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Direct numerical simulations of decaying two-dimensional turbulence in a fluid of large extent are
performed primarily to ascertain the asymptotic decay laws of the energy and enstrophy. It is
determined that a critical Reynolds numberRc exists such that for initial Reynolds numbers with
R(0),Rc final period of decay solutions result, whereas forR(0).Rc the flow field evolves with
increasing Reynolds number. Exactly atR(0)5Rc , the turbulence evolves with constant Reynolds
number and the energy decays ast21 and the enstrophy ast22. A t22 decay law for the enstrophy
was originally predicted by Batchelor for large Reynolds numbers@Phys. Fluids Suppl. II,12, 233
~1969!#. Numerical simulations are then performed for a wide range of initial Reynolds numbers
with R(0).Rc to study whether a universal power-law decay for the energy and enstrophy exist as
t→`. Different scaling laws are observed forR(0) moderately larger thanRc . WhenR(0) be-
comes sufficiently large so that the energy remains essentially constant, the enstrophy decays at
large times as approximatelyt20.8. © 1997 American Institute of Physics.
@S1070-6631~96!01912-5#
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I. INTRODUCTION

We consider here the decay of a two-dimensional hom
geneous turbulence in a fluid of infinite extent. One of t
attractions of studying two-dimensional turbulence is
computational simplicity with respect to fully develope
three-dimensional turbulence. Nevertheless, numerical si
lations are still non-trivial, requiring high resolution an
long-time integrations, and the asymptotic behavior of
statistics during the decay remains an open problem.

The main contribution of this paper is to present so
new direct numerical simulation results for decaying tw
dimensional turbulence. Particular emphasis is placed on
termining the long-time asymptotic evolution of the ener
and enstrophy as a function of the initial Reynolds numbe
the flow field. We consider here the asymptotic statisti
evolution of the flow field without specifically confrontin
the existence of coherent vortices or their intermittent dis
bution in the fluid. This is counter to most current trends
two-dimensional turbulence research.1–3 Nevertheless, we
feel that a careful study of the dependence of the decay
tistics on the initial Reynolds number of the turbulence m
yield some useful information about the physics of the
cay.

We arrive at our study of two-dimensional turbulen
through earlier work on decaying three-dimensional isotro
turbulence.4 In this previous study, large-eddy simulation
were used to confirm theoretical predictions of asympto
decay laws for the energy and the self-similar decay of
energy spectrum based on low wave number spectral inv
ants. The higher resolutions obtainable in simulations of tw
dimensional turbulence permit a study of two-dimensio
decay at relatively high Reynolds numbers by direct num
cal simulations without the need for subgrid scale modeli

To place our simulation results within some gene

a!Phone:~852! 23587448; Fax:~852! 23581643; Electronic mail:
machas@uxmail.ust.hk
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theoretical framework, it is worthwhile first to review a
argument of Batchelor’s5 concerning the decay, as well a
some related later developments.6,7 The Navier–Stokes equa
tions for two-dimensional turbulence independent of t
third direction with velocity fieldu5(u1 ,u2 ,0) and vorticity
field v5(0,0,v) may be written as

]v

]t
1¹–~uv!5n¹2v, ~1!

where

v5¹3u, and ¹–u50 . ~2!

From ~1! and ~2!, time-evolution equations for the mean
square velocity (23 energy! ^u2& and mean-square vorticity
(23 enstrophy! ^v2& are determined to be

d

dt
^u2&522n^v2&, ~3!

and

d

dt
^v2&522n^~¹v!2&. ~4!

These equations are exact but unclosed because of the
ence of the mean-square gradient of the vorticity (23 palin-
strophy! on the right-hand side of~4!.

