checked for accuracy by varying both the 10’
resolution and the wave numbkyg at which the initial en-
ergy spectrun(11) is maximum. The simulations presented
are at resolution 40$6and the initial energy spectrum is
chosen withuy=1 and withk, ranging from 600 to 16 as the
initial Reynolds number increases from 32 to 4096. The total
computational cost of the calculation grows with decreasing
kp due to the increasing number of time steps required for a
complete calculation.

The time evolution of (X) the energy, enstrophy, and
palinstrophy, normalized using,, wy andly, (15), for the (a) 32
different values oR(0) are shown in Fig. 5. The energy and
enstrophy decay monotonically in time as required fri@n
and (4), while the palinstrophy increases to a maximum be-
fore beginning to decay.

The logarithmic derivatives of the energy and enstrophy
(19) versusT (21) are plotted in Fig. 6. No universal decay
exponent of the enstrophy, Fig(l§, at large times for all
initial Reynolds numbers greater th&j is observed. How-
ever, forR(0)=1024 the long-time decay exponent appears
to change only slightly and the asymptotic decay law for
these large Reynolds numbers follows approximately2
These high Reynolds number flows are nearly inviscid in so
much that the energy, Fig.(&, decays very little over the
times simulated.

The logarithmic derivative of the energy Fig. 6a), is
observed to be an increasing function of the initial Reynolds
number, indicating that the energy decay becomes less steep
with increasing initial Reynolds numbers. This is also readily
evident from the energy decay itself, Figab We further
comment on the different qualitative behavior ofat low
and high initial Reynolds numbers. For relatively low initial
Reynolds numbersR(0)<256),n decreases to a minimum
and then increases in time. This signifies a rapid initial decay
of the energy which subsequently becomes less steep as time
evolves, presumably due to the increasing Reynolds number
of the turbulence. FOR(0)>256, however,n slowly de-
creases in time implying that the energy decay is steepening
as time evolves. However, the magnitudendbr these high
Reynolds numbers is quite small, and the energy does not
decay significantly over the times simulated. Since the en-
ergy is related to the time integral of the enstrophy, the
change in the qualitative behavior of the logarithmic deriva-
tive of the energy coincides with the power-law exponent of
the enstrophy increasing from less than to greater than neg&lG. 5. Time evolution of the statistics f&(0)=32, 64, ... , 4096(a)
tive one. Energy;(b) enstrophy;(c) palinstrophy.

One obvious point is evident from the simulation results
presented in Fig. ®): the enstrophy at high Reynolds num- qiiong of the flow field as well as the Reynolds number. It is

_2 .
bers does not decay &s” as predicted by 'BatcheilérPre- _unclear why our large Reynolds number decay law of the
vious investigations have already recognized this. Arg“'ngenstrophy ag %8 is substantially steeper than that deter-
on the basis of observed coherent vortices in two-

. . 5 _ mined by these previous investigations.
dimensional decay, Carnevad¢ al“ proposed the existence In Fig. 7(a), we plot the Reynolds numbeR(t) as a

of a second conserved quantity in addition to the energynction of wyt. One observes that the Reynolds number

From numerical SP'““"”%S;""”‘”‘ merging, a decay of thej,creases asymptotically in time as expected. In Fig), e
enstrophy proporuoggllzgo has proposed. An enstrophy 456 piot the flatness factor of the vorticity, defined as
decay ranging fromb™>“7to t~~*>was determined in nearly

inviscid calculations of Dritschélwho also suggested that f(t)= () 24)
the decay exponents may depend strongly on the initial con- (w?)?’

(u?)/u

1071

. A
10° 10° 10

(w?)/wi

B{(Vw)?)/wi
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FIG. 6. Time evolution of the logarithmic derivative of the energy and g1 7. Time evolution of the Reynolds numbR¢t) and vorticity flatness
enstrophy forR(0)=32,64, ... ,4096(a) energy;(b) enstrophy. factor f(t) for R(0)=32,64, ... ,4096(a) R(t); (b) f(t).

versuswot. The statisticf(t) has previously been used 10 4 it is possible to fit the data over limited Reynolds num-

characterize the spatial intermittency of the vorticity g, ranges by assuming different forms for the energy and
field.11*? Our random phase initial conditiofil2) corre- enstrophy decay.

sponds to a flatness factor of three. The flatness factor also starting point is the energy equati¢®), and the

apparently increases without bound during the de_cay Whersumption of power-law form@2) for the energy and the
R(0)>R.. WhenR(0)=R. (not shown, f(t) remains at onqrophy. Substituting22) into (3), one trivially obtains
approximately three. The occurrence of large values of th%oupled equations for the exponents and coefficients:
flatness factor during the decay of high Reynolds number

two-dimensional turbulence has been previously observed, n—1=m, nb=-2wvc. (25

and it has been suggested that these large values are associ- hich h icall
ated with the formation of coherent vortices, and furthermord " €nergy which approaches a constant asymptotically as

that these vortices are responsible for the deviation frorrlihe Reynolds ”Pmbef becomeg large would require® as-
Batchelor scaling? ymptotically which does not satisf5) for »>0. Of course,

it is always possible to add a constant to the power-law de-
cay of the energy as found if6), and the enstrophy5) is

then related to the energy through the next-order term in
(14). Here, however, we take a different approach and con-