Batchelor considered the limitn→0 of ~3! and~4!. Since
from Eq. ~4! the enstrophy is bounded by its initial valu
one has from Eq.~3! at a fixed timet, d^u2&/dt→0, or
^u2&→u0

2, its initial value. This is in contrast to the decay
a three-dimensional turbulence where the zero viscosity li
is thought to be singular, and there exists some critical ti
at infinite Reynolds number, before which the energy
mains constant and after which the energy decays as a p
law.8

Batchelor then proposed that Eq.~4! may be singular in
the limit n→0 in that the time derivative of the enstroph
may not vanish in this limit. Furthermore, the existence
171/$10.00 © 1997 American Institute of Physics
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u0 as an invariant of the fluid motion led Batchelor to su
gest the hypothesis of a self-similar decay based onu0. Di-
mensional analysis then requires all statistics to scale onu0
and t alone, and considering the units of enstrophy one
tains immediatelŷv2& } t22. Although not stated explicitly,
the Batchelor argument thus implies the existence of a c
cal time tc in two-dimensional turbulence at infinite Rey
nolds number (n→0) at which the palinstrophy diverges
For t,tc the enstrophy is constant, whereas fort.tc the
enstrophy decays ast22. The energy remains constant ov
the entire decay.

However, subsequent work6,7 on two-dimensional turbu-
lence decay has shown that there exists no finite time sin
larities for this flow. That is, for any fixed timet the time
derivatives of both the energy and enstrophy vanish
n→0. Nevertheless, even though Batchelor’s results ap
ently do not apply for fixedt asn→0, it was proposed on the
basis of closure calculations7,8 that they remain valid for
fixed but smalln as t→`. The critical timetc after which
enstrophy is dissipated is now a~slowly! increasing function
of the initial Reynolds number.

Given the approximate very high Reynolds number
strophy decay law

^v2&5H v0
2 , if t,tc,

v0
2~ tc /t !

2 if t.tc,
~5!

wherev0
2 is the initial mean-square vorticity of the fluid, Eq

~3! may be integrated for the energy. One obtains for
energy decay:

^u2&5H u0222nv0
2t, if t,tc,

u0
224nv0

2tc@12 1
2~ tc /t !# if t.tc.

~6!

The decay law of the enstrophy given by~5! thus results in
an energy which decays from its initial value ofu0

2 to a final
value (t→`) of u

*
2 5u0

224nv0
2tc . This implies that an

amount of energy equal tou
*
2 must eventually escape th

effect of viscosity by moving to larger-and-larger scales,
ymptotically approaching wave number zero in spec
space on which viscosity no longer acts.

The outline of the remainder of our paper is as follow
In Section II we will briefly discuss the novel features of o
numerical method. In Section III we will present some n
merical results at low Reynolds number for which it will b
possible to obtain a clear and simple theoretical descript
In Section IV high Reynolds number results for the decay
the energy and enstrophy will be presented. These will
further analyzed in Section V and various scaling laws
different ranges of initial Reynolds numbers will be pos
lated which are in agreement with the simulation data.
nally, in Section VI the self-similar decay of the energy spe
trum will be considered.

II. NUMERICAL METHOD

Our numerical method time advances the Fourier coe
cients of the vorticity field treating the viscous term in~1! as
172 Phys. Fluids, Vol. 9, No. 1, January 1997
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an integrating factor. Denoting the Fourier coefficients w
carets and the wave number components byk1 ,k2, with
k25k1

21k2
2, the transform of~1! yields

]

]t
@v̂ exp~nk2t !#52exp~nk2t !¹–~ ûv), ~7!

where the convection term on the right-hand side may
rewritten using~2! as

2¹•~ ûv)5k1k2~u2
22u1

2̂!2~k2
22k1

2!u1u2̂. ~8!

The Fourier components of the velocity field are determin
from the vorticity field using

u1̂5 i
k2
k2

v̂, u2̂52 i
k1
k2

v̂. ~9!

Equation ~7! is time integrated using the standard fourt
order Runge–Kutta method with variable time stepDt deter-
mined by the Courant–Friedrichs–Lewy condition

Dt5
C

2p

D

max@ uu1u1uu2u#
, ~10!

whereD is the grid spacing in both directions and max@•••#
indicates the maximum value attained over all the g
points. Minimization of ones computer cost requires ma
mizing the value ofC and after some numerical experime
tation we have determined thatC510 yields sufficient accu-
racy. The nonlinear convective term in~8! is evaluated by
forming the Fourier coefficients of the velocity field usin
~9!, transforming to physical space and forming the produ
u1u2 and u2

22u1
2, and then transforming back to Fourie

space. Hence only four two-dimensional fast Fourier tra
forms ~FFTs! are required to compute the nonlinear ter
whereas direct evaluation of the left-hand side of~8! requires
one additional FFT.9 The entire calculation is dealiased usin
a circular truncation of Fourier modes with wave numb
magnitude greater thanN/3, whereN is the number of grid
points in each direction. Such a dealiasing ensures exact
servation of energy and enstrophy by the numerical met
with vanishing viscosity. A parallel simulation code for th
Intel Paragon originally developed by Rogallo and Wray10

for three-dimensional turbulence and used in our ear
study4 was rewritten to solve~7! efficiently.

We specify initial conditions for our flow field by as
suming an energy spectrum of wave number magnitudek of
the general form

E~k,0!5
1

2
asu0

2kp
21S kkpD

2s11

expF2S s1
1

2D S kkpD
2G

~11!

with s50,1,2,... , and where the normalization constantas
is given by

as5~2s11!s11/2ss!

All the results presented here correspond tos53. This al-
lows the development of ak3 energy spectrum at small wav
numbers8 to be a consequence of the non-linear interactio
among different Fourier components of the flow field. T
J. R. Chasnov
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initial vorticity field is generated in Fourier space with ra
dom phases and with amplitude corresponding to~11!, i.e.,

v̂~k,0!5S kE~k,0!

p D 1/2exp~ i2pj!, ~12!

with j a different uniform deviate for each wave numb
vector k subject to the requirement of complex conjuga
symmetry of the Fourier components.

Given the form of the initial energy spectrum~11! with
s53, a simulation run is uniquely identified by its~micro-
scale! Reynolds numberR(t) at t50, where we define the
Reynolds number at timet by

R~ t !5
ul

n
, ~13!

with

u~ t !5^u2&1/2, v~ t !5^v2&1/2, l ~ t !5u~ t !/v~ t !.
~14!

The value ofu(t), v(t) and l (t) at t50 is determined from
the initial energy spectrum~11! to be

u~0!5u0 , v~0![v05A2s12

2s11
u0kp ,

~15!

l ~0![ l 05A2s11

2s12
kp

21 ,

so that withs53, one has

R~0!5A7

8

u0
kpn

. ~16!

The maximum number of grid points used in the simulatio
is 40962.

III. THE DECAY AT LOW REYNOLDS NUMBERS

We first consider the evolution of the flow field at rel
tively low initial Reynolds numbers. Batchelor’s high Re
nolds number result of constant energy and an enstro
decreasing ast22 implies that the Reynolds number of th
turbulence at timet given by~13! increases linearly in time
However, well-known ideas concerning the final period
decay of a turbulent flow field implies a Reynolds numb
which decreases in time. We thus postulate the existence
critical initial Reynolds number above which the Reynol
number of the turbulence increases asymptotically, and
low which it decreases to small values eventually attain
the final period of decay.

An analysis of the final period of decay in two
dimensional turbulence follows closely the thre
dimensional case. It is assumed that during the early t
evolution, nonlinear interactions are sufficiently strong
that the energy spectrum after some timet takes the low-
wave-number form8

E~k,t !;pB2~ t !k
3, k→0 , ~17!

as a consequence of direct nonlinear transfer of energy f
small-to-large scales, commonly called backscatter. At s
sequent times, it is further assumed that the Reynolds n
Phys. Fluids, Vol. 9, No. 1, January 1997
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ber has decayed sufficiently so that the nonlinear terms in
governing equation are negligible and the coefficientB2 in
~17! becomes constant. The linear governing equations m
then be integrated exactly and one obtains the following fi
period of decay solutions for the energy and enstrophy
t→`:

^u2&}B2~nt !22, ^v2&}B2~nt !23. ~18!

Such a solution may also be obtained from dimensio
analysis by requiring the energy and enstrophy to be line
dependent onB2 as a consequence of the linearity of th
equations, and in addition to be functions ofn and t alone.4

The Reynolds number of the turbulence during the final
riod is found to decrease ast21/2 so that this solution is
internally consistent.

Results for the energy and enstrophy decay from dir
numerical simulations performed with initial Reynolds num
berR(0)58 are presented in Fig. 1. To best test the th
retical results, we define the logarithmic derivative in time
the energy and enstrophy as

n5
d ln^u2&
d ln t

, m5
d ln^v2&
d ln t

, ~19!

which may be computed using~3! and ~4! from

n522nt
^v2&

^u2&
, m522nt

^~¹v!2&

^v2&
. ~20!