The most puzzling feature of our high Reynolds numberSider that a solution wittn=0 can also be obtained if one

simulation results is the apparent lack of a unique asymptoti((fons'd(lers an add|t|ona11d—h_or<]) Io_ganthmlchcorrectllon to the
similarity state for two-dimensional turbulence for all initial POWer-law ansatz of22). With n=0, one thus replaceg2)

Reynolds numbers greater th&y even though these flows by the form

approach infinite Reynolds number asymptotically. Rather, (u2>=u§[log(t/t*)]p, p<0; (26)
different qualitative decay laws are observed for different

ranges of initial Reynolds numbers and we will show hereand the energy equatidl) then yields for the enstrophy

V. SCALING LAWS
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TABLE |. Fitted parameter values obtained frd@g) and used in Fig. 8. g time proportional to the viscous time scale. A plot of the
simulation results for the energy and enstrophy decay com-

R(0 . t it . . oo

() ! Uele ¥ pared to the analytical form@6) and (27) is shown in Fig.

32 0.29 217 590 8, and very good agreement at large times between the simu-
64 0.77 17 650 lation data and the analytical form is observed.

At higher-Reynolds numbers, the forms for the energy
and enstrophy decay given §26) and(27) no longer agree
with the data. Examining the graph of the logarithmic deriva-

—Ppug _ tive of the energy, Fig. &, one observes that at
2\ _ 1 1
(0= 2v - Tlog(t/t,) 1P~ 27) R(0)=256, the logarithmic derivative of the energy is ap-
. o proximately constant at large times, indicating a power-law
A Iogarlfqmlc decay_ of the energy |m_pl|eS_ an enstr_ophy de'decay for the energy. For smaller initial Reynolds numbers,
cay ast asymptqtlcally with a Iogar_lthmlc f:orrectlon. the energy decay exponent is decreasing in magnitude,
The solution given by26) and(27) is physically appeal- whereas for larger initial Reynolds numbers, the exponent is

ing in that the energy .decay becom.es less and less Steepiﬂﬁreasing in magnitude. The analytical form given (@9)
the Reynolds number increases during the decay, yet the eﬂiay be fit to the simulation results f&(0)=256, with the

ergy never completely escapes dissipation by viscosity aaecay exponent of the energy giventy — 0.1. A compari-

occurs in(6). This behavior of the energy degay seems 10, 1 petween the simulation result fR(0)=256 and the
agree with that observed from the simulation data foranalytical form (28) is shown in Fig. 9, and reasonable
R.<R(0)<256. However, for fixed asv—0, the solution

. O ) _ U agreement at large times is evident.
given by (26) and (27) is incorrect since in this limit the It appears from the results above that Rfi0)< 256, the

energy should become constant. To obtain a solution igyecay of the energy by viscous forces is determining both the
which the energy_becomes constantasO, it is possmle to asymptotic decay laws of the energy and enstrophy. This
return to the original ansai22) and solve(29) directly for  gooms to be the case even though the Reynolds number of
the power-lawl gxponenns and mn terms of the asgumed the flow field is increasing asymptotically. For initial Rey-
cons.tant coefficients andc. In this fashion, one obtains the nolds numbers larger than approximately 1024, viscous ef-
solutions fects are much less important over the times simulated and

<u2>:bt—2"c/b, <w2>=ct—<1+2V°/b)_ (29) the small amount of energy which does dissipate is of no
apparent consequence. A nearly inviscid decay law of the
enstrophy of approximately °8 is then observed from the
simulation data. We have no theoretical explanation for this
exponent value.

2

Here, for fixedt as v—0 one has(u?)—b=u3; and the
enstrophy again decays &is'. As mentioned in the introduc-
tion, there are no finite time singularities in two-dimensional
turbulence asy— 0, so that(28) is still incorrect in that the

enstrophy should approach a constant in this limit but does
not. VI. SPECTRA

The numerical simulation results for the logarithmic de-  \y/e now consider whether the energy spectek,t) of
rivatives of the energy and enstrophy shown in Fig. 6 show gy4_dimensional turbulence decays self-similarly, that is,

sharp minimum in the power-law exponent of the energy for,ithout change of shape. For flows wiR(0)>R., self-
the initial Reynolds numberR(0)=32,64. We now show

that (26) and (27) can provide a good fit to the energy and
enstrophy decay with proper choices pf u,, andt, .
These parameters may be fitted to the data using the com-
puted values for the logarithmic derivatives of the energy
and enstrophy, as well 449), (26) and (27). The relations

we use to fit the parameters are

n - -1
e e P
uZ =(u?)(n—m-1)Mn-m-1)

We have determined that a good fit to the simulation data for
R(0)=32,64 can be obtained with a valuepf —2/3. The
other values ofu,, t,, and the nondimensional group
uit* /v are shown in Table I. The nondimensional group . . . \
uit* /v can be considered to be the tirme after which the 10° 10’ 10° 10 10!
log decay law is established normalized by a viscous time

scale formed fromu, andv. The 10% variation ofit, /v wol

over the two Reynolds number runs compared to the more

than _Ord?r'Of'magnitUde variation IYL S_UggeStS t.hat the FiG. 8. Time evolution of the energy and enstrophy Rg0) =32, 64 com-
logarithmic decay law of the energy is being established ovepared to the analytical forms ¢26) and (27).