If the energy and enstrophy decay as power laws in tim
then their logarithmic derivatives are just the power-law e
ponents. In Fig. 1, the logarithmic derivativesn andm are
plotted versust, where

t5E
0

t

dt^v2&1/2 ~21!

can be considered a measure of the number of eddy turn
times undergone by the flow at timet. The normalized time
t best represents the time interval over which one expe
significant changes in the power-law exponent. It is appar
from Fig. 1 that the final period of decay solution~18! is

FIG. 1. Evolution of the logarithmic derivative of the energy (n) and en-
strophy (m) for R(0)58.
173J. R. Chasnov
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approached asymptotically insomuch thatn andm approach
22 and23, respectively, at large times. Strong deviation
from these asymptotic power-law exponents at the late
times simulated is due to finite size effects of the period
box, so that~17! is no longer valid.

It is of interest to consider somewhat larger initial Rey
nolds numbers. These simulation results are of 20482 reso-
lution with kp5300 in ~11!. Results for the logarithmic de-
rivatives of the energy and enstrophy withR(0)514,15.73,
and 18 versust are shown in Fig. 2. The corresponding
Reynolds numbersR(t) versust are shown in Fig. 3. Our
numerical experiments demonstrate the existence of a criti
Reynolds numberRc'15.73 such that forR(0),Rc the
Reynolds number decays monotonically in time and fo
R.Rc the Reynolds number decreases initially, and then i
creases asymptotically. Results for initial Reynolds numbe
R(0)514,18 are shown in Figs. 2 and 3 for compariso
purposes. AtR(0)5Rc , the numerical simulation results

FIG. 2. Evolution of the logarithmic derivative of the energy (n) and en-
strophy (m) for R(0)514, 15.73 and 18.

FIG. 3. Time evolution of the Reynolds numberR for R(0)514, 15.73 and
18.
174 Phys. Fluids, Vol. 9, No. 1, January 1997
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yield an approximate power-law decay of the energy
t21, and an approximate enstrophy decay ast22.

An analytical derivation of these power-law exponents
possible by assuming that the energy and enstrophy deca
power laws, and that the Reynolds number approache
time-independent constant, here taken to beRc8, at large
times. Writing

^u2&5btn, ^v2&5ctm, ~22!

one has from the definition of the Reynolds number~13! the
equationsn5m/2 andb5nRc8Ac. Furthermore, the energ
equation~3! yields the equationsn215m andnb522nc.
Solving, one thus obtains the asymptotic solution
R(0)5Rc :

^u2&5 1
2 nRc8

2t21, ^v2&5 1
4Rc8

2t22. ~23!

In Fig. 4, the energy and enstrophy decay forR(0)515.73 is
compared to the analytical results~23!, where we have taken
Rc8 5 12.5 as approximately determined from Fig. 3. T
simulation results and analytical solution are in good agr
ment at large times. Interestingly, the Batchelor decay
t22 for the enstrophy is found by assuming a flow fie
which decays at constant Reynolds number. The ene
however is no longer constant but decays ast21.

WhenR(0).Rc , the Reynolds numberR(t) increases
asymptotically, and it is of interest to consider whether a
other different similarity state develops. It is plausible tha
unique similarity state exists since all flows with initial Re
nolds numbers greater thanRc presumably approach infinite
Reynolds numbers ast→`. Calculations for a range o
R(0).Rc will be presented in the next section to test t
possibility of a unique similarity state.

IV. SIMULATIONS AT HIGH REYNOLDS NUMBERS

We now present the results of direct numerical simu
tions of two-dimensional turbulence decay with initial Re
nolds numbers ranging fromR(0)532 to 4096. The simula-
tions have been performed so that the small scales of
turbulence are adequately resolved and finite size effects

FIG. 4. Time evolution of the energy and enstrophy forR(0)515.73 com-
pared to the analytical results of~23!.
J. R. Chasnov
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sociated with the computational box may be neglected.
calculations were checked for accuracy by varying both
resolution and the wave numberkp at which the initial en-
ergy spectrum~11! is maximum. The simulations presente
are at resolution 40962 and the initial energy spectrum i
chosen withu051 and withkp ranging from 600 to 16 as th
initial Reynolds number increases from 32 to 4096. The to
computational cost of the calculation grows with decreas
kp due to the increasing number of time steps required fo
complete calculation.

The time evolution of (23) the energy, enstrophy, an
palinstrophy, normalized usingu0, v0 and l 0, ~15!, for the
different values ofR(0) are shown in Fig. 5. The energy an
enstrophy decay monotonically in time as required from~3!
and ~4!, while the palinstrophy increases to a maximum b
fore beginning to decay.

The logarithmic derivatives of the energy and enstrop
~19! versust ~21! are plotted in Fig. 6. No universal deca
exponent of the enstrophy, Fig. 6~b!, at large times for all
initial Reynolds numbers greater thanRc is observed. How-
ever, forR(0)>1024 the long-time decay exponent appe
to change only slightly and the asymptotic decay law
these large Reynolds numbers follows approximatelyt20.8.
These high Reynolds number flows are nearly inviscid in
much that the energy, Fig. 5~a!, decays very little over the
times simulated.

The logarithmic derivative of the energyn, Fig. 6~a!, is
observed to be an increasing function of the initial Reyno
number, indicating that the energy decay becomes less s
with increasing initial Reynolds numbers. This is also read
evident from the energy decay itself, Fig. 5~a!. We further
comment on the different qualitative behavior ofn at low
and high initial Reynolds numbers. For relatively low initi
Reynolds numbers (R(0),256),n decreases to a minimum
and then increases in time. This signifies a rapid initial de
of the energy which subsequently becomes less steep as
evolves, presumably due to the increasing Reynolds num
of the turbulence. ForR(0).256, however,n slowly de-
creases in time implying that the energy decay is steepe
as time evolves. However, the magnitude ofn for these high
Reynolds numbers is quite small, and the energy does
decay significantly over the times simulated. Since the
ergy is related to the time integral of the enstrophy,
change in the qualitative behavior of the logarithmic deriv
tive of the energy coincides with the power-law exponent
the enstrophy increasing from less than to greater than n
tive one.

One obvious point is evident from the simulation resu
presented in Fig. 6~b!: the enstrophy at high Reynolds num
bers does not decay ast22 as predicted by Batchelor.4 Pre-
vious investigations have already recognized this. Argu
on the basis of observed coherent vortices in tw
dimensional decay, Carnevaleet al.2 proposed the existenc
of a second conserved quantity in addition to the ener
From numerical solutions of vortex merging, a decay of
enstrophy proportional tot20.37was proposed. An enstroph
decay ranging fromt20.29 to t20.35 was determined in nearly
inviscid calculations of Dritschel,3 who also suggested tha
the decay exponents may depend strongly on the initial c
Phys. Fluids, Vol. 9, No. 1, January 1997
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ditions of the flow field as well as the Reynolds number. It
unclear why our large Reynolds number decay law of
enstrophy ast20.8 is substantially steeper than that dete
mined by these previous investigations.

In Fig. 7~a!, we plot the Reynolds numberR(t) as a
function of v0t. One observes that the Reynolds numb
increases asymptotically in time as expected. In Fig. 7~b!, we
also plot the flatness factor of the vorticity, defined as

f ~ t !5
^v4&

^v2&2
, ~24!

FIG. 5. Time evolution of the statistics forR(0)532, 64, . . . , 4096.~a!

Energy;~b! enstrophy;~c! palinstrophy.
175J. R. Chasnov
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versusv0t. The statisticf (t) has previously been used to
characterize the spatial intermittency of the vorticity
field.11,12 Our random phase initial condition~12! corre-
sponds to a flatness factor of three. The flatness factor a
apparently increases without bound during the decay wh
R(0).Rc . WhenR(0)5Rc ~not shown!, f (t) remains at
approximately three. The occurrence of large values of t
flatness factor during the decay of high Reynolds numb
two-dimensional turbulence has been previously observe
and it has been suggested that these large values are ass
ated with the formation of coherent vortices, and furthermo
that these vortices are responsible for the deviation fro
Batchelor scaling.11