(29

(u?), (w?)
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10

FIG. 9. Time evolution of the energy and enstrophy R{0)=256 com-
pared to the analytical forms ¢28). FIG. 11. Rescaling of the energy spectrum of Fig. 10. The times plotted
correspond tor=10,15, ... ,35.

similarity of the spectrum for all wave numbers is impossible .
due to the increase of the Reynolds number in time. HowVer all wave numbers. Also observe that the characteristic
ever, forR(0)=R, a self-similar decay of the entire spec- Bo(1)k* spectrum of(17) is clearly evident at low wave
trum can occur. We define a self-similar energy spectrunfiumbers. Self-similarity of the spectrum given {80) and

E(K) from tsrlzlli?]vng/ wave number form of the spectrifv) results in the
E(k,t)=u?lE(k), k=KkI, (30 B,(t)oru2l*: (31)

where the velocity and length scalesand| are defined in
(14). In plotting the spectrum itself, we also normalize using
ug andl, defined in(15).

In Fig. 10, the time evolution of the nondimensional en- Bz(t)ocv3Ré2t; R(0)=R.. (32
ergy spectrunE(k)/uSIo for R(0)=15.73 versus nondimen-
sional wave numbekl, for 7=0,5,10, . .,35 isplotted. To

and wherR(0)=R,., the analytical decay laws given 83)
yield

The low wave number coefficient of the spectrs(t) thus

] ) o increases linearly in time, indicating substantial nonlinear

test whether the spectrum is decaying self-similaflyk) 5 c1scatter of energy from small-to-large scales even for this

versusk is plotted in Fig. 11 forr=10,15,.. . ,35using(30). |0\ Reynolds number turbulence. Recall ti&a(t) is inde-

A near-perfect CO”apSE CE(k) at the different times plotted pendent of time within a linear ana|ysisl

is observed indicating a self-similar decay of the spectrum  Next we consider the time evolution of the energy spec-
tra for flows withR(0)>R;. In particular, the time evolu-
tion of the spectra foR(0)= 64, 256, and 4096 are shown in
Fig. 12. The timesr which are plotted are written in the

R figure caption. Note how we have positioned the peak of the

' ' initial energy spectrum in wave number space at the largest

possible (dimensiongl wave number which provides ad-

equate small-scale resolution for a given initial Reynolds

number. This reduces the computational cost of each calcu-

lation as well as provides the best possible statistical sample

of the largest vortices in a single realization. In Fig. 13, the

self-similar spectra obtained usiiig0) are plotted.

It appears from the reasonable collapse of the spectra at
different times evident from Fig. 13 that the decay of two-
dimensional turbulence at large Reynolds number is also
self-similar in the energy containing scales. One should ob-
serve however that the spectra of the viscous scales at the
largest wave numbers do not collapse due to the increasing
Reynolds number of the turbulence during the decay. This is
particularly evident foR(0) =64, Fig. 13a). The collapse at
the smallest wave numbers is also not as good as observed
FIG. 10. Evolution of the normalized energy spectrum in time with for R(0)=15.73, Fig. 11, though it is impossible to say from
R(0)=15.73. The times plotted correspond#e0,5,10, . .. ,35. our data whether this is only due to a lack of adequate sta-

E(k,t)/ulo
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FIG. 12. Evolution of the energy spectrum in tim@ R(0)=64, 7=0, FIG. 13. Rescaling of the energy spectra of Fig. .R(0)=64, 7= 20,
10,20,..., 120y(b) R(0)=256, 7=0,10,20,...,100{c) R(0)=4096, 7=0, 30,...,120;(b) R(0)=256, =20,30...,1001c) R(0)= 4096, 7=20,30,...,50.
2,5,10,20,..., 50.

tistical sample of the largest vortices. In Fig. 13, we have;n?tt)roﬁgz ?gf) ;?]Z iﬁ‘é\' nvt\alz\r/(ian\?etjr?;?catre ;f?gciril .coeff|C|ent
also plotted as a dashed line the expedtétbw wave num- 2 9 o

ber behavior, as well as the predictéd'*k 3 inertial sub- (?) u3 33
range behavior for two-dimensional turbulence. At the high- w")* . 33
9 g VBo(D)

est Reynolds numbers, Fig. &3 an inertial subrange

appears to have developed which is slightly steeper than thequation(33) suggests that the nonlinear backscatter of en-

predicted power-law behavior. ergy from small-to-large scales as represented by the time
If indeed the spectrum decays self-similarly at low wavedependence dB,(t) may be the relevant physics which de-

numbers, it is possible to derive a relationship between thé&ermines the precise time-decay law of the enstrophy. An
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