V. SCALING LAWS

The most puzzling feature of our high Reynolds numbe
simulation results is the apparent lack of a unique asympto
similarity state for two-dimensional turbulence for all initial
Reynolds numbers greater thanRc even though these flows
approach infinite Reynolds number asymptotically. Rathe
different qualitative decay laws are observed for differen
ranges of initial Reynolds numbers and we will show her

FIG. 6. Time evolution of the logarithmic derivative of the energy and
enstrophy forR(0)532,64, . . . ,4096.~a! energy;~b! enstrophy.
176 Phys. Fluids, Vol. 9, No. 1, January 1997
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that it is possible to fit the data over limited Reynolds nu
ber ranges by assuming different forms for the energy
enstrophy decay.

Our starting point is the energy equation~3!, and the
assumption of power-law forms~22! for the energy and the
enstrophy. Substituting~22! into ~3!, one trivially obtains
coupled equations for the exponents and coefficients:

n215m, nb522nc. ~25!

An energy which approaches a constant asymptotically
the Reynolds number becomes large would requiren50 as-
ymptotically which does not satisfy~25! for n.0. Of course,
it is always possible to add a constant to the power-law
cay of the energy as found in~6!, and the enstrophy~5! is
then related to the energy through the next-order term
(1/t). Here, however, we take a different approach and c
sider that a solution withn50 can also be obtained if on
considers an additional~ad-hoc! logarithmic correction to the
power-law ansatz of~22!. With n50, one thus replaces~22!
by the form

^u2&5u
*
2 @ log~ t/t* !#p, p,0; ~26!

and the energy equation~3! then yields for the enstrophy

FIG. 7. Time evolution of the Reynolds numberR(t) and vorticity flatness
factor f (t) for R(0)532,64, . . . ,4096.~a! R(t); ~b! f (t).
J. R. Chasnov
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^v2&5
2pu

*
2

2n
t21@ log~ t/t* !#p21. ~27!

A logarithmic decay of the energy implies an enstrophy
cay ast21 asymptotically with a logarithmic correction.

The solution given by~26! and~27! is physically appeal-
ing in that the energy decay becomes less and less stee
the Reynolds number increases during the decay, yet the
ergy never completely escapes dissipation by viscosity
occurs in~6!. This behavior of the energy decay seems
agree with that observed from the simulation data
Rc,R(0),256. However, for fixedt asn→0, the solution
given by ~26! and ~27! is incorrect since in this limit the
energy should become constant. To obtain a solution
which the energy becomes constant asn→0, it is possible to
return to the original ansatz~22! and solve~25! directly for
the power-law exponentsn andm in terms of the assume
constant coefficientsb andc. In this fashion, one obtains th
solutions

^u2&5bt22nc/b, ^v2&5ct2~112nc/b!. ~28!

Here, for fixed t as n→0 one haŝ u2&→b5u0
2; and the

enstrophy again decays ast21. As mentioned in the introduc
tion, there are no finite time singularities in two-dimension
turbulence asn→0, so that~28! is still incorrect in that the
enstrophy should approach a constant in this limit but d
not.

The numerical simulation results for the logarithmic d
rivatives of the energy and enstrophy shown in Fig. 6 sho
sharp minimum in the power-law exponent of the energy
the initial Reynolds numbersR(0)532,64. We now show
that ~26! and ~27! can provide a good fit to the energy an
enstrophy decay with proper choices ofp, u* , and t* .
These parameters may be fitted to the data using the c
puted values for the logarithmic derivatives of the ene
and enstrophy, as well as~19!, ~26! and ~27!. The relations
we use to fit the parameters are

p5
n

n2m21
, t*5t expS 21

n2m21D ,
~29!

u
*
2 5^u2&~n2m21!n/~n2m21!.

We have determined that a good fit to the simulation data
R(0)532,64 can be obtained with a value ofp522/3. The
other values ofu* , t* , and the nondimensional grou
u
*
2 t* /n are shown in Table I. The nondimensional gro
u
*
2 t* /n can be considered to be the timet* after which the
log decay law is established normalized by a viscous t
scale formed fromu* andn. The 10% variation ofu

*
2 t* /n

over the two Reynolds number runs compared to the m
than order-of-magnitude variation int* suggests that the
logarithmic decay law of the energy is being established o

TABLE I. Fitted parameter values obtained from~29! and used in Fig. 8.

R(0) u* t* u
*
2 t* /n

32 0.29 217 590
64 0.77 17 650
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a time proportional to the viscous time scale. A plot of t
simulation results for the energy and enstrophy decay c
pared to the analytical forms~26! and ~27! is shown in Fig.
8, and very good agreement at large times between the s
lation data and the analytical form is observed.

At higher-Reynolds numbers, the forms for the ener
and enstrophy decay given by~26! and~27! no longer agree
with the data. Examining the graph of the logarithmic deriv
tive of the energy, Fig. 6~a!, one observes that a
R(0)5256, the logarithmic derivative of the energy is a
proximately constant at large times, indicating a power-l
decay for the energy. For smaller initial Reynolds numbe
the energy decay exponent is decreasing in magnitu
whereas for larger initial Reynolds numbers, the exponen
increasing in magnitude. The analytical form given by~28!
may be fit to the simulation results forR(0)5256, with the
decay exponent of the energy given byn520.1. A compari-
son between the simulation result forR(0)5256 and the
analytical form ~28! is shown in Fig. 9, and reasonab
agreement at large times is evident.

It appears from the results above that forR(0),256, the
decay of the energy by viscous forces is determining both
asymptotic decay laws of the energy and enstrophy. T
seems to be the case even though the Reynolds numb
the flow field is increasing asymptotically. For initial Rey
nolds numbers larger than approximately 1024, viscous
fects are much less important over the times simulated
the small amount of energy which does dissipate is of
apparent consequence. A nearly inviscid decay law of
enstrophy of approximatelyt20.8 is then observed from the
simulation data. We have no theoretical explanation for t
exponent value.

VI. SPECTRA

We now consider whether the energy spectrumE(k,t) of
two-dimensional turbulence decays self-similarly, that
without change of shape. For flows withR(0).Rc , self-

FIG. 8. Time evolution of the energy and enstrophy forR(0)532, 64 com-
pared to the analytical forms of~26! and ~27!.
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similarity of the spectrum for all wave numbers is impossib
due to the increase of the Reynolds number in time. Ho
ever, forR(0)5Rc a self-similar decay of the entire spec
trum can occur. We define a self-similar energy spectr
Ê( k̂) from

E~k,t !5u2lÊ~ k̂!, k̂5kl, ~30!

where the velocity and length scalesu and l are defined in
~14!. In plotting the spectrum itself, we also normalize usin
u0 and l 0 defined in~15!.

In Fig. 10, the time evolution of the nondimensional e
ergy spectrumE(k)/u0

2l 0 for R(0)515.73 versus nondimen
sional wave numberkl0 for t50,5,10,. . . ,35 isplotted. To
test whether the spectrum is decaying self-similarly,Ê( k̂)
versusk̂ is plotted in Fig. 11 fort510,15,. . . ,35using~30!.
A near-perfect collapse ofÊ( k̂) at the different times plotted
is observed indicating a self-similar decay of the spectru

FIG. 9. Time evolution of the energy and enstrophy forR(0)5256 com-
pared to the analytical forms of~28!.

FIG. 10. Evolution of the normalized energy spectrum in time wi
R(0)515.73. The times plotted correspond tot50,5,10, . . . ,35.
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over all wave numbers. Also observe that the characterist
B2(t)k

3 spectrum of~17! is clearly evident at low wave
numbers. Self-similarity of the spectrum given by~30! and
the low wave number form of the spectrum~17! results in the
scaling

B2~ t !}u
2l 4; ~31!

and whenR(0)5Rc , the analytical decay laws given by~23!
yield

B2~ t !}n3Rc8
2t; R~0!5Rc . ~32!

The low wave number coefficient of the spectrumB2(t) thus
increases linearly in time, indicating substantial nonlinea
backscatter of energy from small-to-large scales even for th
low Reynolds number turbulence. Recall thatB2(t) is inde-
pendent of time within a linear analysis.

Next we consider the time evolution of the energy spec
tra for flows withR(0).Rc . In particular, the time evolu-
tion of the spectra forR(0)564, 256, and 4096 are shown in
Fig. 12. The timest which are plotted are written in the
figure caption. Note how we have positioned the peak of th
initial energy spectrum in wave number space at the large
possible ~dimensional! wave number which provides ad-
equate small-scale resolution for a given initial Reynolds
number. This reduces the computational cost of each calc
lation as well as provides the best possible statistical samp
of the largest vortices in a single realization. In Fig. 13, the
self-similar spectra obtained using~30! are plotted.

It appears from the reasonable collapse of the spectra
different times evident from Fig. 13 that the decay of two-
dimensional turbulence at large Reynolds number is als
self-similar in the energy containing scales. One should ob
serve however that the spectra of the viscous scales at t
largest wave numbers do not collapse due to the increasin
Reynolds number of the turbulence during the decay. This
particularly evident forR(0)564, Fig. 13~a!. The collapse at
the smallest wave numbers is also not as good as observ
for R(0)515.73, Fig. 11, though it is impossible to say from
our data whether this is only due to a lack of adequate sta

FIG. 11. Rescaling of the energy spectrum of Fig. 10. The times plotte
correspond tot510,15, . . . ,35.
J. R. Chasnov
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tistical sample of the largest vortices. In Fig. 13, we hav
also plotted as a dashed line the expectedk̂3 low wave num-
ber behavior, as well as the predicted5,13,14 k̂23 inertial sub-
range behavior for two-dimensional turbulence. At the hig
est Reynolds numbers, Fig. 13~c!, an inertial subrange
appears to have developed which is slightly steeper than
predicted power-law behavior.

If indeed the spectrum decays self-similarly at low wav
numbers, it is possible to derive a relationship between t

FIG. 12. Evolution of the energy spectrum in time.~a! R(0)564, t50,
10,20,..., 120;~b! R(0)5256, t50,10,20,...,100;~c! R(0)54096, t50,
2,5,10,20,..., 50.
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enstrophy and the low wave number spectral coefficient
B2(t) using ~31! and the near-invariance ofu(t)5u0:

^v2&}
u0
3

AB2~ t !
. ~33!

Equation~33! suggests that the nonlinear backscatter of en-
ergy from small-to-large scales as represented by the time
dependence ofB2(t) may be the relevant physics which de-
termines the precise time-decay law of the enstrophy. An

FIG. 13. Rescaling of the energy spectra of Fig. 12.~a! R(0)564, t520,
30,...,120;~b! R(0)5256,t520,30...,100;~c! R(0)54096,t520,30,...,50.
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enstrophy decay of approximatelyt20.8 corresponds to
B2(t) } t1.6, which is somewhat more rapid than the line
increase~32! at low Reynolds numbers whenR(0)5Rc .
Batchelor’s original self-similarity hypothesis based on t
invariance ofu0 at high Reynolds numbers results in th
more rapid growthB2(t) } u0

6t4, and apparently standard clo
sure approximations agree with this estimate.8

VII. CONCLUSIONS

The main contribution of this work is to provide detaile
statistical results from direct numerical simulations of dec
ing two-dimensional homogeneous turbulence at varying
tial Reynolds numbers. The existence of a critical Reyno
number is established below which the turbulence ente
final period of decay, and above which the turbulen
evolves with asymptotically increasing Reynolds numb
However, even though all flows with initial Reynolds num
bers aboveRc evolve to high Reynolds numbers, no uniq
universal asymptotic state is observed. Rather, we have
cated different ranges in initial Reynolds numbers wh
various scaling behaviors are found. Only at relatively h
initial Reynolds numbers when the energy decay is app
ently negligible over the times simulated does the enstro
decay seem to approach a universal decay law of appr
mately t20.8.

We have also further determined a self-similar decay
the turbulence energy spectrum. The self-similarity is app
ently exact forR(0)5Rc but is necessarily approximate fo
R(0).Rc due to the increase of the Reynolds number dur
the decay. At the highest Reynolds number simulated,
enstrophy-cascading inertial subrange of almost one de
is observed. Finally, we comment that our numerical sim
lations seem to yield widely different results for the ener
and enstrophy decay than closure approximations,7,8 even
though many characteristics of the energy spectra are
same, including ak3 form at low wave numbers and a ne
k23 inertial subrange at high wave numbers, as well a
self-similar decay of the spectra in time.
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